CT-seg-sum3.yaml 730 B

123456789101112131415161718192021
  1. # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
  2. # COCO128-seg dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
  3. # Example usage: python train.py --data coco128.yaml
  4. # parent
  5. # ├── yolov5
  6. # └── datasets
  7. # └── coco128-seg ← downloads here (7 MB)
  8. # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
  9. path: ./datasets/seg_sum3 # dataset root dir
  10. train: ./images/train # train images (relative to 'path') 128 images
  11. val: ./images/val # val images (relative to 'path') 128 images
  12. test: # test images (optional)
  13. # Classes
  14. names:
  15. 0: crack
  16. 1: debonding
  17. 2: hole
  18. # 3: rarefaction