#开发时间:2024/6/12 14:23 import numpy as np import pandas as pd from scipy.fft import fft, ifft import matplotlib.pyplot as plt from matplotlib import rcParams # 傅里叶变换去噪 def fft_denoise(signal, cutoff_freq, fs): signal_fft = fft(signal) frequencies = np.fft.fftfreq(len(signal), 1/fs) signal_fft[np.abs(frequencies) > cutoff_freq] = 0 return ifft(signal_fft).real plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 config = { "font.family": 'serif', "font.size": 20, "mathtext.fontset": 'stix', "font.serif": ['Times New Roman'], # 宋体 'axes.unicode_minus': False # 处理负号 } rcParams.update(config) # 读取信号 fs = 1000 noisy_signal = pd.read_csv('noisy_signals_time.csv') # 检查是否包含时间列 if 'time' in noisy_signal.columns: time_column = noisy_signal['time'].values.reshape(-1, 1) other_columns = noisy_signal.drop(columns='time') else: time_column = None other_columns = noisy_signal # 应用去噪方法 cutoff_freq = 10 # 截止频率 denoised_signals = pd.DataFrame() for column in other_columns.columns: denoised_signals[column] = fft_denoise(other_columns[column].values, cutoff_freq, fs) # 如果有时间列,将其添加回去 if time_column is not None: denoised_signals.insert(0, 'time', time_column) # 保存去噪后的信号到CSV文件 denoised_signals.to_csv('denoise_fft.csv', index=False) # 绘图 plt.figure(figsize=(12, 10)) # 绘制原始信号和去噪后信号(这里只绘制第一列作为示例) plt.subplot(2, 1, 1) plt.plot(noisy_signal.iloc[:, 1], label='Noisy Signal') plt.legend() plt.subplot(2, 1, 2) plt.plot(denoised_signals.iloc[:, 1], label='FFT Denoised') plt.legend() plt.tight_layout() plt.show()