12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- #开发时间:2024/6/12 14:23
- import numpy as np
- import pandas as pd
- from scipy.fft import fft, ifft
- import matplotlib.pyplot as plt
- from matplotlib import rcParams
- # 傅里叶变换去噪
- def fft_denoise(signal, cutoff_freq, fs):
- signal_fft = fft(signal)
- frequencies = np.fft.fftfreq(len(signal), 1/fs)
- signal_fft[np.abs(frequencies) > cutoff_freq] = 0
- return ifft(signal_fft).real
- plt.rcParams['xtick.direction'] = 'in'
- plt.rcParams['ytick.direction'] = 'in'
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
- config = {
- "font.family": 'serif',
- "font.size": 20,
- "mathtext.fontset": 'stix',
- "font.serif": ['Times New Roman'], # 宋体
- 'axes.unicode_minus': False # 处理负号
- }
- rcParams.update(config)
- # 读取信号
- fs = 1000
- noisy_signal = pd.read_csv('noisy_signals_time.csv')
- # 检查是否包含时间列
- if 'time' in noisy_signal.columns:
- time_column = noisy_signal['time'].values.reshape(-1, 1)
- other_columns = noisy_signal.drop(columns='time')
- else:
- time_column = None
- other_columns = noisy_signal
- # 应用去噪方法
- cutoff_freq = 10 # 截止频率
- denoised_signals = pd.DataFrame()
- for column in other_columns.columns:
- denoised_signals[column] = fft_denoise(other_columns[column].values, cutoff_freq, fs)
- # 如果有时间列,将其添加回去
- if time_column is not None:
- denoised_signals.insert(0, 'time', time_column)
- # 保存去噪后的信号到CSV文件
- denoised_signals.to_csv('denoise_fft.csv', index=False)
- # 绘图
- plt.figure(figsize=(12, 10))
- # 绘制原始信号和去噪后信号(这里只绘制第一列作为示例)
- plt.subplot(2, 1, 1)
- plt.plot(noisy_signal.iloc[:, 1], label='Noisy Signal')
- plt.legend()
- plt.subplot(2, 1, 2)
- plt.plot(denoised_signals.iloc[:, 1], label='FFT Denoised')
- plt.legend()
- plt.tight_layout()
- plt.show()
|