1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980 |
- #开发时间:2024/6/12 14:29
- import numpy as np
- import pandas as pd
- from filterpy.kalman import KalmanFilter
- import matplotlib.pyplot as plt
- from matplotlib import rcParams
- # 卡尔曼滤波去噪
- def kalman_denoise(signal):
- kf = KalmanFilter(dim_x=2, dim_z=1)
- kf.x = np.array([0., 0.])
- kf.F = np.array([[1., 1.],
- [0., 1.]])
- kf.H = np.array([[1., 0.]])
- kf.P *= 1000.
- kf.R = 5
- kf.Q = np.array([[1e-5, 0.],
- [0., 1e-5]])
- filtered_signal = []
- for z in signal:
- kf.predict()
- kf.update(z)
- filtered_signal.append(kf.x[0])
- return np.array(filtered_signal)
- plt.rcParams['xtick.direction'] = 'in'
- plt.rcParams['ytick.direction'] = 'in'
- plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
- plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
- config = {
- "font.family": 'serif',
- "font.size": 20,
- "mathtext.fontset": 'stix',
- "font.serif": ['Times New Roman'], # 宋体
- 'axes.unicode_minus': False # 处理负号
- }
- rcParams.update(config)
- # 读取信号
- fs = 1000
- noisy_signal = pd.read_csv('noisy_signals_time.csv')
- # 检查是否包含时间列
- if 'time' in noisy_signal.columns:
- time_column = noisy_signal['time'].values.reshape(-1, 1)
- other_columns = noisy_signal.drop(columns='time')
- else:
- time_column = None
- other_columns = noisy_signal
- # 应用去噪方法
- denoised_signals = pd.DataFrame()
- for column in other_columns.columns:
- denoised_signals[column] = kalman_denoise(other_columns[column].values)
- # 如果有时间列,将其添加回去
- if time_column is not None:
- denoised_signals.insert(0, 'time', time_column)
- # 保存去噪后的信号到CSV文件
- denoised_signals.to_csv('denoise_kalman.csv', index=False)
- # 绘图
- plt.figure(figsize=(12, 10))
- # 绘制原始信号和去噪后信号(这里只绘制第一列作为示例)
- plt.subplot(2, 1, 1)
- plt.plot(noisy_signal.iloc[:, 1], label='Noisy Signal')
- plt.legend()
- plt.subplot(2, 1, 2)
- plt.plot(denoised_signals.iloc[:, 1], label='Kalman Filtered')
- plt.legend()
- plt.tight_layout()
- plt.show()
|