CT-seg-cls4.yaml 933 B

123456789101112131415161718192021222324252627282930313233343536
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
  3. # Example usage: python train.py --data coco128.yaml
  4. # parent
  5. # ├── yolov5
  6. # └── datasets
  7. # └── coco128-seg ← downloads here (7 MB)
  8. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  9. # path: D:/data/data_yolo/ # dataset root dir
  10. #train: D:\hiddz\CT\测试数据\images # train images (relative to 'path') 128 images
  11. #val: ./images/val # val images (relative to 'path') 128 images
  12. # Classes
  13. #names:
  14. # 0: crack
  15. # 1: hole
  16. # 2: debonding
  17. #3: rarefaction
  18. # 0: 裂纹
  19. # 1: 孔洞
  20. # 2: 脱毡
  21. # 3: 裂纹
  22. # 4: 孔洞
  23. # 5: 脱毡
  24. # 6: 疏松
  25. path: 'C:\Users\Administrator\Desktop\SAR\'
  26. test:
  27. train: data\HRSID_YOLO\train
  28. val: data\HRSID_YOLO\val
  29. names:
  30. 0: Ship