123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Run YOLOv5 segmentation inference on images, videos, directories, streams, etc.
- Usage - sources:
- $ python segment/predict.py --weights yolov5s-seg.pt --source 0 # webcam
- img.jpg # image
- vid.mp4 # video
- screen # screenshot
- path/ # directory
- list.txt # list of images
- list.streams # list of streams
- 'path/*.jpg' # glob
- 'https://youtu.be/Zgi9g1ksQHc' # YouTube
- 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
- Usage - formats:
- $ python segment/predict.py --weights yolov5s-seg.pt # PyTorch
- yolov5s-seg.torchscript # TorchScript
- yolov5s-seg.onnx # ONNX Runtime or OpenCV DNN with --dnn
- yolov5s-seg_openvino_model # OpenVINO
- yolov5s-seg.engine # TensorRT
- yolov5s-seg.mlmodel # CoreML (macOS-only)
- yolov5s-seg_saved_model # TensorFlow SavedModel
- yolov5s-seg.pb # TensorFlow GraphDef
- yolov5s-seg.tflite # TensorFlow Lite
- yolov5s-seg_edgetpu.tflite # TensorFlow Edge TPU
- yolov5s-seg_paddle_model # PaddlePaddle
- """
- import argparse
- import os
- import platform
- import sys
- from pathlib import Path
- import torch
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.common import DetectMultiBackend
- from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams, LoadImages_batch
- from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
- increment_path, non_max_suppression, print_args, scale_boxes, scale_segments,
- strip_optimizer)
- from utils.plots import Annotator, colors, save_one_box
- from utils.segment.general import masks2segments, process_mask, process_mask_native
- from utils.segment.dataloaders import polygons2masks
- from utils.torch_utils import select_device, smart_inference_mode
- import numpy as np
- @smart_inference_mode()
- def run(
- weights=ROOT / 'yolov5s.pt', # model.pt path(s)
- source=ROOT / 'data/HRSID_YOLO/val', # file/dir/URL/glob/screen/0(webcam)
- data=ROOT / 'data/HRSID_YOLO/dataset.yaml', # dataset.yaml path
- imgsz=(640, 640), # inference size (height, width)
- conf_thres=0.25, # confidence threshold
- iou_thres=0.45, # NMS IOU threshold
- max_det=1000, # maximum detections per image
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- view_img=False, # show results
- save_txt=False, # save results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_crop=False, # save cropped prediction boxes
- nosave=False, # do not save images/videos
- classes=None, # filter by class: --class 0, or --class 0 2 3
- agnostic_nms=False, # class-agnostic NMS
- augment=False, # augmented inference
- visualize=False, # visualize features
- update=False, # update all models
- project=ROOT / 'runs/predict-seg', # save results to project/name
- name='exp', # save results to project/name
- exist_ok=False, # existing project/name ok, do not increment
- line_thickness=3, # bounding box thickness (pixels)
- hide_labels=False, # hide labels
- hide_conf=False, # hide confidences
- half=False, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- vid_stride=1, # video frame-rate stride
- retina_masks=False,
- batch_size=16,
- ):
- source = str(source)
- save_img = not nosave and not source.endswith('.txt') # save inference images
- is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
- is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
- webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
- screenshot = source.lower().startswith('screen')
- if is_url and is_file:
- source = check_file(source) # download
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- (save_dir / 'jsons' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- logFile = save_dir / 'detect.txt'
- import logging
- LOGGER = logging.getLogger('yolov5')
- logging.basicConfig(level=logging.INFO)
- # 创建一个FileHandler,并将日志写入指定的日志文件中
- fileHandler = logging.FileHandler(logFile, mode='a', encoding="utf-8")
- fileHandler.setLevel(logging.INFO)
- # 定义Handler的日志输出格式
- # formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- formatter = logging.Formatter('%(asctime)s - %(message)s')
- fileHandler.setFormatter(formatter)
- # 添加Handler
- LOGGER.addHandler(fileHandler)
- # Load model
- device = select_device(device)
- model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
- stride, names, pt = model.stride, model.names, model.pt
- nmm = len(list(names.keys()))
- imgsz = check_img_size(imgsz, s=stride) # check image size
- # Dataloader
- bs = batch_size # batch_size
- if webcam:
- view_img = check_imshow(warn=True)
- dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
- bs = len(dataset)
- elif screenshot:
- dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
- else:
- if bs == 1:
- dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
- else:
- from torch.utils.data import DataLoader
- dataset = LoadImages_batch(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
- bs = min(bs, len(dataset))
- dataloader = DataLoader(dataset,
- batch_size=bs,
- shuffle=True,
- num_workers=4,
- pin_memory=True,
- collate_fn=LoadImages_batch.collate_fn)
- vid_path, vid_writer = [None] * bs, [None] * bs
- # Run inference
- model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
- seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
- if bs == 1:
- for path, im, im0s, vid_cap, s in dataset:
- with dt[0]:
- im = torch.from_numpy(im).to(model.device)
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- if len(im.shape) == 3:
- im = im[None] # expand for batch dim
- # Inference
- with dt[1]:
- visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
- pred, proto = model(im, augment=augment, visualize=visualize)[:2]
- # NMS
- with dt[2]:
- # if pred.numel() > 0: # numel() 返回张量中元素的数量
- # pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms,
- # max_det=max_det, nm=nm)
- # else:
- # print("No valid predictions, skipping non_max_suppression.")
- # pred = torch.empty((0, 6)) # 返回一个空的张量以避免后续错误
- # print(pred)
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=nmm)
- # Second-stage classifier (optional)
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
- # Process predictions
- for i, det in enumerate(pred): # per image
- seen += 1
- if webcam: # batch_size >= 1
- p, im0, frame = path[i], im0s[i].copy(), dataset.count
- s += f'{i}: '
- else:
- p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # im.jpg
- txt_path = str(save_dir / 'labels' / p.stem) + (
- '' if dataset.mode == 'image' else f'_{frame}') # im.txt
- labelme_path = str(save_dir / 'jsons' / p.stem) + (
- '' if dataset.mode == 'image' else f'_{frame}') # im.json
- label_dict = {}
- label_dict['version'] = '5.0.1'
- label_dict['flags'] = {}
- label_dict['imageData'] = None
- label_dict['imagePath'] = p.name
- label_dict['imageHeight'] = im0.shape[0]
- label_dict['imageWidth'] = im0.shape[1]
- label_dict['shapes'] = []
- s += '%gx%g ' % im.shape[2:] # print string
- imc = im0.copy() if save_crop else im0 # for save_crop
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
- if len(det):
- if retina_masks:
- # scale bbox first the crop masks
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4],
- im0.shape).round() # rescale boxes to im0 size
- masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC
- else:
- masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4],
- im0.shape).round() # rescale boxes to im0 size
- # Segments
- if save_txt:
- segments = [
- scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=False)
- for x in reversed(masks2segments(masks))] # ,strategy='concat'
- # Print results
- for c in det[:, 5].unique():
- n = (det[:, 5] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
- # Mask plotting
- annotator.masks(
- masks,
- colors=[colors(x, True) for x in det[:, 5]],
- im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(
- 0).contiguous() /
- 255 if retina_masks else im[i])
- # Write results
- for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
- if save_txt: # Write to file
- seg = segments[j].reshape(-1) # (n,2) to (n*2)
- line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format
- with open(f'{txt_path}.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- # add save_labeme format
- tmp = {}
- tmp['label'] = names[int(cls)]
- # tmp['label_id'] = int(cls)
- tmp['points'] = segments[
- j].tolist() # [[float(xyxy[0].detach().item()), float(xyxy[1].detach().item())], [float(xyxy[2].detach().item()), float(xyxy[3].detach().item())]]
- tmp['group_id'] = None
- tmp['shape_type'] = 'polygon' # 注意修改
- tmp['flags'] = {}
- # tmp['bbox'] = [xyxy[0].tolist(),xyxy[1].tolist()]
- label_dict['shapes'].append(tmp)
- if save_img or save_crop or view_img: # Add bbox to image
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- annotator.box_label(xyxy, label, color=colors(c, True), flag=False)
- # # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
- if save_txt: # Write to file
- import json
- with open(f'{labelme_path}.json', 'w') as f:
- json.dump(label_dict, f)
- # Stream results
- im0 = annotator.result()
- if view_img:
- if platform.system() == 'Linux' and p not in windows:
- windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- if cv2.waitKey(1) == ord('q'): # 1 millisecond
- exit()
- # Save results (image with detections)
- if save_img:
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
- vid_writer[i].write(im0)
- # Print time (inference-only)
- LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
- f_for_val = open('x.excel', 'w')
- f_for_val.writelines(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
- else:
- for batch_i, (paths, im, im0s, s) in enumerate(dataloader):
- with dt[0]:
- im = im.to(device, non_blocking=True)
- im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- # Inference
- with dt[1]:
- # visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
- pred, proto = model(im, augment=augment, visualize=False)[:2]
- # NMS
- with dt[2]:
- if pred.numel() > 0: # numel() 返回张量中元素的数量
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms,
- max_det=max_det, nm=nm)
- else:
- print("No valid predictions, skipping non_max_suppression.")
- pred = torch.empty((0, 6)) # 返回一个空的张量以避免后续错误
- pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, nm=nmm)
- # Second-stage classifier (optional)
- # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
- # Process predictions
- for i, det in enumerate(pred): # per image
- seen += 1
- if webcam: # batch_size >= 1
- p, im0, frame = paths[i], im0s[i].copy(), dataset.count
- s += f'{i}: '
- else:
- p, im0, frame = paths[i], im0s[i].numpy().copy(), getattr(dataset, 'frame', 0)
- s[i] += f'{i}: '
- p = Path(p) # to Path
- save_path = str(save_dir / p.name) # im.jpg
- txt_path = str(save_dir / 'labels' / p.stem) + (
- '' if dataset.mode == 'image' else f'_{frame}') # im.txt
- labelme_path = str(save_dir / 'jsons' / p.stem) + (
- '' if dataset.mode == 'image' else f'_{frame}') # im.json
- label_dict = {}
- label_dict['version'] = '5.0.1'
- label_dict['flags'] = {}
- label_dict['imageData'] = None
- label_dict['imagePath'] = p.name
- label_dict['imageHeight'] = im0.shape[0]
- label_dict['imageWidth'] = im0.shape[1]
- label_dict['shapes'] = []
- s += '%gx%g ' % im.shape[2:] # print string
- imc = im0.copy() if save_crop else im0 # for save_crop
- annotator = Annotator(im0, line_width=line_thickness, example=str(names))
- if len(det):
- if retina_masks:
- # scale bbox first the crop masks
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4],
- im0.shape).round() # rescale boxes to im0 size
- masks = process_mask_native(proto[i], det[:, 6:], det[:, :4], im0.shape[:2]) # HWC
- else:
- masks = process_mask(proto[i], det[:, 6:], det[:, :4], im.shape[2:], upsample=True) # HWC
- det[:, :4] = scale_boxes(im.shape[2:], det[:, :4],
- im0.shape).round() # rescale boxes to im0 size
- # Segments
- if save_txt:
- segments = [
- scale_segments(im0.shape if retina_masks else im.shape[2:], x, im0.shape, normalize=False)
- for x in reversed(masks2segments(masks))]
- # Print results
- for c in det[:, 5].unique():
- n = (det[:, 5] == c).sum() # detections per class
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
- # Mask plotting
- annotator.masks(
- masks,
- colors=[colors(x, True) for x in det[:, 5]],
- im_gpu=torch.as_tensor(im0, dtype=torch.float16).to(device).permute(2, 0, 1).flip(
- 0).contiguous() /
- 255 if retina_masks else im[i])
- # Write results
- for j, (*xyxy, conf, cls) in enumerate(reversed(det[:, :6])):
- if save_txt: # Write to file
- seg = segments[j].reshape(-1) # (n,2) to (n*2)
- line = (cls, *seg, conf) if save_conf else (cls, *seg) # label format
- with open(f'{txt_path}.txt', 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- # add save_labeme format
- tmp = {}
- tmp['label'] = names[int(cls)]
- tmp['points'] = segments[
- j].tolist() # E[float(xyxy[0].detach().item()), float(xyxy[1].detach().item())], [float(xyxy[2].detach().item()), float(xyxy[3].detach().item())]
- tmp['group_id'] = None
- tmp['shape_type'] = 'polygon' # 注意修改
- # area = component_polygon_area(segments[j])
- # tmp['area'] = area
- # tmp['lenth'] = component_polygon_Circle(segments[j])# 宽度
- # tmp['width'] = component_polygon_Circle(segments[j])
- tmp['flags'] = {}
- label_dict['shapes'].append(tmp)
- if save_img or save_crop or view_img: # Add bbox to image
- c = int(cls) # integer class
- label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
- annotator.box_label(xyxy, label, color=colors(c, True), flag=False)
- # annotator.draw.polygon(segments[j], outline=colors(c, True), width=3)
- if save_crop:
- save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
- if save_txt: # Write to file
- import json
- with open(f'{labelme_path}.json', 'w') as f:
- json.dump(label_dict, f)
- # # copy file
- # import shutil
- # #shutil.copyfile(f'{labelme_path}.json', os.path.dirname(source) + f'{labelme_path}.json')
- # if os.path.isdir(source):
- # shutil.copyfile(f'{labelme_path}.json',os.path.join(source,f'{p.stem}.json'))
- # else:
- # shutil.copyfile(f'{labelme_path}.json',os.path.join(os.path.dirname(source),f'{p.stem}.json'))
- else:
- # 不存在 检测结果
- if save_txt: # Write to file
- # add save_labeme format
- tmp = {}
- tmp['label'] = "" # names[int(cls)]
- tmp['points'] = [
- []] # segments[j].tolist() #E[float(xyxy[0].detach().item()), float(xyxy[1].detach().item())], [float(xyxy[2].detach().item()), float(xyxy[3].detach().item())]
- tmp['group_id'] = None
- tmp['shape_type'] = 'polygon' # 注意修改
- # area = component_polygon_area(segments[j])
- # tmp['area'] = area
- # tmp['lenth'] = component_polygon_Circle(segments[j])# 宽度
- # tmp['width'] = component_polygon_Circle(segments[j])
- tmp['flags'] = {}
- label_dict['shapes'].append(tmp)
- import json
- with open(f'{labelme_path}.json', 'w') as f:
- json.dump(label_dict, f)
- # Stream results
- im0 = annotator.result()
- if view_img:
- if platform.system() == 'Linux' and p not in windows:
- windows.append(p)
- cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
- cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
- cv2.imshow(str(p), im0)
- if cv2.waitKey(1) == ord('q'): # 1 millisecond
- exit()
- # Save results (image with detections)
- if save_img:
- if dataset.mode == 'image':
- cv2.imwrite(save_path, im0)
- else: # 'video' or 'stream'
- if vid_path[i] != save_path: # new video
- vid_path[i] = save_path
- if isinstance(vid_writer[i], cv2.VideoWriter):
- vid_writer[i].release() # release previous video writer
- if vid_cap: # video
- fps = vid_cap.get(cv2.CAP_PROP_FPS)
- w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
- h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
- else: # stream
- fps, w, h = 30, im0.shape[1], im0.shape[0]
- save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
- vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
- vid_writer[i].write(im0)
- # Print time (inference-only)
- LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
- f_for_val.writelines(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
- f_for_val.close()
- # Print results
- t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
- if save_txt or save_img:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- if update:
- strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights\\best.pt', help='model path(s)')
- parser.add_argument('--source', type=str, default=ROOT / 'data\\HRSID_YOLO\\test\\images', help='file/dir/URL/glob/screen/0(webcam)')
- parser.add_argument('--data', type=str, default=ROOT / 'data\HRSID_YOLO\dataset.yaml', help='(optional) dataset.yaml path')
- parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
- parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
- parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
- parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--view-img', action='store_true', help='show results')
- parser.add_argument('--save-txt', action='store_true', default=True, help='save results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
- parser.add_argument('--nosave', action='store_true', default=True, help='do not save images/videos')
- parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
- parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
- parser.add_argument('--augment', action='store_true', help='augmented inference')
- parser.add_argument('--visualize', action='store_true', help='visualize features')
- parser.add_argument('--update', action='store_true', help='update all models')
- parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
- parser.add_argument('--name', default='exp', help='save results to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
- parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
- parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
- parser.add_argument('--retina-masks', action='store_true', help='whether to plot masks in native resolution')
- parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs, -1 for autobatch')
- opt = parser.parse_args()
- opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
- print_args(vars(opt))
- return opt
- def main(opt):
- check_requirements(exclude=('tensorboard', 'thop'))
- run(**vars(opt))
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|