123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223 |
- ##############功能测试##################
- import ctypes
- from shapely.geometry import Polygon
- from shapely.ops import unary_union
- # whnd = ctypes.windll.kernel32.GetConsoleWindow()
- # if whnd != 0:
- # ctypes.windll.user32.ShowWindow(whnd, 0)
- # ctypes.windll.kernel32.CloseHandle(whnd)
- import sys
- import os
- import subprocess
- import time
- import cv2
- import shutil
- from pathlib import Path
- from split_train_val_test import split
- from crop import crop
- from json_to_yolo import json_to_yolo
- from datetime import datetime
- from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QVBoxLayout, QPushButton, QWidget
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from PyQt5.QtGui import QPixmap
- from PyQt5.QtWidgets import QApplication, QMainWindow, QFileDialog, QButtonGroup, QMessageBox, QListView, \
- QAbstractItemView, QTreeView, QWidget, QVBoxLayout
- from PyQt5.QtCore import Qt, QTimer, QThread, pyqtSignal, QDateTime
- from qt_win.win3 import Ui_mainWindow, MessageBox, InfoMessageBox
- from PyQt5.uic import loadUi
- import apprcc_rc
- import glob
- from utils.segment.dataloaders import polygons2masks # 用来重新画修正后的图片
- from utils.plots import Annotator, colors
- from name import CT_name_zh, CT_name # 演示用coco 后续换成
- import json
- import numpy as np
- import math
- from PIL import Image, ImageDraw, ImageFont
- os.environ["GIT_PYTHON_REFRESH"] = "quiet"
- os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
- import psutil
- """
- 通过进程名杀死进程
- taskkill /F /IM explorer.exe
- """
- def kill_name(name):
- pids = psutil.pids()
- for pid in pids:
- p = psutil.Process(pid)
- if p.name() == name:
- if os.name == 'nt':
- cmd = 'taskkill /pid ' + str(pid) + ' /f'
- try:
- print(pid, 'killed')
- os.system(cmd)
- except Exception as e:
- print(e)
- elif os.name == 'posix':
- # Linux系统
- cmd = 'kill ' + str(pid)
- try:
- print(pid, 'killed')
- os.system(cmd)
- except Exception as e:
- print(e)
- def component_polygon_area(poly):
- """Compute the area of a component of a polygon.
- Args:
- x (ndarray): x coordinates of the component
- y (ndarray): y coordinates of the component
- Return:
- float: the are of the component
- """
- # poly = poly.numpy()
- x = poly[:, 0]
- y = poly[:, 1]
- return 0.5 * np.abs(
- np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) # np.roll 意即“滚动”,类似移位操作
- # 注意这里的np.dot表示一维向量相乘
- def component_polygon_Circle(poly):
- """Compute the area of a component of a polygon.
- """
- # poly = poly.numpy()
- poly = poly[:, None, :]
- # poly .shpae (n,1,2)
- _, radius = cv2.minEnclosingCircle(poly)
- return 2 * math.pi * radius
- def component_polygon_Circle_max(src, poly):
- # Calculate the distances to the contour
- box = cv2.boundingRect(poly[:, None, :])
- x, y, w, h = box
- raw_dist = np.empty(src.shape[:2])
- mask = np.zeros(src.shape, dtype=np.int32)
- cv2.fillPoly(mask, [poly.astype(np.int32)], color=(255, 255, 255)) # 在大图上画该类的所有检测多边形
- for i in range(x, x + w, ):
- for j in range(y, y + h, ):
- if mask[j, i, 0] == 255:
- raw_dist[j, i] = cv2.pointPolygonTest(poly[:, None:, ], (i, j), True)
- # 获取最大值即内接圆半径,中心点坐标
- _, maxVal, _, maxLoc = cv2.minMaxLoc(raw_dist)
- return maxVal * 2, maxLoc
- det_img = None
- def plots_new_one(json_file, img_name, out_path, flag=True): # 计算缺陷信息并展示
- """
- 画单张图片 默认是未纠错模式
- """
- s_t = time.time()
- # print("s_t: ", s_t)
- im0 = cv2.imread(img_name) # BGR
- s2_t = time.time()
- # print("time2: ", s2_t-s_t)
- # Mask plotting
- segments = []
- class_id = []
- class_name = []
- # ccn = {}
- new_dict = {v: k for k, v in CT_name.items()}
- # print("plots_new_one, json_file: ",json_file)
- if os.path.exists(json_file):
- with open(json_file, 'r') as f:
- data = json.load(f)
- class_number = data['shapes'] # 类型个数
- for cn in class_number:
- if cn['label'] in list(CT_name_zh.keys()):
- # segments.append(np.array(cn['points'],dtype=np.float32)) #获取每个轮廓点
- segments.append(np.array(cn['points'], dtype=np.int32))
- class_name.append(CT_name_zh[cn['label']]) # 获取对应的class name
- class_id.append(new_dict[cn['label']]) # 获取对应的class id
- # bboxs.append(np.array(cn['bbox'])) #x[0] y[0] 左上角点 用于画图 和显示信息
- # ccn = data
- # print("segments: ", segments[0].dtype)
- s3_t = time.time()
- # print("time3: ", s3_t - s2_t)
- nc = len(class_name)
- if nc > 0:
- s3_1_t = time.time()
- # print("time3_1: ", s3_1_t - s2_t)
- annotator = Annotator(im0, line_width=1, example=str(CT_name)) #
- # 二值化
- # masks = polygons2masks(im0.shape[:2], segments, color=1)
- s3_2_t = time.time()
- # print("time3_2: ", s3_2_t - s3_1_t)
- # 重新由轮廓点 求取信息 因为有可能更新
- p_co = [colors(x, True) for x in class_id]
- # annotator.masks_cpu( #cpu上
- # masks,
- # colors=p_co,
- # im_gpu=im0.transpose(2, 0, 1) / 255)
- s3_3_t = time.time()
- # print("time3_3: ", s3_3_t - s3_2_t)
- # im0 = annotator.result()
- s4_t = time.time()
- # print("time4: ", s4_t - s3_t)
- alpha = 0.75
- mask = np.zeros((im0.shape[0], im0.shape[1]), dtype=np.uint8)
- overlay = im0.copy()
- cv2.fillPoly(mask, pts=segments, color=(255, 255, 255))
- cv2.fillPoly(im0, pts=segments, color=(125, 255, 0))
- cv2.addWeighted(overlay, alpha, im0, 1 - alpha, 0, im0)
- print("flag: ", flag)
- for i in range(nc):
- txt_color = p_co[i] # cocoors(new_dict[list(ccn.keys())[i]], True)
- # x, y, _, _ = cv2.boundingRect(segments[i][:,None:,])
- # print("segments: ",segments[i].shape) #(754, 2)
- xy_index = np.argmin(segments[i], axis=0) # 其中,axis=1表示按行计算
- # print("xy_index.shape,xy_index: ",xy_index.shape,xy_index) #(2,) [ 139.55 267.14]
- textSize = int(0.04 * im0.shape[0])
- x = segments[i][xy_index[1], 0]
- y = segments[i][xy_index[1], 1]
- if y - textSize <= 10:
- y = 10
- # print("im0.shape[0]: ", im0.shape[0], x, y)
- def cv2AddChineseText(img, text, position, textColor=(0, 255, 0), textSize=0.04):
- # print("textColor: ", type(textColor), tuple(list(textColor)[::-1]))
- textColor = tuple(list(textColor)[::-1])
- if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型
- img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- # print("img.size: ", img.size)
- # 创建一个可以在给定图像上绘图的对象
- draw = ImageDraw.Draw(img)
- # 字体的格式
- # fontStyle = ImageFont.truetype("simsun.ttc", textSize, encoding="utf-8")
- fontStyle = ImageFont.truetype("simhei.ttf", textSize, encoding="utf-8")
- # 绘制文本
- draw.text(position, text, textColor, font=fontStyle)
- # 转换回OpenCV格式
- return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
- # cv2.putText(im0,class_name[i],(int(x), int(y)), 0, 0.75, txt_color, thickness=2 ,lineType=cv2.LINE_AA)
- if not flag:
- pass
- # im0 = cv2AddChineseText(im0, f"{class_name[i]}", (int(x), int(y)), txt_color, textSize)
- else:
- # 计算面积
- area = round(cv2.contourArea(segments[i]), 2)
- lenth = round(cv2.arcLength(segments[i], True) / 2, 2)
- # 计算宽度
- width, maxLoc = component_polygon_Circle_max(im0, segments[i])
- im0 = cv2AddChineseText(im0, f"{class_name[i]}({int(area)}mm²,{int(lenth)}mm,{int(width)}mm)",
- (int(x), int(y + 10)), txt_color, textSize) # 只显示面积
- s5_t = time.time()
- print("time5: ", s5_t - s4_t)
- # global det_img
- # det_img=im0
- cv2.imwrite(os.path.join(out_path, os.path.basename(img_name)), im0)
- # labelme 2 yolov5
- def convert_json_label_to_yolov_seg_label(json_file, root_path, save_path):
- # print(json_file)
- f = open(json_file)
- json_info = json.load(f)
- # print(json_info.keys())
- img = cv2.imread(os.path.join(root_path, json_info["imagePath"]))
- height, width, _ = img.shape
- np_w_h = np.array([[width, height]], np.int32)
- txt_file = save_path # json_file.replace(".json", ".txt")
- f = open(txt_file, "a")
- for point_json in json_info["shapes"]:
- txt_content = ""
- np_points = np.array(point_json["points"], np.int32)
- norm_points = np_points / np_w_h
- norm_points_list = norm_points.tolist()
- txt_content += "0 " + " ".join([" ".join([str(cell[0]), str(cell[1])]) for cell in norm_points_list]) + "\n"
- f.write(txt_content)
- class TrainThread(QThread): # 调用train_qt.py
- send_msg = pyqtSignal(str) # 因为用了os 后台 发送不了中间进程 就只有 启动和开始
- # send_percent = pyqtSignal(int) #
- def __init__(self):
- super(TrainThread, self).__init__()
- self.model = " "
- self.Work = ["python.exe", "train_qt.py"] # os后台执行命令行 内容
- self.Command = []
- def getAllImage(self, folderPath, imageList):
- extend_name = ["jpg", "jpeg", "png", "bmp", "tif", "tiff"]
- # exclude_dir=["data_crop","data_yolo","data_original"]
- # exclude_dir = ["data_crop", "data_yolo", "data_debug","val","eval","eval_debug"]
- if os.path.isfile(folderPath):
- basename = os.path.basename(folderPath)
- ext = basename.rsplit(".")[-1]
- bsname = basename.rsplit(".", 1)[0]
- len1 = len(folderPath) - len(ext)
- json_f = folderPath[:len1] + "json"
- if ext in extend_name:
- if os.path.exists(json_f):
- imageList.append(folderPath)
- return imageList
- else:
- for item in os.listdir(folderPath):
- subFolderPath = os.path.join(folderPath, item)
- self.getAllImage(subFolderPath, imageList)
- return imageList
- def run(self):
- try:
- self.send_msg.emit('开始训练')
- # 先准备好yolo格式的数据集
- data_paths = self.Command[-1]
- print("data_paths: ", data_paths)
- imageList = []
- data_paths_ = data_paths.strip().split(";")
- print("data_paths_: ", data_paths_)
- for data_path in data_paths_:
- if len(data_path) > 0:
- self.getAllImage(data_path, imageList) # 获取所有原始大图
- print("imageList: ", imageList)
- split(imageList) # 划分train-val-test
- crop()
- json_to_yolo()
- info = self.Work
- if self.Command[0] == "True":
- info += ["--weights"] + [self.model]
- info += ["--hyp"] + [self.Command[-3]] + ["--imgsz"] + [self.Command[1]] \
- + ["--epochs"] + [self.Command[2]] + ["--batch-size"] + [self.Command[3]] \
- + ["--ckptname"] + [self.Command[-4]] + ["--project"] + [self.Command[-2]]
- # print(info)
- # os.system(info)
- subprocess.run(info)
- self.send_msg.emit('训练结束')
- # self.statistic_label.clear()
- except Exception as e:
- print('开始训练 %s' % e)
- self.send_msg.emit('%s' % e)
- # 识别
- class DetThread(QThread): # 检测类,调用predict_largepic.py
- send_msg = pyqtSignal(str) # 因为用了os 后台 发送不了中间进程 就只有 启动和开始
- def __init__(self):
- super(DetThread, self).__init__()
- self.model = ""
- self.Work = ["python.exe", "predict_qt.py"] # os后台执行命令行 内容
- self.Work2 = ["python.exe", "predict_largepic.py"] # os后台执行命令行 内容
- self.data = None # 默认
- self.split = False # 默认 不 切片
- def run(self):
- try:
- if self.split:
- info = self.Work2 + ["--batch-size"] + [self.Command[3]]
- else:
- info = self.Work
- info += ["--weights"] + [self.model]
- info += ["--imgsz"] + [self.Command[0]] \
- + ["--conf-thres"] + [self.Command[2]] + ["--batch-size"] + ["1"] \
- + ["--iou-thres"] + [self.Command[1]] + ["--project"] + [self.Command[-1]]
- if self.data:
- info += ["--source"] + [self.data]
- # print(info)
- self.send_msg.emit('开始检测')
- print("*********************************************************")
- print("DetThread info: ", info)
- # os.system(info)
- # subprocess.Popen(info) #这样不阻塞
- subprocess.run(info) # 这样阻塞
- self.send_msg.emit('检测结束')
- # self.statistic_label.clear()
- except Exception as e:
- print('%s' % e)
- self.send_msg.emit('%s' % e)
- class FeaThread(QThread):
- send_msg = pyqtSignal(str) # 因为用了os 后台 发送不了中间进程 就只有 启动和开始
- def __init__(self):
- super().__init__()
- self.py = ""
- self.data = None
- #
- # def run(self):
- # self.send_msg.emit("s")
- class JianThread(QThread):
- send_msg = pyqtSignal(str) # 因为用了os 后台 发送不了中间进程 就只有 启动和开始
- def __init__(self):
- super().__init__()
- self.py = ""
- self.data = None
- class LabelThread(QThread): # 调用labelme第三方库
- def __init__(self):
- super(LabelThread, self).__init__()
- # labelme 必须找到入口文件
- self.Work = "python.exe D:\\Anaconda3\\envs\\pyqt\\Lib\site-packages\\labelme\\__main__.py --labels ./labels.txt" # ./res/ --labels ./dataset/labels.txt" # os后台执行命令行 内容
- self.Command = []
- self.src_path = "" # 是检测图片所在路径,也就是标注文件所在路径
- self.det_path = "" # 是检测结果json文件的路径
- self.cor_path = "D:/data/correct"
- def run(self):
- try:
- info = self.Work
- info += " " + self.src_path
- # print(info)
- # copy 检测结果的 至
- max_i = 0
- if not os.path.exists(self.cor_path):
- os.mkdir(self.cor_path)
- max_i = 0
- else:
- cor_json_list = glob.glob(self.cor_path + '/*.json') # 再将现在检测好的json文件移到图片所在文件夹下
- if len(cor_json_list) == 0:
- max_i = 0
- else:
- cor_json_list = sorted(cor_json_list, key=lambda x: int(os.path.basename(x)[:-5]),
- reverse=True) # 降序
- print("cor_json_list: ", cor_json_list)
- max_i = int((os.path.basename(cor_json_list[0])[:-5]))
- print("max_i: ", max_i)
- json_list = glob.glob(self.det_path + '/*.json') # 再将现在检测好的json文件移到图片所在文件夹下
- # 记录下检测文件的修改时间
- time_d = {}
- for jsons in json_list:
- name = os.path.basename(jsons)
- # if os.path.exists(os.path.join(self.src_path, name)):
- # shutil.move(os.path.join(self.src_path, name), os.path.join(self.src_path, "gt_"+name)) #避免检测结果的json文件覆盖掉标注的json文件
- shutil.copyfile(jsons, os.path.join(self.src_path,
- name)) # 把检测结果json文件复制到检测图像所在文件夹下,这不就是用检测的json文件替代了之前的标注文件吗?不能这么操作啊!这种方法只能适用于检测图片没有标签文件的情况
- time_d[name] = os.path.getmtime(os.path.join(self.src_path, name)) # 修改时间
- # print("info: ", info) #python.exe C:/Users/ma/anaconda3/Lib/site-packages/labelme/__main__.py --labels ./labels.txt D:/data/data_original/20220516
- os.system(info)
- # 将在检测图片所在文件夹下的手工修正好的文件替换回去,代替之前的检测文件
- classes_dict = {"crack": 0, "hole": 1, "debonding": 2, "rarefaction": 3,
- "black_crack": 0, "black_hole": 1, "black_debonding": 2,
- "white_crack": 0, "white_hole": 1, "white_debonding": 2,
- "白色裂纹": 0, "白裂纹": 0, "裂纹": 0, "白色裂缝": 0, "白裂缝": 0, "裂缝": 0,
- "白色裂隙": 0, "白裂隙": 0, "裂隙": 0,
- "黑色裂纹": 0, "黑裂纹": 0, "黑色裂缝": 0, "黑裂缝": 0, "黑色裂隙": 0, "黑裂隙": 0,
- "白色孔洞": 1, "白孔洞": 1, "孔洞": 1, "黑色孔洞": 1, "黑孔洞": 1,
- "白色脱粘": 2, "白脱粘": 2, "脱粘": 2, "黑色脱粘": 2, "黑脱粘": 2,
- "疏松": 3} # 将各种叫法全合并为0、1、2、3四类
- json_list = glob.glob(self.src_path + '/*.json')
- for jsons in json_list:
- name = os.path.basename(jsons)
- changed = False
- # 旧json文件的修改时间
- if name not in time_d: # 运行这个if说明在图片文件夹下新增了json文件,这是用户纠错时添加的新json文件,内容是漏检的缺陷,需要拷贝回runs/detect文件夹下
- max_i += 1
- print("新增的json文件,复制到cor_path下:", os.path.join(self.cor_path, str(max_i) + ".json"))
- shutil.copyfile(jsons, os.path.join(self.det_path, name))
- shutil.move(jsons, os.path.join(self.cor_path, str(max_i) + ".json")) # 同时把新增的json文件命名为cor文件
- extenxion = ['.jpg', '.png', '.bmp', '.jpeg', '.tif', '.tiff']
- for ext in extenxion:
- imgf = (jsons[:-5] + ext)
- if os.path.exists(imgf):
- shutil.copyfile(imgf, os.path.join(self.cor_path, str(max_i) + ext))
- break
- continue
- old_t = time_d[name]
- new_t = os.path.getmtime(os.path.join(self.src_path, name))
- # new_t = os.path.getmtime(os.path.join(self.src_path, name))
- print("name, 时间差: ", name, new_t - old_t)
- print("修改时间相等吗:", (new_t - old_t) < 1)
- if (new_t - old_t) < 1: # 这个if成立了就说明新旧json文件的修改时间没变,删除src_path下的该json文件
- print("修改时间相等,删除:", os.path.join(self.src_path, name))
- os.remove(os.path.join(self.src_path, name))
- continue
- else: # 光修改时间变了不行,还要看里面的多边形是否变了
- old_masks = [[], [], [], []]
- new_masks = [[], [], [], []]
- # 找旧的masks
- with open(os.path.join(self.det_path, name)) as f:
- temp_shapes = json.loads(f.read())["shapes"]
- for old_polygon_temp in temp_shapes:
- old_masks[classes_dict[old_polygon_temp["label"]]].append(
- Polygon(old_polygon_temp["points"]))
- # 找新的masks
- with open(os.path.join(self.src_path, name)) as f:
- temp_shapes = json.loads(f.read())["shapes"]
- for new_polygon_temp in temp_shapes:
- new_masks[classes_dict[new_polygon_temp["label"]]].append(
- Polygon(new_polygon_temp["points"]))
- # print("src old_masks: ",name,old_masks)
- # print("out new_masks: ", name,new_masks)
- for i in range(len(old_masks)): # 首先看下新旧缺陷的每一类缺陷的数量是否完全相等,不相等就是改变了
- if len(old_masks[i]) != len(new_masks[i]):
- changed = True
- break
- print("缺陷数量比较结果 changed: ", changed)
- if changed == False: # 这个if成立了就说明新旧缺陷的数量完全相等,接下来就该比较新旧缺陷的iou了
- h, w = 5000, 5000
- for ext in ["jpg", "jpeg", "tif", "tiff", "png", "bmp"]:
- img_path = os.path.join(self.src_path, name[:-5] + "." + ext)
- # print("img_path: ",img_path)
- if os.path.exists(img_path):
- img = cv2.imread(img_path)
- h, w, _ = img.shape
- break
- # print("h,w: ",h,w)
- for i in range(len(old_masks)):
- for old_mask in old_masks[i]:
- match = False
- for new_mask in new_masks[i]:
- # old_area=old_mask.area
- # new_area=new_mask.area
- # 计算交集
- mask_gt = np.zeros([h, w, 3], dtype=np.int32) # 假定一个最大尺寸的空白图片,画真值框对应的区域
- ps = (list(old_mask.exterior.coords))
- ps = np.array(ps, dtype=np.int32)
- ps = ps.reshape(-1, 2)
- # f = open(dir + "/whole_" + task + "_" + str(i) + "_" + cls_names[i] + ".txt", "w")
- cv2.fillPoly(mask_gt, [ps], color=(125, 125, 125)) # 给真值框对应的空白图片按真值框的点集坐标上色
- gray = cv2.cvtColor(mask_gt.astype(np.float32), cv2.COLOR_BGR2GRAY)
- old_area = np.sum(gray == 125)
- # ret, thresh = cv2.threshold(gray, 125 - 1, 255, cv2.THRESH_BINARY)
- # contours, _ = cv2.findContours(thresh.astype(np.uint8), cv2.RETR_TREE,
- # cv2.CHAIN_APPROX_SIMPLE)
- #
- # old_area = 0
- # for c in contours: # 重叠区域可能有多个,把所有的面积加起来
- # area = cv2.contourArea(c, oriented=False)
- # old_area += area
- mask_pred = np.zeros([h, w, 3], dtype=np.int32)
- ps = (list(new_mask.exterior.coords))
- ps = np.array(ps, dtype=np.int32)
- ps = ps.reshape(-1, 2)
- # f = open(dir + "/whole_" + task + "_" + str(i) + "_" + cls_names[i] + ".txt", "w")
- cv2.fillPoly(mask_pred, [ps], color=(125, 125, 125))
- gray = cv2.cvtColor(mask_pred.astype(np.float32), cv2.COLOR_BGR2GRAY)
- new_area = np.sum(gray == 125)
- # ret, thresh = cv2.threshold(gray, 125 - 1, 255, cv2.THRESH_BINARY)
- # contours, _ = cv2.findContours(thresh.astype(np.uint8), cv2.RETR_TREE,
- # cv2.CHAIN_APPROX_SIMPLE)
- #
- # new_area = 0
- # for c in contours: # 重叠区域可能有多个,把所有的面积加起来
- # area = cv2.contourArea(c, oriented=False)
- # new_area += area
- gray = cv2.cvtColor((mask_pred + mask_gt).astype(np.float32),
- cv2.COLOR_BGR2GRAY) # 如果真值点集和预测点集有重叠区域,就对重叠区域计算轮廓面积
- inter_a = np.sum(gray == 125 * 2)
- # ret, thresh = cv2.threshold(gray, 250 - 1, 255, cv2.THRESH_BINARY)
- # contours, _ = cv2.findContours(thresh.astype(np.uint8), cv2.RETR_TREE,
- # cv2.CHAIN_APPROX_SIMPLE)
- #
- # inter_a = 0
- # for c in contours: # 重叠区域可能有多个,把所有的面积加起来
- # area = cv2.contourArea(c, oriented=False)
- # inter_a += area
- iou = inter_a / (old_area + new_area - inter_a)
- # iou = self.poly_iou(old_mask, new_mask)
- # print("i, iou, old_area,new_area,inter_a,h,w: ", i, iou,old_area,new_area,inter_a,h,w)
- if iou > 0.95: # 如果old mask在new mask里能找到匹配,说明用户没有修old maks,就接着变量其他old mask
- match = True
- break
- if match == False: # 如果new mask遍历完了,还是没匹配上,说明old mask被用户改变了,此时changed置为True,并不再遍历其他old mas!
- changed = True
- break
- if changed == True: # 如果changed被置为True,就不再遍历其他类别的缺陷了,直接退出
- break
- if changed == True:
- max_i += 1
- print("json文件内容改变了,复制到cor_path下:", os.path.join(self.cor_path, str(max_i) + ".json"))
- shutil.copyfile(jsons, os.path.join(self.det_path, name))
- shutil.move(jsons, os.path.join(self.cor_path, str(max_i) + ".json"))
- extenxion = ['.jpg', '.png', '.bmp', '.jpeg', '.tif', '.tiff']
- for ext in extenxion:
- imgf = (jsons[:-5] + ext)
- if os.path.exists(imgf):
- shutil.copyfile(imgf, os.path.join(self.cor_path, str(max_i) + ext))
- break
- else:
- print("json文件没变,删除src_path下的json文件")
- os.remove(jsons)
- print("最终的changed: ", changed)
- print('close labelme!')
- except Exception as e:
- print('出错了:%s' % e)
- def poly_iou(self, poly1: Polygon, poly2: Polygon):
- intersection_area = poly1.intersection(poly2).area
- union_area = poly1.union(poly2).area
- return intersection_area / union_area
- class LoggerWindow():
- def __init__(self, mode='detect', path='') -> None:
- super().__init__()
- self.mode = mode # 训练还是检测日志窗口
- self.path = path # 读取日志文件
- self.ui = loadUi("qt_win/lx.ui") # 添加组件
- self.ui.label.setText(mode)
- # 读取文件
- f = open(path, 'r', encoding='utf-8')
- data = f.read()
- f.close()
- self.ui.textBrowser.append(data)
- class PlotThread(QThread): # 调用plots_new_one函数
- send_msg = pyqtSignal(str) # 信号
- def __init__(self):
- super(PlotThread, self).__init__()
- self.json_file = ""
- self.img_name = ""
- self.out_path = ""
- self.flag = False
- def run(self):
- try:
- self.send_msg.emit("开始显示结果")
- # print("PlotThread.run(): self.json_file,self.img_name,self.out_path,self.flag: ", self.json_file,self.img_name,self.out_path,self.flag)
- plots_new_one(self.json_file, self.img_name, self.out_path, self.flag)
- self.send_msg.emit("显示结果完成")
- except Exception as e:
- print('PlotThread Exception %s' % e)
- self.send_msg.emit("error")
- def write_xlsxwriter_new(sys, img_list, file_path, src_path, gsd):
- import xlsxwriter # 对excel数据进行写入的库
- # 新建工作簿
- writebook = xlsxwriter.Workbook(file_path) # 生成excel文件并设置编码为utf8
- sheet1 = writebook.add_worksheet() # 创建第一个sheet 表单
- # 注意:在 XlsxWriter 中,行和列都是零索引。第一个单元格 A1 是 (0, 0)。
- # 设置列宽
- sheet1.set_default_row(20)
- # sheet1.set_default_row(40)
- column_text_wrap = writebook.add_format()
- column_text_wrap.set_text_wrap()
- sheet1.set_column('A:A', 15)
- sheet1.set_column('B:B', 15)
- sheet1.set_column('E:E', 25, column_text_wrap)
- sheet1.set_column('F:F', 25, column_text_wrap)
- sheet1.set_column('K:K', 15)
- bold = writebook.add_format({
- 'bold': True, # 字体加粗
- 'border': 1, # 单元格边框宽度
- 'align': 'center',
- 'valign': 'vcentre', # 字体对齐方式
- 'text_wrap': True, # 是否自动换行
- })
- soft = writebook.add_format({
- 'bold': False, # 字体加粗
- 'border': 1, # 单元格边框宽度
- 'align': 'center',
- 'valign': 'vcentre', # 字体对齐方式
- 'text_wrap': True, # 是否自动换行
- })
- # title
- sheet1.merge_range(0, 0, 0, 16, sys, bold)
- sheet1.merge_range(1, 0, 1, 1, "图像名称", bold)
- sheet1.merge_range(1, 2, 1, 3, "缺陷类型", bold)
- sheet1.merge_range(1, 4, 1, 5, "缺陷位置(像素)", bold)
- sheet1.merge_range(1, 6, 1, 7, "缺陷面积(mm²)", bold)
- sheet1.merge_range(1, 8, 1, 9, "缺陷长度(mm)", bold)
- sheet1.merge_range(1, 10, 1, 11, "缺陷宽度(等效圆直径)(mm)", bold)
- sheet1.merge_range(1, 12, 1, 16, "检测图像", bold)
- # 加入内容
- start = 2
- print("img_list: ", len(img_list), img_list)
- for img_f in img_list:
- # 读取json文件内容,返回字典格式
- img_n = img_f.split('.')[-1]
- basename = os.path.basename(img_f)
- js = os.path.join(src_path, 'jsons', basename.replace(img_n, 'json'))
- if not os.path.exists(js):
- print("生成报表时 not exists json: ", js)
- continue
- with open(js, 'r', encoding='utf-8') as fp:
- json_data = json.load(fp)
- class_number = len(json_data['shapes']) # 类型个数
- # print("img_f, class_number: ", img_f, class_number)
- if class_number == 0:
- print("img_f, class_number==0: ", img_f, class_number)
- continue
- last = start + class_number - 1
- # first_row, first_col, last_row, last_col
- sheet1.merge_range(start, 0, last, 1, img_f, soft)
- neirong = json_data['shapes']
- # 加图 -- 判断是否存在 没有就重新画图
- # name = os.path.basename(img_f)
- if not os.path.exists(os.path.join(src_path, basename)):
- plots_new_one(js, img_f, os.path.join(src_path), False)
- img = cv2.imread(os.path.join(src_path, basename))
- h, w, _ = img.shape
- # row, col
- if class_number <= 1:
- nn = 1
- scale_x, scale_y = 300 / w, (25 * nn) / h
- else:
- nn = class_number
- scale_x, scale_y = 300 / w, (25 * nn) / h
- bsname, ext_old = basename.rsplit(".", 1)
- is_tif = False
- for ext in ["tif", "tiff"]:
- if ext_old == ext:
- new_basename = bsname + "_forxlsx.png"
- cv2.imwrite(os.path.join(src_path, new_basename), img)
- # shutil.copyfile(os.path.join(src_path, basename),os.path.join(src_path, new_basename))
- sheet1.insert_image(start, 12, os.path.join(src_path, new_basename),
- {'x_scale': scale_x, 'y_scale': scale_y, 'positioning': 1})
- print("insert success :", os.path.join(src_path, basename), os.path.join(src_path, new_basename))
- # os.remove(os.path.join(src_path, new_basename))
- is_tif = True
- break
- if is_tif == False:
- sheet1.insert_image(start, 12, os.path.join(src_path, basename),
- {'x_scale': scale_x, 'y_scale': scale_y, 'positioning': 1})
- for j in range(class_number):
- # 重新计算
- sheet1.merge_range(start + j, 2, start + j, 3, CT_name_zh[neirong[j]['label']], soft)
- segment = np.array(neirong[j]['points'], dtype=np.float32) # 获取每个轮廓点
- # print("segment,segment.shape: ",segment,segment.shape)
- # print("segment x: ",segment[:,0],np.mean(segment[:,0]))
- # print("segment y: ", segment[:, 1],np.mean(segment[:,1])
- if neirong[j]['label'] in ["hole", "rarefaction"]:
- area = round(cv2.contourArea(segment[:, None, :]) * gsd * gsd, 1)
- width = round(math.sqrt(4 * area / math.pi), 1)
- lenth = "-"
- else:
- area = "-"
- lenth = round(cv2.arcLength(segment[:, None:, ], True) / 2, 2)
- lenth = round(lenth * gsd)
- # 计算宽度
- width, _ = component_polygon_Circle_max(img, segment)
- width = round(width * gsd)
- cx, cy = np.around(np.mean(segment[:, 0]), 0), np.around(np.mean(segment[:, 1]), 0)
- cx, cy = int(cx), int(cy)
- sheet1.merge_range(start + j, 4, start + j, 5, "(" + str(cx) + "," + str(cy) + ")",
- soft) # neirong[j]['points']
- sheet1.merge_range(start + j, 6, start + j, 7, str(area), soft)
- sheet1.merge_range(start + j, 8, start + j, 9, str(lenth), soft)
- sheet1.merge_range(start + j, 10, start + j, 11, str(width), soft)
- start = last + 1
- # print("after img_list: ", len(img_list), img_list)
- writebook.close()
- for img_f in glob.glob(src_path + "/*_forxlsx.png"):
- os.remove(img_f)
- # print("remove success: ", img_f)
- class WriteThread(QThread):
- # write_xlsxwriter(msg,self.img_list,file_path)
- send_msg = pyqtSignal(str) # 信号
- def __init__(self):
- super(WriteThread, self).__init__()
- self.msg = ""
- self.imgs = []
- self.path = ""
- self.src = ""
- self.gsd = 0
- def run(self):
- try:
- self.send_msg.emit("开始导出报表")
- write_xlsxwriter_new(self.msg, self.imgs, self.path, self.src, self.gsd)
- self.send_msg.emit("导出报表完成")
- except Exception as e:
- print('WriteThread %s' % e)
- self.send_msg.emit("error")
- # 消息框 显示 进度
- class Window(QMainWindow, Ui_mainWindow):
- def __init__(self):
- super(Window, self).__init__()
- self.wel = Welcome()
- self.wel.login.show()
- self.wel.success.connect(self.new_init_)
- self.gsd_file = ""
- def new_init_(self):
- if self.wel.success:
- self.setupUi(self)
- ## 加载子窗口
- self.ui_detect = loadUi("qt_win/detect_par.ui") # 检测的参数选择
- self.ui_train = loadUi("qt_win/train_par.ui") # 训练时的参数选择
- # 训练子窗口 功能连接函数
- self.ui_train.pushButton_2.clicked.connect(self.SetTrainOK)
- self.ui_train.pushButton.clicked.connect(self.restore_set)
- self.ui_train.pushButton_3.clicked.connect(self.choose_train_file)
- self.ui_detect.pushButton_2.clicked.connect(self.SetDetectOK)
- self.ui_detect.pushButton.clicked.connect(self.restore_set)
- # flag
- self.m_flag = False # 鼠标事件标志
- self.t_flag = 0 # 训练标志,为False,所以在new_init_函数调用时默认模式是检测
- self.DC = "0"
- self.count_T = 0
- self.count_D = 0 # 当零的时候 即使用已存在预测结果画图
- # self.count_T_error = 0
- # self.count_D_error = 0
- # win10的CustomizeWindowHint模式,边框上面有一段空白
- self.setWindowFlags(Qt.FramelessWindowHint) # 去掉操作系统标题栏
- # 自定义标题栏按钮
- self.minButton.clicked.connect(self.showMinimized)
- self.maxButton.clicked.connect(self.max_or_restore)
- self.closeButton.clicked.connect(self.close)
- # 加拖动的功能
- # 定时清空自定义状态栏上的文字
- self.qtimer = QTimer(self)
- self.qtimer.setSingleShot(True)
- self.qtimer.timeout.connect(lambda: self.statistic_label.clear())
- # 训练和推理 功能选择按钮
- cb_group = QButtonGroup()
- cb_group.addButton(self.trainbutton, 0)
- cb_group.addButton(self.detectbutton, 1)
- cb_group.addButton(self.trainbutton_2, 2) # 新增功能
- cb_group.addButton(self.trainbutton_3, 3)
- cb_group.addButton(self.trainbutton_4, 4)
- cb_group.addButton(self.trainbutton_5, 5)
- cb_group.setExclusive(True) # 设置button互斥
- self.trainbutton.clicked.connect(self.chose_training)
- self.trainbutton_2.clicked.connect(self.chose_feature) # 新增功能
- self.trainbutton_3.clicked.connect(self.chose_jiance)
- self.trainbutton_4.clicked.connect(self.chose_q_jaince)
- self.trainbutton_5.clicked.connect(self.chose_gnn)
- self.detectbutton.clicked.connect(self.chose_detecting) # 主页面检测按钮的操函数,用于弹出检测参数设置对话框
- # 增加功能
- # 自动搜索模型 -- 增加 新训练 保存的模型
- self.model_path = './weights/' # 指定 保存模型路径
- self.feature_alg = './test_data/xie' # 新增功能
- self.comboBox.clear()
- pt_lists = os.listdir(self.model_path)
- py_lists = os.listdir(self.feature_alg) # 新增功能
- if self.t_flag == 1: # 特征提取模式
- py_lists = [file for file in py_lists if file.endswith('.py') and "feature" in file] # 新增功能
- if self.t_flag == 0: # 识别模式
- pt_lists = [file for file in pt_lists if file.endswith('.pt') and "yolov5" not in file]
- if self.t_flag == 2: # 训练模式
- pt_lists = [file for file in pt_lists if file.endswith('.pt') and "yolov5" in file]
- if self.t_flag == 3 or self.t_flag == 4: # 检测
- py_lists = [file for file in py_lists if file.endswith('.py') and "detection" in file]
- if self.t_flag == 4:
- pass
- if self.t_flag == 5:
- pass
- py_lists.sort(reverse=True) # 新增功能
- pt_lists.sort(reverse=True) # 为True是降序
- self.current_img = ''
- self.pt_lists = pt_lists
- self.py_lists = py_lists # 新增功能
- self.comboBox.addItems(self.pt_lists) # 列表中的每一项作为一个独立的选项加入到 comboBox 控件中。这使得用户可以从下拉菜单中选择一个项目。
- self.comboBox.addItems(self.py_lists) # 新增功能
- self.comboBox.currentTextChanged.connect(self.change_model) # 在comboBox 下拉菜单中选择一个不同的项目时,程序会自动调用 self.change_model 方法。
- # 自动搜索超参数文件
- self.hyps_path = './data/hyps/' # 指定 超参数路径
- self.ui_train.comboBox.clear()
- self.hyp_list = os.listdir(self.hyps_path)
- # print("self.hpy_list: ",self.hyp_list)
- self.hyp_list = [file for file in self.hyp_list if file.endswith('-low.yaml')]
- # print("after self.hpy_list: ",self.hyp_list)
- self.hyp_list.sort(key=lambda x: os.path.getsize(self.hyps_path + x))
- self.ui_train.comboBox.addItems(self.hyp_list)
- self.restore_set()
- self.Base_Path_D = "./runs/detect/base"
- Path(self.Base_Path_D).mkdir(parents=True, exist_ok=True) # 缓存json
- dtime = (QDateTime.currentDateTime().toString(Qt.ISODate)).split("T")[0]
- self.time = QDateTime.currentDateTime().toString(Qt.ISODate)
- self.runs_path = f"./runs/{self.wel.account}/{dtime}/detect" # 保存推理的路径 可以结合软件运行的时间
- if os.path.exists(self.runs_path):
- shutil.rmtree(self.runs_path) # os.rmdir(self.runs_path)
- if os.path.exists(self.runs_path.replace('detect', 'train')):
- shutil.rmtree(self.runs_path.replace('detect', 'train')) # os.rmdir(self.runs_path)
- # self.runs_path = "./runs/detect" #保存推理的路径 可以结合软件运行的时间
- # 系统信息框 -- 返回训练或者推理的过程信息 以及最终结果的统计信息等
- # 后续包装返回信息 #实例化列表模型,添加数据
- # self.listView.addItem(self.time + "\t软件执行信息") # slm = QStringListModel()
- # self.listView.itemDoubleClicked.connect(self.listViewdoubleClicked)
- # self.listView.itemClicked.connect(self.listViewClicked)
- # 读取 文件夹或文件中的图片
- self.img_list = [] # [r'images\one.jpg',r'images\two.jpg',r'images\three.jpg',r'images\four.jpg'] #存放图片文件名 -- 绝对路径
- self.output_file_list = {}
- self.index = 0
- self.choose_file.clicked.connect(self.open_file)
- self.choose_folder.clicked.connect(self.open_folder)
- self.resultWidget.itemClicked.connect(self.WidgetClicked)
- # # 选择圆盘
- # self.choose_circle.clicked.connect(self.get_choose_circle)
- # self.gsd.textChanged.connect(lambda current_text: self.gsd_textChanged_func(current_text)) # 槽函数
- # 显示图片
- self.pre_page.clicked.connect(self.change_image_up) # 上一页
- self.next_page.clicked.connect(self.change_image_down) # 下一页
- self.show_result.clicked.connect(self.show_output) # 显示结果
- # self.show_result.clicked.connect(self.show_res) # 显示结果
- ### 结果导出##
- self.result_export.clicked.connect(self.save_output) # save
- # 1.Qt 开一个 yolov5 线程 #用于模型推理
- self.det_thread = DetThread() # 增加一些槽 来获取返回信息
- self.det_thread.send_msg.connect(lambda x: self.show_msg(x))
- # 修正命令行内容
- # 1.Qt 开一个 yolov5 线程 #用于模型训练
- self.train_thread = TrainThread()
- self.train_thread.send_msg.connect(lambda x: self.show_msg2(x))
- self.fea_thread = FeaThread()
- self.fea_thread.send_msg.connect(lambda x: self.show_msg3(x))
- self.jian_thread = JianThread()
- self.jian_thread.send_msg.connect(lambda x: self.show_msg2(x))
- # 2. os.system 后台跑结果出来
- # 2. os.system 后台跑结果出来
- self.action.clicked.connect(self.begin_action) # 开始推理
- self.plots_thread = PlotThread() # 画图子进程
- self.plots_thread.send_msg.connect(lambda x: self.show_output_new(x)) # 将信号与槽函数连接起来
- self.plots_flag = False
- # self.close_info.clicked.connect(self.change_flag)
- self.write_thread = WriteThread() # 写excel子进程
- self.write_thread.send_msg.connect(lambda x: self.write_xlsxwriter(x))
- ###### TODO: 纠错 ####
- self.labelme_thread = LabelThread()
- self.error_correction.clicked.connect(self.open_labelme) # 纠错
- self.SetDetectOK()
- self.show()
- def gsd_textChanged_func(self, current_text):
- print("文本框内容变化信号", current_text)
- # self.textBrowser.append("文本框内容变化信号" + current_text + '\n')
- lines = []
- if self.shebei.text() != "" and self.beicepin.text() != "" and self.pici.text() != "" and current_text != "":
- lines.append(" ".join([self.shebei.text(), self.beicepin.text(), self.pici.text(), current_text]))
- print("lines: ", lines)
- with open(self.gsd_file, "w", encoding="utf-8") as f:
- for line in lines:
- f.writelines(line + "\n")
- self.out_video.gsd = float(current_text) # 画图类的gsd属
- self.gsd.setText(str(float(current_text)))
- # 选择圆盘
- def get_choose_circle(self):
- dis = math.sqrt(math.pow(self.raw_video.circle_p1.x() - self.raw_video.circle_p2.x(), 2) + math.pow(
- self.raw_video.circle_p1.y() - self.raw_video.circle_p2.y(), 2))
- print("dis: ", dis)
- gsd = 0
- if self.zhijing.text() != "" and dis > 0:
- print("self.zhijing.text()")
- gsd = round(int(self.zhijing.text()) / dis, 2)
- print("gsd: ", gsd)
- print("self.gsd.setText before :", gsd)
- self.gsd.setText(str(gsd))
- print("self.gsd.setText after :", gsd)
- ############后台信息显示 -- 方便调试##################
- def statistic_msg(self, msg, time=-1):
- self.statistic_label.setText(msg)
- self.qtimer.start(time) # 3秒后自动清除
- ######################子窗口部分###############################
- # 恢复默认参数
- def restore_set(self):
- # if not self.trainbutton.isEnabled():
- self.statistic_msg("恢复默认参数", -1) # 恢复默认 可以不用管 直接把
- self.ui_train.radioButton_2.setChecked(True) #
- self.ui_train.radioButton_2.setEnabled(False) # 预训练
- self.ui_train.lineEdit_2.setText("200") # epochs
- self.ui_train.lineEdit_3.setText("32") # batch size
- self.ui_train.lineEdit_4.setText("1e-2") # lr
- self.ui_train.lineEdit_5.setText("640") # img size
- # 设置用户训练的模型的名称
- # {self.wel.account} / {dtime} / detect
- # dtime = (QDateTime.currentDateTime().toString(Qt.ISODate)).split("T")[0]
- # self.ui_train.lineEdit_6.setText(f"{dtime}_{self.wel.account}" + '.pt') # ckpt name
- current_datetime = datetime.now()
- # 格式化日期和时间,例如:"2024-06-11 15:30:45"
- formatted_datetime = current_datetime.strftime(f"%Y-%m-%d_%H%M" + ".pt")
- self.ui_train.lineEdit_6.setText(formatted_datetime) # ckpt name
- self.ui_train.radioButton_3.setChecked(False) # 是否使用图像列表数据加入样本进行再训练
- self.ui_train.radioButton_3.setEnabled(False) # 设置单选按钮为不可选状态
- self.radio_layout1 = QButtonGroup(self)
- self.radio_layout2 = QButtonGroup(self)
- self.radio_layout1.addButton(self.ui_train.radioButton_2)
- self.radio_layout2.addButton(self.ui_train.radioButton_3)
- # else:
- # self.statistic_msg("恢复默认检测参数") #恢复默认 可以不用管 直接把
- self.ui_detect.lineEdit.setText("0.5")
- self.ui_detect.lineEdit_2.setText("0.4")
- self.ui_detect.lineEdit_3.setText("256")
- self.ui_detect.radioButton.setChecked(True) # 是否使用图像切片预测
- self.ui_detect.radioButton.setEnabled(False) # 设置单选按钮为不可选状态,即只支持切片预测
- self.ui_detect.lineEdit_4.setText("640") # 判断元组还数字
- ## 子窗口弹出
- def chose_training(self):
- self.statistic_msg("选择训练功能,请设置超参数", -1)
- self.ui_detect.close()
- self.ui_train.show()
- self.t_flag = 2
- self.search_pt()
- if self.trainbutton.isEnabled(): # 增加flag
- self.trainbutton.setEnabled(False)
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(True)
- self.detectbutton.setEnabled(True)
- self.trainbutton_2.setEnabled(True)
- self.trainbutton_3.setEnabled(True)
- else:
- self.trainbutton.setEnabled(True)
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(False)
- self.detectbutton.setEnabled(False)
- self.trainbutton_2.setEnabled(False)
- self.trainbutton_3.setEnabled(False)
- def chose_detecting(self):
- self.statistic_msg("选择推理功能,请设置超参数", -1)
- self.t_flag = 0
- self.search_pt()
- self.ui_detect.show()
- self.ui_train.close()
- if self.detectbutton.isEnabled(): # 增加flag
- self.trainbutton.setEnabled(True)
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(True)
- self.detectbutton.setEnabled(False)
- self.trainbutton_2.setEnabled(True)
- self.trainbutton_3.setEnabled(True)
- else:
- self.detectbutton.setEnabled(True)
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(False)
- self.trainbutton.setEnabled(False)
- self.trainbutton_2.setEnabled(False)
- self.trainbutton_3.setEnabled(False)
- def chose_feature(self):
- self.t_flag = 1
- self.search_py()
- self.ui_detect.close()
- self.ui_train.close()
- if self.trainbutton_2.isEnabled(): # 增加flag
- self.trainbutton_2.setEnabled(False)
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(True)
- self.detectbutton.setEnabled(True)
- self.trainbutton.setEnabled(True)
- self.trainbutton_3.setEnabled(True)
- else:
- self.trainbutton_2.setEnabled(True)
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(False)
- self.detectbutton.setEnabled(False)
- self.trainbutton.setEnabled(False)
- self.trainbutton_3.setEnabled(False)
- def chose_jiance(self):
- self.t_flag = 3
- self.search_py()
- self.ui_detect.close()
- self.ui_train.close()
- if self.trainbutton_3.isEnabled(): # 增加flag
- self.trainbutton_3.setEnabled(False)
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(True)
- self.trainbutton_2.setEnabled(True)
- self.detectbutton.setEnabled(True)
- self.trainbutton.setEnabled(True)
- else:
- self.trainbutton_3.setEnabled(True)
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(False)
- self.trainbutton_2.setEnabled(False)
- self.detectbutton.setEnabled(False)
- self.trainbutton.setEnabled(False)
- def chose_q_jaince(self):
- self.t_flag = 4
- self.search_py()
- self.ui_detect.close()
- self.ui_train.close()
- if self.trainbutton_4.isEnabled(): # 增加flag
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(True)
- self.trainbutton_3.setEnabled(True)
- self.trainbutton_2.setEnabled(True)
- self.detectbutton.setEnabled(True)
- self.trainbutton.setEnabled(True)
- else:
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(False)
- self.trainbutton_3.setEnabled(False)
- self.trainbutton_2.setEnabled(False)
- self.detectbutton.setEnabled(False)
- self.trainbutton.setEnabled(False)
- def chose_gnn(self):
- self.t_flag = 5
- self.search_py()
- self.ui_detect.close()
- self.ui_train.close()
- if self.trainbutton_5.isEnabled(): # 增加flag
- self.trainbutton_4.setEnabled(True)
- self.trainbutton_5.setEnabled(False)
- self.trainbutton_3.setEnabled(True)
- self.trainbutton_2.setEnabled(True)
- self.detectbutton.setEnabled(True)
- self.trainbutton.setEnabled(True)
- else:
- self.trainbutton_4.setEnabled(False)
- self.trainbutton_5.setEnabled(True)
- self.trainbutton_3.setEnabled(False)
- self.trainbutton_2.setEnabled(False)
- self.detectbutton.setEnabled(False)
- self.trainbutton.setEnabled(False)
- def choose_train_file(self):
- print("choose_file")
- # 多选对话框
- file_dialog = QFileDialog()
- file_dialog.setFileMode(QFileDialog.DirectoryOnly)
- file_dialog.setOption(QFileDialog.DontUseNativeDialog, True)
- file_dialog.setDirectory('d:/data')
- file_view = file_dialog.findChild(QListView, 'listView')
- if file_view:
- file_view.setSelectionMode(QAbstractItemView.MultiSelection)
- f_tree_view = file_dialog.findChild(QTreeView)
- if f_tree_view:
- f_tree_view.setSelectionMode(QAbstractItemView.MultiSelection)
- if file_dialog.exec_():
- folder = file_dialog.selectedFiles()
- print("folder: ", folder)
- line = ""
- for f in folder:
- line += f + ";"
- self.ui_train.lineEdit_7.setText(line)
- def SetTrainOK(self):
- self.statistic_msg("训练参数设置完毕", -1)
- # 打开训练设置窗口 获取参数
- # list 存放 #str 类型
- self.train_thread.Command = [str(self.ui_train.radioButton_2.isChecked()), self.ui_train.lineEdit_5.text(),
- self.ui_train.lineEdit_2.text(), \
- self.ui_train.lineEdit_3.text(), self.ui_train.lineEdit_4.text(), \
- self.model_path + self.ui_train.lineEdit_6.text(),
- self.hyps_path + self.ui_train.comboBox.currentText(),
- self.runs_path.replace('detect', 'train'), \
- self.ui_train.lineEdit_7.text()]
- if self.ui_train.radioButton_2.isChecked():
- self.traing_hyp = f" 启动{self.comboBox.currentText()}预训练 "
- else:
- self.traing_hyp = " 不启动预训练 "
- self.traing_hyp += f"img size:{self.ui_train.lineEdit_5.text()} " + f"epochs:{self.ui_train.lineEdit_5.text()} bs:{self.ui_train.lineEdit_3.text()} " + \
- f"lr:{self.ui_train.lineEdit_4.text()} " + f"hyp:{self.ui_train.comboBox.currentText()}"
- print("self.train_thread.Command,self.traing_hyp:", self.train_thread.Command, self.traing_hyp)
- # 关闭窗口
- self.ui_train.close()
- def SetDetectOK(self):
- self.statistic_msg("检测参数设置完毕", -1)
- # 打开检测设置窗口 获取参数
- # list 存放 #str 类型
- self.det_thread.Command = [self.ui_detect.lineEdit_4.text(), self.ui_detect.lineEdit.text(),
- self.ui_detect.lineEdit_2.text(), self.ui_detect.lineEdit_3.text(), self.runs_path]
- if self.ui_detect.radioButton.isChecked():
- self.det_thread.split = True
- self.detect_hyp = f" 启动重叠{self.ui_detect.lineEdit_3.text()}的切片预测 "
- else:
- self.det_thread.split = False
- self.detect_hyp = " 不启动切片预测 "
- self.detect_hyp += f"img size:{self.ui_detect.lineEdit_4.text()} " + f"IOU:{self.ui_detect.lineEdit.text()} 置信度:{self.ui_detect.lineEdit_2.text()}"
- # 关闭窗口
- if self.ui_detect.isVisible() == True: # 我加的,如果窗口没有打开,就不用关闭了
- self.ui_detect.close()
- # print("self.det_thread.Command,split", self.det_thread.Command, self.det_thread.split)
- ###########设置区---- 模型选择部分#############
- # 模型选择
- def change_model(self, x):
- self.model_type = self.comboBox.currentText()
- self.statistic_msg('模型切换为%s' % x, -1)
- # 规定存放模型路径 -- update 模型名字
- def search_pt(self):
- pt_lists = os.listdir(self.model_path) #
- print("search_pt pt_lists: ", pt_lists)
- if self.t_flag == 0: # 检测模式
- pt_lists = [file for file in pt_lists if file.endswith('.pt') and "yolov5" not in file]
- elif self.t_flag == 2:
- pt_lists = [file for file in pt_lists if file.endswith('.pt') and "yolov5" in file]
- print("after search_pt pt_lists: ", self.t_flag, pt_lists)
- pt_lists.sort(reverse=True)
- # if pt_lists != self.pt_lists:
- self.pt_lists = pt_lists
- self.comboBox.clear()
- self.comboBox.addItems(self.pt_lists)
- def search_py(self):
- py_lists = os.listdir(self.feature_alg) #
- print("search_py py_lists: ", py_lists)
- if self.t_flag == 1: # 特征提取模式
- py_lists = [file for file in py_lists if file.endswith('.py') and "feature" in file]
- elif self.t_flag == 3 or self.t_flag == 4: # 检测模式
- py_lists = [file for file in py_lists if file.endswith('.py') and 'detection' in file]
- print("after search_pt pt_lists: ", self.t_flag, py_lists)
- py_lists.sort(reverse=True)
- # if pt_lists != self.pt_lists:
- self.py_lists = py_lists
- self.comboBox.clear()
- self.comboBox.addItems(self.py_lists)
- def show_msg(self, msg):
- if "error" in msg.lower():
- self.statistic_msg(msg, -1)
- MessageBox(self.closeButton, title='提示', text='检测过程出现错误,请查看相关日志文件', time=1000,
- auto=True).exec_()
- # self.count_D_error += 1
- elif msg == "开始检测":
- self.statistic_msg(msg, -1)
- self.tips = MessageBox(
- self.closeButton, title='提示', text=f'请稍等,正在进行第{self.count_D}次检测', time=500,
- auto=False) # .exec_()
- self.tips.show()
- elif msg == "检测结束":
- self.statistic_msg(msg, -1)
- self.tips.close()
- MessageBox(
- self.closeButton, title='提示', text=f'第{self.count_D}次检测结束,正在关闭提示窗口', time=1000,
- auto=True).exec_()
- # self.tips.show()
- # self.listView.addItem(QDateTime.currentDateTime().toString(Qt.ISODate) + f"\t第{self.count_D}次检测结束,超参数:" + self.detect_hyp) #双击查看日志
- # self.statistic_label.clear()
- def show_msg2(self, msg):
- if "error" in msg.lower():
- self.statistic_msg(msg, -1)
- MessageBox(
- self.closeButton, title='提示', text='训练过程出现错误,请查看相关日志文件', time=1000,
- auto=True).exec_()
- # 这里 因为训练错误 来一个计算失败的
- # count_T_error += 1
- elif msg == "开始训练":
- self.statistic_msg(msg, -1)
- MessageBox(self.closeButton, title='提示', text=f'请稍等,正在进行第{self.count_T}次训练', time=5000,
- auto=True).exec_()
- # QMessageBox.information(self,"提示", f'请稍等,正在进行第{self.count_T}次训练。。。')
- # InfoMessageBox.information(self, "提示", f'请稍等,正在进行第{self.count_T}次训练。。。')
- # self.tips.show()
- self.statistic_msg("正在训练中,请不要操作", -1)
- elif msg == "训练结束":
- # self.train_tips.close()
- self.statistic_msg(msg, -1)
- MessageBox(
- self.closeButton, title='提示', text=f'第{self.count_T}次训练结束,正在关闭提示窗口。。。', time=500,
- auto=True).exec_()
- # self.statistic_label.clear()
- # self.listView.addItem(QDateTime.currentDateTime().toString(Qt.ISODate) + f"\t第{self.count_T}次训练j结束,超参数:" + self.traing_hyp)
- # self.search_pt()
- def show_msg3(self, msg):
- if "error" in msg.lower():
- self.statistic_msg(msg, -1)
- MessageBox(self.closeButton, title='提示', text='特征提取过程出现错误,请查看相关日志文件', time=1000,
- auto=True).exec_()
- # self.count_D_error += 1
- elif msg == "开始特征提取":
- self.statistic_msg(msg, -1)
- self.tips = MessageBox(
- self.closeButton, title='提示', text=f'请稍等,正在进行第{self.count_D}次提取。。。', time=500,
- auto=False) # .exec_()
- self.tips.show()
- elif msg == "特征提取结束":
- self.statistic_msg(msg, -1)
- self.tips.close()
- MessageBox(
- self.closeButton, title='提示', text=f'第{self.count_D}次检测结束,正在关闭提示窗口。。。', time=1000,
- auto=True).exec_()
- ################# 自定义标题栏按钮--功能##########################
- def max_or_restore(self):
- if self.maxButton.isChecked():
- self.showMaximized()
- else:
- self.showNormal()
- def closeEvent(self, event):
- MessageBox(
- self.closeButton, title='提示', text='请稍等,正在关闭程序。。。', time=500, auto=True).exec_()
- # #删除文件 来kill进程
- # if self.count_T == 1:
- # if os.path.exists(os.path.join(self.runs_path.replace('detect','train'),f'exp{self.count_T}')):
- # shutil.rmtree(os.path.join(self.runs_path.replace('detect','train'),f'exp{self.count_T}')) #os.rmdir(self.runs_path)
- # else:
- # if os.path.exists(os.path.join(self.runs_path.replace('detect','train'),f'exp')):
- # shutil.rmtree(os.path.join(self.runs_path.replace('detect','train'),f'exp')) #os.rmdir(self.runs_path)
- self.train_thread.exit() # 没用
- self.det_thread.exit()
- # self.train_thread.exit()
- kill_name("python.exe")
- sys.exit(0)
- ## 鼠标获取
- def mousePressEvent(self, event):
- self.m_Position = event.pos()
- if event.button() == Qt.LeftButton:
- if 0 < self.m_Position.x() < self.groupBox.pos().x() + self.groupBox.width() and \
- 0 < self.m_Position.y() < self.groupBox.pos().y() + self.groupBox.height():
- self.m_flag = True
- def mouseMoveEvent(self, QMouseEvent):
- if Qt.LeftButton and self.m_flag:
- self.move(QMouseEvent.globalPos() - self.m_Position) # 更改窗口位置
- # QMouseEvent.accept()
- def mouseReleaseEvent(self, QMouseEvent):
- self.m_flag = False
- # self.setCursor(QCursor(Qt.ArrowCursor))
- ######################可视化图片####################
- # 上一页
- def change_image_up(self):
- try:
- self.index = self.index - 1
- if self.index <= 0:
- self.index = 0
- if len(self.img_list) > 0:
- img_file = self.img_list[self.index] # 图像列表
- self.current_img = img_file
- # img = cv2.imread(img_file)
- self.statistic_msg(img_file, -1) #
- self.show_image(img_file, self.raw_video)
- self.label_6.setText(f"{os.path.basename(img_file)}原图像")
- currRow = self.resultWidget.currentRow()
- if currRow > 0:
- self.resultWidget.setCurrentRow(currRow - 1)
- except Exception as e:
- self.statistic_msg(repr(e), -1)
- # 下一页
- def change_image_down(self):
- try:
- self.index = self.index + 1 #
- if len(self.img_list) > 0:
- if self.index >= len(self.img_list) - 1:
- self.index = len(self.img_list) - 1
- img_file = self.img_list[self.index] # 图像列表
- self.current_img = img_file
- self.statistic_msg(img_file) #
- self.show_image(img_file, self.raw_video)
- self.label_6.setText(f"{os.path.basename(img_file)}原图像")
- currRow = self.resultWidget.currentRow()
- rowAll = self.resultWidget.count()
- if currRow < rowAll - 1:
- self.resultWidget.setCurrentRow(currRow + 1)
- except Exception as e:
- self.statistic_msg(repr(e))
- # def change_flag(self):
- # 显示结果
- def show_res(self):
- try:
- if len(self.img_list) > 0:
- if self.index >= len(self.img_list) - 1:
- self.index = len(self.img_list) - 1
- img_file = self.img_list[self.index] # 图像列表
- self.current_img = img_file
- self.statistic_msg(img_file) #
- self.show_image(img_file, self.raw_video)
- self.label_6.setText(f"{os.path.basename(img_file)}原图像")
- currRow = self.resultWidget.currentRow()
- rowAll = self.resultWidget.count()
- if currRow < rowAll - 1:
- self.resultWidget.setCurrentRow(currRow + 1)
- except Exception as e:
- self.statistic_msg(repr(e))
- # def change_flag(self):
- # self.plots_flag = not self.plots_flag #取反
- # if self.plots_flag:#显示信息
- # self.close_info.setText("关闭信息显示")
- # else:
- # self.close_info.setText("打开信息显示")
- # 输出显示
- def show_output(self):
- try:
- if self.DC != "0":
- self.out_video.clear()
- if self.t_flag == 1 or self.t_flag == 3 or self.t_flag == 4:
- curr_path = self.output_file_list[self.img_list[self.index]]
- self.plots_thread.img_name = curr_path
- self.plots_thread.out_path = curr_path
- self.plots_thread.flag = self.plots_flag
- self.plots_thread.start() # 开启
- # elif self.t_flag == 0:
- # curr_path = "D:\\hiddz\\SAR\\runs\\asd\\2024-06-14\\detect\\exp\\HB14932.JPG"
- # self.plots_thread.img_name = curr_path
- # self.plots_thread.out_path = curr_path
- # self.plots_thread.flag = self.plots_flag
- # self.plots_thread.start()
- else:
- s = f'exp' if self.DC == "1" else f'exp{self.DC}'
- ext = os.path.basename(self.img_list[self.index]).split('.')[-1] # 后缀名
- # print("show_output: ", os.path.basename(self.img_list[self.index]) + f"第{self.DC}次检测结果") #201312040003B.jpeg第1次检测结果
- self.statistic_msg(os.path.basename(self.img_list[self.index]) + f"第{self.DC}次检测结果")
- # self.plots_thread.json_file = os.path.join(self.runs_path, s, "jsons",
- # os.path.basename(self.img_list[self.index]).replace(ext,
- # 'json'))
- img_name = self.plots_thread.img_name = self.img_list[self.index].split('\\')[1]
- path = os.path.join(self.runs_path, s, img_name)
- # path = "D:\\hiddz\\SAR\\runs\\asd\\2024-06-14\\detect\\exp\\HB14932.JPG"
- # path =
- # path = self.plots_thread.out_path
- self.plots_thread.img_name = path
- self.plots_thread.out_path = path
- self.plots_thread.flag = self.plots_flag
- self.plots_thread.start() # 开启
- else:
- self.statistic_msg("目前没有检测结果,需要先进行检测......") # 我将下面的代码全部注释掉了,即:
- # # 使用默认的 label
- # #dirs = os.path.dirname(self.img_list[self.index])
- # ext = os.path.basename(self.img_list[self.index]).split('.')[-1] #后缀名
- # if os.path.exists(self.img_list[self.index].replace(ext,'json')):
- # self.statistic_msg("建议首先选择一个模型进行检测,这里使用默认的检测结果")
- # self.plots_thread.json_file = self.img_list[self.index].replace(ext,'json') #os.path.join(dirs,name.split(name,'json'))
- # self.plots_thread.img_name = self.img_list[self.index]
- # self.plots_thread.out_path = self.Base_Path_D
- # self.plots_thread.flag = self.plots_flag
- # self.plots_thread.start() #开启
- # else:
- # self.statistic_msg("未存在默认的检测结果,请首先选择一个模型进行检测")
- except Exception as e:
- self.statistic_msg(repr(e))
- print(repr(e))
- def show_output_new(self, msg): # 子进程的消息
- if msg == "error":
- self.statistic_msg(msg)
- self.tips.close()
- MessageBox(
- self.closeButton, title='提示', text='模型未检测到结果,可视化原图', time=1000, auto=True).exec_()
- self.show_image(self.plots_thread.img_name, self.out_video)
- name = os.path.basename(self.plots_thread.img_name)
- if self.DC != "0":
- self.label_9.setText(f"{name}第{self.DC}次检测结果")
- else:
- self.label_9.setText("出错了,目前还没有检测过") # 我改的
- # self.label_9.setText(f"{os.path.basename(self.img_list[self.index])}默认检测结果")
- elif msg == "开始显示结果":
- self.statistic_msg(msg)
- self.tips = MessageBox(
- self.closeButton, title='提示', text=f'请稍等,正在可视化检测结果。。。', time=500, auto=False) # $.exec_()
- self.tips.show()
- elif msg == "显示结果完成":
- self.statistic_msg(msg)
- self.tips.close()
- MessageBox(
- self.closeButton, title='提示', text=f'可视化检测结果结束,正在关闭提示窗口。。。', time=1000,
- auto=True).exec_()
- if self.t_flag == 1 or self.t_flag == 3 or self.t_flag == 4:
- name = os.path.basename(self.plots_thread.img_name)
- self.show_image(self.plots_thread.out_path, self.out_video)
- else:
- name = os.path.basename(self.plots_thread.img_name)
- # self.show_image(os.path.join(self.plots_thread.out_path, name), self.out_video,
- # json_file=self.plots_thread.json_file)
- self.show_image(self.plots_thread.out_path, self.out_video)
- # global det_img
- # self.show_image(det_img, self.out_video)
- if self.DC != "0":
- self.label_9.setText(f"{name}第{self.DC}次检测结果")
- else:
- self.label_9.setText("目前还没有检测过") # 我改的
- # self.label_9.setText(f"{os.path.basename(self.img_list[self.index])}默认检测结果")
- def show_image(self, img_src, label, json_file=""):
- try:
- print("show_image, img_src, label,json_file:", img_src, label, json_file)
- label.set_image(img_src, json_file)
- except Exception as e:
- print(repr(e))
- ######读取图像#######
- def open_file(self):
- cur_work_path = os.path.dirname(__file__)
- cur_file_path = None
- if os.path.exists(cur_work_path + "/last_open.txt"):
- with open(cur_work_path + "/last_open.txt", "r") as dir_f:
- lines = dir_f.readlines()
- if len(lines) > 0:
- cur_file_path = lines[0]
- # print("cur_work_path cur_file_path: ", cur_work_path, cur_file_path)
- # folder = QFileDialog.getExistingDirectory(self, '选择图像文件夹...', cur_path)
- source = QFileDialog.getOpenFileName(self, '选取图片', cur_file_path if cur_file_path else cur_work_path,
- "JPEG Files(*.jpg *.jpeg);;PNG Files(*.png);;BMP Files(*.bmp);;TIF Files(*.tif *.tiff)")
- # print("source: ", source)
- if source[0] != "":
- # 每次更换文件夹 所有检测结果就清除掉
- if os.path.exists(self.runs_path):
- shutil.rmtree(self.runs_path) # os.rmdir(self.runs_path)
- if os.path.exists(self.runs_path.replace('detect', 'train')):
- shutil.rmtree(self.runs_path.replace('detect', 'train')) # os.rmdir(self.runs_path)
- # 显示窗口清除
- # self.listView.clear()
- # self.listView.addItem(self.time + "\t软件执行信息")
- # 计算器清零
- self.count_D = 0
- self.DC = str(self.count_D)
- self.count_T = 0
- self.img_list.clear()
- self.img_list.append(source[0])
- self.show_list()
- with open(cur_work_path + "/last_open.txt", "w") as dir_f:
- dir_f.writelines(source[0])
- self.gsd_file = os.path.join(os.path.dirname(source[0]), "gsd.txt")
- print("open_file gsd_file: ", self.gsd_file)
- if os.path.exists(self.gsd_file):
- with open(self.gsd_file, "r", encoding="utf-8") as f:
- for line in f.readlines():
- line = line.strip()
- print("line: ", line)
- if len(line.split(" ")) == 4:
- shebei_, beicepin_, pici_, gsd_ = line.split(" ")
- shebei = shebei_
- beicepin = beicepin_
- pici = pici_
- gsd = gsd_
- print("打开文件 找到雷达模式,数据集,目标种类相匹配的gsd:", shebei_, beicepin_, pici_, gsd_)
- break
- else:
- pici = os.path.basename(os.path.dirname(source[0]))
- print("pici: ", pici)
- beicepin = os.path.basename(os.path.dirname(os.path.dirname(source[0])))
- print("beicepin: ", beicepin)
- shebei = os.path.basename(os.path.dirname(os.path.dirname(os.path.dirname(source[0]))))
- print("shebei: ", shebei)
- gsd = 0
- print("over 0")
- self.shebei.setText(str(shebei))
- print("over 1")
- self.beicepin.setText(str(beicepin))
- print("over 2")
- self.pici.setText(str(pici))
- print("over 3")
- # self.gsd.setText(str(gsd))
- # print("over 4")
- else:
- self.statistic_msg("未选择图片,请重新选取图片路径")
- # print("self.img_list,source: ", self.img_list,source)
- def open_folder(self):
- cur_path = os.path.dirname(__file__)
- last_path = None
- if os.path.exists(cur_path + "/last_open_dir.txt"):
- with open(cur_path + "/last_open_dir.txt", "r") as dir_f:
- lines = dir_f.readlines()
- if len(lines) > 0:
- last_path = lines[0]
- # print("cur_path: ", cur_path)
- folder = QFileDialog.getExistingDirectory(self, '选择图像文件夹...', last_path if last_path else cur_path)
- if folder != "":
- # 每次更换文件夹 所有检测结果就清除掉
- if os.path.exists(self.runs_path):
- shutil.rmtree(self.runs_path) # os.rmdir(self.runs_path)
- if os.path.exists(self.runs_path.replace('detect', 'train')):
- shutil.rmtree(self.runs_path.replace('detect', 'train')) # os.rmdir(self.runs_path)
- # 显示窗口清除
- # self.listView.clear()
- # self.listView.addItem(self.time + "\t软件执行信息")
- # 计算器清零
- self.count_D = 0
- self.DC = str(self.count_D)
- self.count_T = 0
- self.img_list.clear()
- # 获取文件夹内的图像列表
- extenxion = ['/*.jpg', '/*.png', '/*.bmp', '/*.jpeg', '/*.tif', '/*.tiff']
- for ext in extenxion:
- self.img_list = self.img_list + glob.glob(folder + ext)
- self.show_list()
- with open(cur_path + "/last_open_dir.txt", "w") as dir_f:
- dir_f.writelines(folder)
- # print("write: ", folder,cur_path+"/last_open_dir.txt")
- self.gsd_file = os.path.join(folder, "gsd.txt")
- if os.path.exists(self.gsd_file):
- with open(self.gsd_file, "r", encoding="utf-8") as f:
- for line in f.readlines():
- line = line.strip()
- print("line: ", line)
- if len(line.split(" ")) == 4:
- shebei_, beicepin_, pici_, gsd_ = line.split(" ")
- shebei = shebei_
- beicepin = beicepin_
- pici = pici_
- gsd = gsd_
- print("打开文件 找到shebei,beicepin,pici相匹配的gsd:", shebei_, beicepin_, pici_, gsd_)
- break
- else:
- pici = os.path.basename(folder)
- beicepin = os.path.basename(os.path.dirname(folder))
- shebei = os.path.basename(os.path.dirname(os.path.dirname(folder)))
- # print(folder, pici, shebei)
- gsd = 0
- self.shebei.setText(str(shebei))
- self.beicepin.setText(str(beicepin))
- self.pici.setText(str(pici))
- # self.gsd.setText(str(gsd))
- else:
- self.statistic_msg("未选择图像文件夹,请重新选取图像文件夹")
- # print("self.img_list,folder: ", self.img_list, folder)
- # update img list
- def show_list(self):
- self.resultWidget.clear()
- results = [str(i) for i in self.img_list]
- self.resultWidget.addItems(results)
- if len(self.img_list) > 0:
- self.resultWidget.setCurrentRow(0) # 默认使图像列表中的第一项处于选中状态
- self.WidgetClicked_default(0)
- def WidgetClicked_default(self, row):
- item = self.resultWidget.item(row)
- # 单击触发槽函数
- # print("WidgetClicked(item): ",item.text())
- self.statistic_msg("默认选中" + item.text())
- self.index = self.img_list.index(item.text())
- self.show_image(item.text(), self.raw_video)
- self.label_6.setText(f"{os.path.basename(item.text())}原图像")
- def WidgetClicked(self, item):
- # 单击触发槽函数
- # print("WidgetClicked(item): ",item,item.text())
- self.statistic_msg("选中" + item.text())
- self.index = self.img_list.index(item.text())
- self.show_image(item.text(), self.raw_video)
- self.label_6.setText(f"{os.path.basename(item.text())}原图像")
- ########### 系统信息返回 ##########
- def listViewdoubleClicked(self, item):
- # 双击触发槽函数
- try:
- msg = item.text().split("\t")[1]
- self.statistic_msg(msg)
- # 开启查看日志窗口 -- qt打开文件
- if msg.find("训练") != -1:
- import re
- # path 根据 self.count进行筛选
- c = re.search('\d+', msg).group()
- if c == "1":
- s = f'exp'
- else:
- s = f'exp{c}'
- self.logger = LoggerWindow(mode=msg + ' 过程信息',
- path=os.path.join(self.runs_path.replace('detect', 'train'), s,
- 'train.txt')) # 新建对象
- self.logger.ui.show()
- # self.DC = "0" #我改的
- elif msg.find("检测") != -1:
- import re
- # path 根据 self.count进行筛选
- self.DC = re.search('\d+', msg).group()
- s = f'exp' if self.DC == "1" else f'exp{self.DC}'
- # path 根据 self.count进行筛选
- # print(os.path.join(self.runs_path,s,'detect.txt'))
- self.logger = LoggerWindow(mode=msg + ' 过程信息',
- path=os.path.join(self.runs_path, s, 'detect.txt')) # 新建对象
- self.logger.ui.show()
- else:
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- # self.DC = "0"
- except Exception as e:
- self.statistic_msg(repr(e))
- def listViewClicked(self, item):
- # 单击触发槽函数
- try:
- msg = item.text().split("\t")[1]
- self.statistic_msg(msg)
- if msg.find("检测") != -1:
- import re
- # path 根据 self.count进行筛选
- self.DC = re.search('\d+', msg).group()
- else:
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- # self.DC = "0"
- except Exception as e:
- self.statistic_msg(repr(e))
- ################### 纠错 -- Label_click_Mouse #########################
- # pip install labelme
- def open_labelme(self):
- # 开一个进程
- # 修正命令行
- try:
- # if self.DC == "0": #DC是检测次数
- # self.labelme_thread.det_path = "" #os.path.join(self.runs_path,s,"jsons") #标注文件替换
- if self.DC == "0":
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- else:
- s = f'exp' if self.DC == "1" else f'exp{self.DC}'
- det_path = os.path.join(self.runs_path, s, "jsons")
- src_path = os.path.dirname(self.img_list[0])
- json_list = glob.glob(src_path + '/*.json') # 先将原来标注好的json文件改为gt_.json文件
- has_gt = False
- for jsonf in json_list:
- extenxion = ['.jpg', '.png', '.bmp', '.jpeg', '.tif', '.tiff']
- for ext in extenxion:
- imgf = jsonf.replace(".json", ext)
- if os.path.exists(imgf):
- has_gt = True
- break
- if has_gt:
- break
- if has_gt:
- MessageBox(self.closeButton, title='提示', text='该图片所在目录下标注文件,不能执行纠错操作',
- time=1000, auto=True).exec_()
- else:
- self.labelme_thread.det_path = det_path
- self.labelme_thread.src_path = src_path
- self.labelme_thread.start()
- except Exception as e:
- self.statistic_msg(repr(e))
- ############################ 结果导出 #######################################
- def save_output(self): # 导出报表,调用WriteThread
- try:
- if self.DC == "0":
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- else:
- # 书写 excel 内容
- msg = f"第{self.DC}次检测结果"
- # if os.name == 'nt': #windows 系统
- file_path, _ = QFileDialog.getSaveFileName(self, "保存 结果", ".", 'Excel(*.xlsx)')
- if file_path != "":
- # 传入参数 开启进程
- self.write_thread.msg = msg
- self.write_thread.imgs = self.img_list
- self.write_thread.path = file_path
- s = f'exp' if self.DC == "1" else f'exp{self.DC}'
- scr = os.path.join(self.runs_path, s)
- self.write_thread.src = scr
- self.write_thread.gsd = float(self.gsd.text())
- self.write_thread.start()
- # self.write_xlsxwriter(msg,self.img_list,file_path)
- # else: # os.name = posix
- # file_path, _ = QFileDialog.getSaveFileName(self,"保存 结果",".",'txt(*.txt)')
- # self.write_txt(msg,self.img_list,file_path)
- ################
- else:
- self.statistic_msg("未选择报表文件,请重新选取报表路径")
- except Exception as e:
- self.statistic_msg(repr(e))
- def write_xlsxwriter(self, msg):
- if msg == "error":
- self.statistic_msg(msg)
- self.tips.close()
- MessageBox(
- self.closeButton, title='提示', text='结果导出错误,请重新导出', time=1000, auto=True).exec_()
- self.show_image(self.plots_thread.img_name, self.out_video)
- elif msg == "开始导出报表":
- self.statistic_msg(msg)
- self.tips = MessageBox(
- self.closeButton, title='提示', text=f'请稍等,正在导出图表文件。。。', time=500, auto=False) # .exec_()
- self.tips.show()
- elif msg == "导出报表完成":
- self.statistic_msg(msg)
- self.tips.close()
- if self.DC != "0":
- MessageBox(
- self.closeButton, title='提示',
- text=f'第{self.DC}次检测结果图表格式文件导出成功,正在关闭提示窗口。。。', time=2000, auto=True).exec_()
- else:
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- ############################## 模型操作 ##############################
- def begin_action(self):
- if self.t_flag == 2:
- self.model_type = os.path.join(self.model_path, self.comboBox.currentText())
- # self.model_type = os.path.join(self.model_path,"yolov5s-seg.pt")#我改为训练只使用预训练模型
- self.train_thread.model = self.model_type
- # 模型训练 ##
- if self.ui_train.radioButton_3.isChecked(): # 增加样本再训练
- if len(self.img_list):
- save_dirs = Path('./dataset') # fix path
- Path(save_dirs / 'labels').mkdir(parents=True, exist_ok=True)
- Path(save_dirs / 'images').mkdir(parents=True, exist_ok=True)
- for img_name in self.img_list:
- dirs = os.path.dirname(img_name)
- name = os.path.basename(img_name)
- jsons = name.replace(name.split('.')[-1], 'json')
- if os.path.exists(os.path.join(dirs, jsons)):
- # 转换格式 -- 摸一个文件夹
- self.statistic_msg(f"{img_name}图像成功加入训练集中")
- convert_json_label_to_yolov_seg_label(os.path.join(dirs, jsons), dirs,
- os.path.join(str(save_dirs / 'labels'),
- jsons.replace(".json", ".txt")))
- shutil.copyfile(img_name, os.path.join(str(save_dirs / 'images'), name))
- else:
- self.statistic_msg(f"{img_name}图像没有对应的标注文件,请先进行检测或人工标注后再训练模型")
- # 解除冻结
- self.trainbutton.setEnabled(True)
- return None
- else:
- self.statistic_msg(f"请选择要新增加的图像数据")
- # 解除冻结
- self.trainbutton.setEnabled(True)
- return None
- self.count_T += 1
- self.train_thread.start() # 启动子进程 -- 注意命令行的中 python 解释器 的选择 传递一个结束信号
- self.statistic_msg(f"第{self.count_T}次训练中")
- # 解除冻结
- self.trainbutton.setEnabled(True)
- if self.t_flag == 0:
- self.model_type = os.path.join(self.model_path, self.comboBox.currentText())
- self.det_thread.model = self.model_type
- try:
- if len(self.img_list) == 0:
- self.statistic_msg("目前没有检测结果,需要先进行检测")
- return
- elif len(self.img_list) > 1:
- self.det_thread.data = os.path.dirname(self.img_list[0])
- else:
- self.det_thread.data = self.img_list[0]
- self.count_D += 1
- self.det_thread.start() # 启动子进程 -- 注意命令行的中 python 解释器 的选择
- self.statistic_msg(f"第{self.count_D}次检测中")
- self.DC = str(self.count_D)
- except Exception as e:
- self.statistic_msg(repr(e))
- self.detectbutton.setEnabled(True)
- if self.t_flag == 1:
- self.py_type = os.path.join(self.feature_alg, self.comboBox.currentText())
- self.fea_thread.py = self.py_type
- # self.fea_thread.send_msg.connect(lambda x: self.show_msg3(x))
- try:
- if len(self.img_list) == 0:
- self.statistic_msg("目前没有识别结果,需要先进行识别")
- return
- elif len(self.img_list) > 1:
- self.fea_thread.data = os.path.dirname(self.img_list[0])
- else:
- self.fea_thread.data = self.img_list[0]
- self.count_D += 1
- self.fea_thread.start() # 启动子进程 -- 注意命令行的中 python 解释器 的选择
- script_path = self.py_type
- image_path_list = self.img_list
- # 循环遍历选择的文件夹内的图片,并传入所选算法中
- self.statistic_msg("处理中......")
- for path in image_path_list:
- result = subprocess.run(['python', script_path, path], capture_output=True, text=True)
- self.output_file_list[path] = result.stdout.replace('\n', '')
- self.statistic_msg(f"处理完成!")
- # self.statistic_msg(f"第{self.count_D}次识别中")
- self.DC = str(self.count_D)
- except Exception as e:
- self.statistic_msg(repr(e))
- self.trainbutton_2.setEnabled(True)
- if self.t_flag == 3 or self.t_flag == 4:
- self.py_type = os.path.join(self.feature_alg, self.comboBox.currentText())
- self.fea_thread.py = self.py_type
- try:
- if len(self.img_list) == 0:
- self.statistic_msg("目前没有识别结果,需要先进行识别")
- return
- elif len(self.img_list) > 1:
- self.fea_thread.data = os.path.dirname(self.img_list[0])
- else:
- self.fea_thread.data = self.img_list[0]
- self.count_D += 1
- self.fea_thread.start() # 启动子进程 -- 注意命令行的中 python 解释器 的选择
- script_path = self.py_type
- img_list = self.img_list
- my_path_pic_0 = [os.path.dirname(path) for path in img_list]
- my_path_pic = my_path_pic_0[0]
- label_path = os.path.dirname(my_path_pic)
- my_label_path = os.path.join(label_path, "picture_labels")
- print(my_label_path)
- label_path_list = os.listdir(my_label_path)
- self.statistic_msg(f"开始检测")
- for img_path in img_list:
- img_name = os.path.basename(img_path).split('.')[0]
- for label in label_path_list:
- label_name = os.path.basename(label).split('.')[0]
- if img_name == label_name:
- s_label_path = os.path.join(my_label_path, label)
- result = subprocess.run(['python', script_path, img_path, s_label_path], capture_output=True, text=True)
- self.output_file_list[img_path] = result.stdout.replace('\n', '')
- break
- self.statistic_msg(f"第{self.count_D}次识别中")
- self.DC = str(self.count_D)
- except Exception as e:
- self.statistic_msg(repr(e))
- self.trainbutton_3.setEnabled(True)
- import configparser
- # ## 密码登录
- class Welcome(QMainWindow):
- success = pyqtSignal(bool) # 因为用了os 后台 发送不了中间进程 就只有 启动和开始
- def __init__(self):
- super(Welcome, self).__init__()
- self.login = loadUi('qt_win/login-form2.ui')
- self.register = loadUi('qt_win/register-form2.ui')
- self.login.setWindowTitle("登陆界面")
- self.register.setWindowTitle("注册界面")
- self.login.b1.clicked.connect(self.Login)
- self.login.b2.clicked.connect(self.show_reg)
- self.register.b3.clicked.connect(self.reg)
- self.register.b4.clicked.connect(self.show_login)
- self.IsRememberUser()
- self.config_json = "config.json" # 保存信息的json文件
- '''读取json -- 解析账号'''
- def get_information(self):
- if not os.path.exists(self.config_json):
- return 0
- with open(self.config_json, 'r') as f:
- json_data = json.load(f)
- users = json_data.keys()
- if self.account not in users:
- return 0
- if self.passwd != json_data[self.account]:
- return 1
- else:
- return 2
- '''读写json -- 解析账号'''
- def set_information(self):
- if not os.path.exists(self.config_json):
- # 不存在 新建
- data = {} # key -- id ; value -- password
- else:
- # 读取
- with open(self.config_json, 'r') as f:
- data = json.load(f)
- # 判断
- if self.re_account in data.keys():
- return 0
- if self.re_passwd != self.confirm_passwd:
- return 1
- # 写入文件
- data[self.re_account] = self.re_passwd
- with open(self.config_json, "w") as f:
- json.dump(data, f)
- return 2
- """设置记住密码"""
- def IsRememberUser(self):
- config = configparser.ConfigParser()
- if not os.path.exists('user.ini'):
- self.login.c.setChecked(False)
- else:
- file = config.read('user.ini') # 读取密码账户的配置文件
- config_dict = config.defaults() # 返回包含实例范围默认值的字典
- if config_dict['remember'] == 'True': # 如果user.ini文件存在,并且里面设置了记住密码,就将默认的用户名和密码取出来,自动填充在用户界面上
- self.account = config_dict['user_name'] # 获取账号信息
- self.login.tb1.setText(self.account) # 写入账号上面
- self.passwd = config_dict['password']
- self.login.tb2.setText(self.passwd)
- self.login.c.setChecked(True)
- else:
- self.login.tb1.setText("")
- self.login.tb2.setText("")
- self.login.c.setChecked(False)
- """设置配置文件格式,设置默认用户名和密码,登录成功后,将用户填写的用户名和密码写入user.ini文件中"""
- def config_ini(self):
- self.account = self.login.tb1.text()
- self.passwd = self.login.tb2.text()
- config = configparser.ConfigParser()
- if self.login.c.isChecked():
- config["DEFAULT"] = {
- "user_name": self.account,
- "password": self.passwd,
- "remember": self.login.c.isChecked()
- }
- else:
- config["DEFAULT"] = {
- "user_name": self.account,
- "password": "",
- "remember": self.login.c.isChecked()
- }
- with open('user.ini', 'w') as configfile:
- config.write((configfile))
- def Login(self):
- self.account = self.login.tb1.text()
- self.passwd = self.login.tb2.text()
- if len(self.account) == 0 or len(self.passwd) == 0:
- MessageBox(
- self.login, title='提示', text='用户名或密码为空!', time=2000, auto=True).exec_()
- else:
- info = self.get_information()
- if info == 0:
- MessageBox(
- self.login, title='提示', text='此用户不存在!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Login Output","Invalid User, Register for new user")
- elif info == 1:
- MessageBox(
- self.login, title='提示', text='用户名和密码不匹配!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Login Output","Error! User and password do not match")
- else:
- MessageBox(
- self.login, title='提示', text='恭喜!登录成功!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Login Output","Congrats! you login successfully")
- self.config_ini() # 加载用户密码配置文件
- # 关闭窗口
- self.login.close()
- self.success.emit(True)
- # 注册
- def show_reg(self):
- self.login.close()
- self.register.tb3.setText("") #
- self.register.tb4.setText("") #
- self.register.tb5.setText("") #
- self.register.show()
- def reg(self):
- self.re_account = self.register.tb3.text()
- self.re_passwd = self.register.tb4.text()
- self.confirm_passwd = self.register.tb5.text()
- if len(self.re_account) == 0 or len(self.re_passwd) == 0 or len(self.confirm_passwd) == 0:
- MessageBox(
- self.register, title='提示', text='用户名或密码为空!', time=2000, auto=True).exec_()
- else:
- info = self.set_information()
- if info == 0:
- MessageBox(
- self.register, title='提示', text='此用户名已经存在了!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Register Output", "The user already registered, Try another username")
- elif info == 1:
- MessageBox(
- self.register, title='提示', text='两次密码不一致!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Register Output", "Error! The passwords entered twice do not match")
- else:
- MessageBox(
- self.register, title='提示', text='注册成功,现在可以登录了!', time=2000, auto=True).exec_()
- # QMessageBox.information(self,"Register Output", "The user registered successfully, You can login now!!!")
- self.show_login() # 返回登录
- def show_login(self):
- self.register.close()
- self.login.tb1.setText("") #
- self.login.tb2.setText("") #
- self.login.show()
- if __name__ == '__main__':
- app = QApplication(sys.argv)
- # wel = Welcome()
- # wel.login.show()
- win = Window()
- # win.show()
- sys.exit(app.exec_())
|