CT-seg-cls7.yaml 895 B

12345678910111213141516171819202122232425262728293031
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
  3. # Example usage: python train.py --data coco128.yaml
  4. # parent
  5. # ├── yolov5
  6. # └── datasets
  7. # └── coco128-seg ← downloads here (7 MB)
  8. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  9. path: D:/data/data_yolo/ # dataset root dir
  10. train: images/train # train images (relative to 'path') 128 images
  11. val: images/val # val images (relative to 'path') 128 images
  12. test: images/val # test images (optional)
  13. # Classes
  14. names:
  15. 0: white_crack
  16. 1: white_hole
  17. 2: white_debonding
  18. 3: black_crack
  19. 4: black_hole
  20. 5: black_debonding
  21. 6: rarefaction
  22. # 0: 裂纹
  23. # 1: 孔洞
  24. # 2: 脱毡
  25. # 3: 裂纹
  26. # 4: 孔洞
  27. # 5: 脱毡
  28. # 6: 疏松