benchmarks.py 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. """
  3. Run YOLOv5 benchmarks on all supported export formats
  4. Format | `export.py --include` | Model
  5. --- | --- | ---
  6. PyTorch | - | yolov5s.pt
  7. TorchScript | `torchscript` | yolov5s.torchscript
  8. ONNX | `onnx` | yolov5s.onnx
  9. OpenVINO | `openvino` | yolov5s_openvino_model/
  10. TensorRT | `engine` | yolov5s.engine
  11. CoreML | `coreml` | yolov5s.mlmodel
  12. TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/
  13. TensorFlow GraphDef | `pb` | yolov5s.pb
  14. TensorFlow Lite | `tflite` | yolov5s.tflite
  15. TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite
  16. TensorFlow.js | `tfjs` | yolov5s_web_model/
  17. Requirements:
  18. $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU
  19. $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU
  20. $ pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # TensorRT
  21. Usage:
  22. $ python benchmarks.py --weights yolov5s.pt --img 640
  23. """
  24. import argparse
  25. import platform
  26. import sys
  27. import time
  28. from pathlib import Path
  29. import pandas as pd
  30. FILE = Path(__file__).resolve()
  31. ROOT = FILE.parents[0] # YOLOv5 root directory
  32. if str(ROOT) not in sys.path:
  33. sys.path.append(str(ROOT)) # add ROOT to PATH
  34. # ROOT = ROOT.relative_to(Path.cwd()) # relative
  35. import export
  36. from models.experimental import attempt_load
  37. from models.yolo import SegmentationModel
  38. from segment.val import run as val_seg
  39. from utils import notebook_init
  40. from utils.general import LOGGER, check_yaml, file_size, print_args
  41. from utils.torch_utils import select_device
  42. from val import run as val_det
  43. def run(
  44. weights=ROOT / 'yolov5s.pt', # weights path
  45. imgsz=640, # inference size (pixels)
  46. batch_size=1, # batch size
  47. data=ROOT / 'data/coco128.yaml', # dataset.yaml path
  48. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  49. half=False, # use FP16 half-precision inference
  50. test=False, # test exports only
  51. pt_only=False, # test PyTorch only
  52. hard_fail=False, # throw error on benchmark failure
  53. ):
  54. y, t = [], time.time()
  55. device = select_device(device)
  56. model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
  57. for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
  58. try:
  59. assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
  60. assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
  61. if 'cpu' in device.type:
  62. assert cpu, 'inference not supported on CPU'
  63. if 'cuda' in device.type:
  64. assert gpu, 'inference not supported on GPU'
  65. # Export
  66. if f == '-':
  67. w = weights # PyTorch format
  68. else:
  69. w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
  70. assert suffix in str(w), 'export failed'
  71. # Validate
  72. if model_type == SegmentationModel:
  73. result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
  74. metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
  75. else: # DetectionModel:
  76. result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
  77. metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
  78. speed = result[2][1] # times (preprocess, inference, postprocess)
  79. y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
  80. except Exception as e:
  81. if hard_fail:
  82. assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
  83. LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
  84. y.append([name, None, None, None]) # mAP, t_inference
  85. if pt_only and i == 0:
  86. break # break after PyTorch
  87. # Print results
  88. LOGGER.info('\n')
  89. parse_opt()
  90. notebook_init() # print system info
  91. c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
  92. py = pd.DataFrame(y, columns=c)
  93. LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
  94. LOGGER.info(str(py if map else py.iloc[:, :2]))
  95. if hard_fail and isinstance(hard_fail, str):
  96. metrics = py['mAP50-95'].array # values to compare to floor
  97. floor = eval(hard_fail) # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
  98. assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
  99. return py
  100. def test(
  101. weights=ROOT / 'yolov5s.pt', # weights path
  102. imgsz=640, # inference size (pixels)
  103. batch_size=1, # batch size
  104. data=ROOT / 'data/coco128.yaml', # dataset.yaml path
  105. device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
  106. half=False, # use FP16 half-precision inference
  107. test=False, # test exports only
  108. pt_only=False, # test PyTorch only
  109. hard_fail=False, # throw error on benchmark failure
  110. ):
  111. y, t = [], time.time()
  112. device = select_device(device)
  113. for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
  114. try:
  115. w = weights if f == '-' else \
  116. export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
  117. assert suffix in str(w), 'export failed'
  118. y.append([name, True])
  119. except Exception:
  120. y.append([name, False]) # mAP, t_inference
  121. # Print results
  122. LOGGER.info('\n')
  123. parse_opt()
  124. notebook_init() # print system info
  125. py = pd.DataFrame(y, columns=['Format', 'Export'])
  126. LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
  127. LOGGER.info(str(py))
  128. return py
  129. def parse_opt():
  130. parser = argparse.ArgumentParser()
  131. parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
  132. parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
  133. parser.add_argument('--batch-size', type=int, default=1, help='batch size')
  134. parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
  135. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  136. parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
  137. parser.add_argument('--test', action='store_true', help='test exports only')
  138. parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
  139. parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
  140. opt = parser.parse_args()
  141. opt.data = check_yaml(opt.data) # check YAML
  142. print_args(vars(opt))
  143. return opt
  144. def main(opt):
  145. test(**vars(opt)) if opt.test else run(**vars(opt))
  146. if __name__ == "__main__":
  147. opt = parse_opt()
  148. main(opt)