123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283 |
- # 1.基本统计特征
- import pandas as pd
- from scipy.stats import skew, kurtosis
- import numpy as np
- def ae_feature(raw, fs):
- mean = np.mean(raw)
- std_dev = np.std(raw)
- max_value = np.max(raw)
- min_value = np.min(raw)
- variance = np.var(raw)
- skewness = skew(raw)
- kurt = kurtosis(raw)
- range=np.max(raw) - np.min(raw)
- rms = np.sum(raw ** 2) / len(raw)
- ae_feature = pd.DataFrame()
- ae_feature['mean'] = [mean]
- ae_feature['std_dev'] = [std_dev]
- ae_feature['max_value'] = [max_value]
- ae_feature['min_value'] = [min_value]
- ae_feature['variance'] = [variance]
- ae_feature['skewness'] = [skewness]
- ae_feature['kurt'] = [kurt]
- ae_feature['range'] = [range]
- ae_feature['rms'] = [rms]
- return ae_feature
- # 读取CSV文件
- df = pd.read_csv('扩充结果.csv')
- s=df.shape[1]
- p=df.shape[0]
- fs=300 # 设置提取特征值每组的数据量
- # 初始化一个空的DataFrame来保存所有特征
- all_features_df = pd.DataFrame()
- # 遍历每一列,按照每组300个数据计算基本统计特征
- for i in range(int(df.shape[1])):
- for j in range(0, len(df), fs):
- end_index = min(j + fs, len(df))
- data_test = np.array(df.iloc[j:end_index, i])
- # 计算时域特征
- sa=ae_feature(data_test,fs)
- all_features_df = pd.concat([all_features_df, sa], ignore_index=True)
- all_features_df.to_csv('特征值文件-统计.csv', index=False)
- # # 2.时间域特征
- # import numpy as np
- # import pandas as pd
- # import math
- # from scipy import fftpack
- #
- # def time_features(raw, fs):
- # n = len(raw)
- # fft_raw = abs(fftpack.fft(raw, n) * 2 / n)
- # main_freq_index = np.where(fft_raw[0:math.floor(n / 2)] == max(fft_raw[0:math.floor(n / 2)]))
- # f = np.linspace(0, fs, n) * fs / n
- # peak_freq = f[main_freq_index[0][0]] # 峰值频率,单位Hz
- #
- # xm = np.mean(raw) # 均值
- # xstd = np.std(raw) # 标准差
- # kur = ((np.sum((raw - xm) ** 4)) / len(raw)) / (xstd ** 4) # 峭度
- # cal_ave_amp = np.sum(np.abs(raw)) / n
- # power_2 = np.power(raw, 2)
- # sum_power = np.sum(power_2)
- # cal_rms = np.sqrt(sum_power / n)
- # cal_form = cal_rms / cal_ave_amp # 波峰因子,均方根/平均幅值
- # cal_peak = np.max(np.abs(raw)) # 峰值
- # cal_crest = cal_peak / cal_rms # 峰值因子
- #
- # feature_df = pd.DataFrame()
- # feature_df['peak_freq_khz'] = [peak_freq / 1000] # 转换为kHz
- # feature_df['均值v'] = [xm]
- # feature_df['标准差'] = [xstd]
- # feature_df['峭度'] = [kur]
- # feature_df['平均幅值'] = [cal_ave_amp]
- # feature_df['均方根'] = [cal_rms]
- # feature_df['波峰因子'] = [cal_form]
- # feature_df['峰值'] = [cal_peak]
- # feature_df['峰值因子'] = [cal_crest]
- #
- # return feature_df
- # # 读取CSV文件
- # df = pd.read_csv(r'E:\BaiduSyncdisk\zhiguan\01最近做的\算法调试\自己调试--Y\里程碑最终算法\02扩充\源代码\扩充后的数据-随机采样.csv')
- # s=df.shape[1]
- # p=df.shape[0]
- # fs=300 # 设置每组的数据量
- # # 初始化一个空的DataFrame来保存所有特征
- # all_features_df = pd.DataFrame()
- # # 遍历每一列,按照每组300个数据计算基本统计特征
- # for i in range(int(df.shape[1])):
- # for j in range(0, len(df), fs):
- # end_index = min(j + fs, len(df))
- # data_test = np.array(df.iloc[j:end_index, i])
- # # 计算时域特征
- # sa=time_features(data_test,fs)
- # all_features_df = pd.concat([all_features_df, sa], ignore_index=True)
- # all_features_df.to_csv('特征值文件-时域.csv', index=False)
- # # 3.频域特征
- # import pandas as pd
- # from scipy.fft import fft, fftfreq
- # from scipy.stats import skew, kurtosis
- # import numpy as np
- #
- # def fe_feature(signal, fs):
- # n = len(signal)
- # freqs = fftfreq(n, d=1/fs) # 生成频率序列
- # signal_fft = fft(signal) # 计算FFT
- # signal_fft_shifted = np.fft.fftshift(signal_fft) # 将FFT结果中心化
- #
- # # 计算频域特征
- # total_energy = np.sum(np.abs(signal_fft)**2)
- # total_power = total_energy / n
- # rms = np.sqrt(total_power)
- # freq_centroid = np.sum(np.abs(freqs) * np.abs(signal_fft_shifted)**2) / total_energy
- # freq_bandwidth = np.sum(np.abs(freqs[1:]**2 * signal_fft_shifted[1:]**2) - np.abs(freqs[:-1]**2 * signal_fft_shifted[:-1]**2)) / (2 * np.sum(np.abs(signal_fft_shifted)**2))
- # peak_freq = (np.argmax(np.abs(signal_fft_shifted)) + 1) * fs / n # 峰值频率
- # freq_skewness = skew(freqs[1:n//2] * (np.abs(signal_fft[1:n//2]) / np.max(np.abs(signal_fft[1:n//2]))))
- # freq_kurtosis = kurtosis(freqs[1:n//2] * (np.abs(signal_fft[1:n//2]) / np.max(np.abs(signal_fft[1:n//2]))))
- #
- # feature_df = pd.DataFrame({
- # '总能量': [total_energy],
- # '总功率': [total_power],
- # '均方根': [rms],
- # '频率中心': [freq_centroid],
- # '频率带宽': [freq_bandwidth],
- # '峰值频率': [peak_freq],
- # '频率偏度': [freq_skewness],
- # '频率峰度': [freq_kurtosis]
- # })
- #
- # return feature_df
- #
- # # 读取CSV文件
- # df = pd.read_csv(r'E:\BaiduSyncdisk\zhiguan\01最近做的\算法调试\自己调试--Y\里程碑最终算法\02扩充\源代码\扩充后的数据-随机采样.csv')
- #
- # fs = 300 # 设置采样频率,这里假设为300Hz,根据实际情况调整
- # all_features_df = pd.DataFrame()
- #
- # # 遍历每一列,按照每组300个数据计算频域特征
- # for i in range(int(df.shape[1])):
- # for j in range(0, len(df), fs):
- # end_index = min(j + fs, len(df))
- # data_test = df.iloc[j:end_index, i].to_numpy()
- # # 计算频域特征
- # fa = fe_feature(data_test, fs)
- # all_features_df = pd.concat([all_features_df, fa], ignore_index=True)
- #
- # # 保存为CSV文件
- # all_features_df.to_csv('特征值文件-频域.csv', index=False)
- #4.时频域特征
- # import pandas as pd
- # from scipy.stats import skew, kurtosis
- # import numpy as np
- # from scipy.fft import fft, fftfreq
- #
- # def tf_features(raw, fs):
- # # 计算快速傅里叶变换
- # fft_values = fft(raw)
- # fft_magnitude = np.abs(fft_values)
- #
- # # 计算频率向量
- # n = len(raw)
- # freq = fftfreq(n, 1 / fs)
- #
- # # 时域特征
- # mean = np.mean(raw)
- # std_dev = np.std(raw)
- # max_value = np.max(raw)
- # min_value = np.min(raw)
- # variance = np.var(raw)
- # skewness = skew(raw)
- # kurt = kurtosis(raw)
- #
- # # 频域特征
- # power_spectrum = np.square(fft_magnitude) / n
- # mean_freq = np.mean(freq[power_spectrum > 0])
- # std_freq = np.std(freq[power_spectrum > 0])
- # freq_skewness = skew(freq[power_spectrum > 0])
- # freq_kurt = kurtosis(freq[power_spectrum > 0])
- # peak_freq_index = np.argmax(power_spectrum)
- # peak_freq = freq[peak_freq_index]
- # bandwidth = np.max(freq[power_spectrum > 0]) - np.min(freq[power_spectrum > 0])
- # energy = np.sum(power_spectrum)
- #
- # tf_feature = pd.DataFrame()
- # tf_feature['mean'] = [mean]
- # tf_feature['std_dev'] = [std_dev]
- # tf_feature['max_value'] = [max_value]
- # tf_feature['min_value'] = [min_value]
- # tf_feature['variance'] = [variance]
- # tf_feature['skewness'] = [skewness]
- # tf_feature['kurt'] = [kurt]
- # tf_feature['mean_freq'] = [mean_freq]
- # tf_feature['std_freq'] = [std_freq]
- # tf_feature['freq_skewness'] = [freq_skewness]
- # tf_feature['freq_kurt'] = [freq_kurt]
- # tf_feature['peak_freq'] = [peak_freq]
- # tf_feature['bandwidth'] = [bandwidth]
- # tf_feature['energy'] = [energy]
- # return tf_feature
- #
- #
- # # 读取CSV文件
- # df = pd.read_csv(r'E:\BaiduSyncdisk\zhiguan\01最近做的\算法调试\自己调试--Y\里程碑最终算法\02扩充\源代码\扩充后的数据-随机采样.csv')
- # fs = 300 # 假设的采样频率,根据实际情况调整
- # # 初始化一个空的DataFrame来保存所有特征
- # all_features_df = pd.DataFrame()
- #
- # # 遍历每一列,按照每组300个数据计算频域特征
- # for i in range(int(df.shape[1])):
- # for j in range(0, len(df), fs):
- # end_index = min(j + fs, len(df))
- # data_test = df.iloc[j:end_index, i].to_numpy()
- # # 计算频域特征
- # fa = tf_features(data_test, fs)
- # all_features_df = pd.concat([all_features_df, fa], ignore_index=True)
- #
- # # 保存为CSV文件
- # all_features_df.to_csv('特征值文件-时频域.csv', index=False)
- #5.形态学特征提取
- # import pandas as pd
- # from scipy.signal import find_peaks
- # import numpy as np
- #
- # def morphological_features(raw):
- # nonzero_elements = np.count_nonzero(raw)
- # mean_slope = np.mean(np.diff(raw) / np.diff(np.arange(len(raw))))
- #
- # peaks, _ = find_peaks(raw)
- # num_peaks = len(peaks)
- # troughs, _ = find_peaks(-raw) # 寻找谷值
- # num_troughs = len(troughs)
- #
- # # 假设峰值和谷值的宽度为相邻峰值或谷值之间的距离
- # if num_peaks > 1:
- # peak_widths = np.diff(np.sort(peaks)[1:] - np.sort(peaks)[:-1])
- # else:
- # peak_widths = np.array([]) # 如果只有一个峰值,则没有宽度
- #
- # if num_troughs > 1:
- # trough_widths = np.diff(np.sort(troughs)[1:] - np.sort(troughs)[:-1])
- # else:
- # trough_widths = np.array([]) # 如果只有一个谷值,则没有宽度
- #
- # # 计算曲率和加速度变化需要一阶和二阶导数
- # first_derivative = np.diff(raw) / np.diff(np.arange(len(raw)))
- # second_derivative = np.diff(first_derivative) / np.diff(np.arange(len(raw) - 1))
- # curvature = np.sum(second_derivative ** 2) # 曲率的简单估计
- # acceleration_change = np.sum(np.abs(np.diff(first_derivative))) # 加速度变化的简单估计
- #
- # morph_feature = pd.DataFrame()
- # morph_feature['nonzero_elements'] = [nonzero_elements]
- # morph_feature['mean_slope'] = [mean_slope]
- # morph_feature['num_peaks'] = [num_peaks]
- # morph_feature['num_troughs'] = [num_troughs]
- # morph_feature['mean_peak_width'] = [np.mean(peak_widths)] if peak_widths.size else [0]
- # morph_feature['mean_trough_width'] = [np.mean(trough_widths)] if trough_widths.size else [0]
- # morph_feature['curvature'] = [curvature]
- # morph_feature['acceleration_change'] = [acceleration_change]
- # return morph_feature
- #
- # # 读取CSV文件
- # df = pd.read_csv(r'E:\BaiduSyncdisk\zhiguan\01最近做的\算法调试\自己调试--Y\里程碑最终算法\02扩充\源代码\扩充后的数据-随机采样.csv')
- # fs = 300 # 假设的采样频率,根据实际情况调整
- # # 初始化一个空的DataFrame来保存所有特征
- # all_features_df = pd.DataFrame()
- #
- # # 遍历每一列,按照每组300个数据计算频域特征
- # for i in range(int(df.shape[1])):
- # for j in range(0, len(df), fs):
- # end_index = min(j + fs, len(df))
- # data_test = df.iloc[j:end_index, i].to_numpy()
- # # 计算频域特征
- # fa = morphological_features(data_test)
- # all_features_df = pd.concat([all_features_df, fa], ignore_index=True)
- #
- # # 保存为CSV文件
- # all_features_df.to_csv('特征值文件-形态学.csv', index=False)
|