# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # Example usage: python train.py --data coco128.yaml # parent # ├── yolov5 # └── datasets # └── coco128-seg ← downloads here (7 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: D:/data/data_yolo/ # dataset root dir train: images/train # train images (relative to 'path') 128 images val: images/val # val images (relative to 'path') 128 images test: images/val # test images (optional) # Classes names: 0: white_crack 1: white_hole 2: white_debonding 3: black_crack 4: black_hole 5: black_debonding 6: rarefaction # 0: 裂纹 # 1: 孔洞 # 2: 脱毡 # 3: 裂纹 # 4: 孔洞 # 5: 脱毡 # 6: 疏松