2022-11-08 23:33:48,004 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-08 23:33:48,004 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/bert-base-chinese/', crf_lr=0.03, data_dir='./data/cner/', dropout=0.3, dropout_prob=0.1, eval_batch_size=12, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=256, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=15, use_crf='True', use_lstm='True', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:23:29,709 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:23:29,709 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:24:41,226 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:24:41,226 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:25:11,934 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:25:11,934 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:26:41,964 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:26:41,964 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:27:50,050 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:27:50,050 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:29:09,483 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:29:09,483 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 11:29:21,750 - INFO - main.py - - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 11:29:21,750 - INFO - main.py - - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 16:33:06,998 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 16:33:06,998 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 16:57:39,432 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 16:57:39,433 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/config.json', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 17:36:04,479 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 17:36:04,480 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 17:36:24,656 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 17:36:24,656 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 17:36:32,110 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 17:40:44,962 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 17:40:44,962 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 17:40:50,036 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:17:53,463 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:17:53,463 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=32, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:17:58,990 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:18:30,751 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:18:30,751 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:18:35,649 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:20:15,157 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:20:15,157 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:20:19,522 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:20:43,756 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:20:43,757 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=1, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=1, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:20:47,737 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:20:52,601 - INFO - main.py - train - 68 - 【train】 epoch:0 0/5960 loss:270.5590 2022-11-09 18:20:54,234 - INFO - main.py - train - 68 - 【train】 epoch:0 1/5960 loss:293.8041 2022-11-09 18:20:55,409 - INFO - main.py - train - 68 - 【train】 epoch:0 2/5960 loss:533.3459 2022-11-09 18:20:56,580 - INFO - main.py - train - 68 - 【train】 epoch:0 3/5960 loss:167.5391 2022-11-09 18:20:57,705 - INFO - main.py - train - 68 - 【train】 epoch:0 4/5960 loss:188.1563 2022-11-09 18:20:58,822 - INFO - main.py - train - 68 - 【train】 epoch:0 5/5960 loss:157.2815 2022-11-09 18:20:59,919 - INFO - main.py - train - 68 - 【train】 epoch:0 6/5960 loss:358.7325 2022-11-09 18:21:01,054 - INFO - main.py - train - 68 - 【train】 epoch:0 7/5960 loss:270.1438 2022-11-09 18:21:02,120 - INFO - main.py - train - 68 - 【train】 epoch:0 8/5960 loss:65.7982 2022-11-09 18:21:03,278 - INFO - main.py - train - 68 - 【train】 epoch:0 9/5960 loss:60.7055 2022-11-09 18:21:04,394 - INFO - main.py - train - 68 - 【train】 epoch:0 10/5960 loss:109.2479 2022-11-09 18:21:05,482 - INFO - main.py - train - 68 - 【train】 epoch:0 11/5960 loss:41.0138 2022-11-09 18:21:06,619 - INFO - main.py - train - 68 - 【train】 epoch:0 12/5960 loss:422.2743 2022-11-09 18:21:07,768 - INFO - main.py - train - 68 - 【train】 epoch:0 13/5960 loss:289.6386 2022-11-09 18:21:08,908 - INFO - main.py - train - 68 - 【train】 epoch:0 14/5960 loss:249.3521 2022-11-09 18:21:10,056 - INFO - main.py - train - 68 - 【train】 epoch:0 15/5960 loss:319.1989 2022-11-09 18:21:11,175 - INFO - main.py - train - 68 - 【train】 epoch:0 16/5960 loss:146.3364 2022-11-09 18:21:12,275 - INFO - main.py - train - 68 - 【train】 epoch:0 17/5960 loss:758.4374 2022-11-09 18:21:13,369 - INFO - main.py - train - 68 - 【train】 epoch:0 18/5960 loss:63.2237 2022-11-09 18:21:14,425 - INFO - main.py - train - 68 - 【train】 epoch:0 19/5960 loss:113.5544 2022-11-09 18:21:15,564 - INFO - main.py - train - 68 - 【train】 epoch:0 20/5960 loss:521.8570 2022-11-09 18:21:16,681 - INFO - main.py - train - 68 - 【train】 epoch:0 21/5960 loss:413.1941 2022-11-09 18:21:17,776 - INFO - main.py - train - 68 - 【train】 epoch:0 22/5960 loss:37.8984 2022-11-09 18:21:18,891 - INFO - main.py - train - 68 - 【train】 epoch:0 23/5960 loss:178.0960 2022-11-09 18:21:20,030 - INFO - main.py - train - 68 - 【train】 epoch:0 24/5960 loss:187.9926 2022-11-09 18:21:21,112 - INFO - main.py - train - 68 - 【train】 epoch:0 25/5960 loss:154.3412 2022-11-09 18:21:22,197 - INFO - main.py - train - 68 - 【train】 epoch:0 26/5960 loss:165.2894 2022-11-09 18:21:23,296 - INFO - main.py - train - 68 - 【train】 epoch:0 27/5960 loss:691.0421 2022-11-09 18:21:24,394 - INFO - main.py - train - 68 - 【train】 epoch:0 28/5960 loss:31.0667 2022-11-09 18:21:25,470 - INFO - main.py - train - 68 - 【train】 epoch:0 29/5960 loss:203.4418 2022-11-09 18:21:26,556 - INFO - main.py - train - 68 - 【train】 epoch:0 30/5960 loss:231.4055 2022-11-09 18:21:27,671 - INFO - main.py - train - 68 - 【train】 epoch:0 31/5960 loss:273.9700 2022-11-09 18:21:28,736 - INFO - main.py - train - 68 - 【train】 epoch:0 32/5960 loss:47.7574 2022-11-09 18:21:29,846 - INFO - main.py - train - 68 - 【train】 epoch:0 33/5960 loss:24.3343 2022-11-09 18:21:30,960 - INFO - main.py - train - 68 - 【train】 epoch:0 34/5960 loss:493.4245 2022-11-09 18:21:32,051 - INFO - main.py - train - 68 - 【train】 epoch:0 35/5960 loss:66.0639 2022-11-09 18:21:33,152 - INFO - main.py - train - 68 - 【train】 epoch:0 36/5960 loss:122.7962 2022-11-09 18:21:34,268 - INFO - main.py - train - 68 - 【train】 epoch:0 37/5960 loss:637.9681 2022-11-09 18:21:35,424 - INFO - main.py - train - 68 - 【train】 epoch:0 38/5960 loss:314.1795 2022-11-09 18:21:45,844 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:21:45,845 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:21:49,767 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:21:55,450 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315 2022-11-09 18:21:57,257 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413 2022-11-09 18:21:58,487 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901 2022-11-09 18:21:59,722 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670 2022-11-09 18:22:00,964 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680 2022-11-09 18:22:02,178 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757 2022-11-09 18:22:03,486 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559 2022-11-09 18:22:13,792 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:22:13,793 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:22:17,703 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:25:49,190 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:25:49,190 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:25:53,176 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:25:58,768 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315 2022-11-09 18:26:00,723 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413 2022-11-09 18:26:01,951 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901 2022-11-09 18:26:03,196 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670 2022-11-09 18:26:04,405 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680 2022-11-09 18:26:05,645 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757 2022-11-09 18:26:06,941 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559 2022-11-09 18:26:08,221 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248 2022-11-09 18:26:09,459 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745 2022-11-09 18:26:10,699 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077 2022-11-09 18:26:11,995 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821 2022-11-09 18:26:13,232 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192 2022-11-09 18:26:14,462 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898 2022-11-09 18:26:15,726 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432 2022-11-09 18:26:16,985 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201 2022-11-09 18:26:18,258 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668 2022-11-09 18:26:19,505 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642 2022-11-09 18:26:20,769 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617 2022-11-09 18:26:22,026 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012 2022-11-09 18:26:23,277 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219 2022-11-09 18:26:24,744 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239 2022-11-09 18:26:26,010 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575 2022-11-09 18:26:27,379 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067 2022-11-09 18:26:28,606 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395 2022-11-09 18:26:29,847 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719 2022-11-09 18:26:31,048 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989 2022-11-09 18:26:32,271 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708 2022-11-09 18:26:33,504 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786 2022-11-09 18:26:34,964 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072 2022-11-09 18:26:36,285 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554 2022-11-09 18:26:37,507 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401 2022-11-09 18:26:38,767 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027 2022-11-09 18:26:40,014 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473 2022-11-09 18:26:41,309 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660 2022-11-09 18:26:42,513 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551 2022-11-09 18:26:43,748 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582 2022-11-09 18:26:44,987 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044 2022-11-09 18:26:46,254 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521 2022-11-09 18:26:47,483 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970 2022-11-09 18:26:48,788 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554 2022-11-09 18:26:50,045 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222 2022-11-09 18:26:51,253 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357 2022-11-09 18:26:52,549 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285 2022-11-09 18:26:53,828 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024 2022-11-09 18:26:55,095 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651 2022-11-09 18:26:56,367 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443 2022-11-09 18:26:57,636 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032 2022-11-09 18:26:58,936 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716 2022-11-09 18:27:00,210 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475 2022-11-09 18:27:01,529 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245 2022-11-09 18:27:02,807 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590 2022-11-09 18:27:04,121 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909 2022-11-09 18:27:05,445 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710 2022-11-09 18:29:42,809 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:29:42,809 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:35:37,108 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:35:37,108 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:35:41,593 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:35:47,976 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315 2022-11-09 18:35:49,914 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413 2022-11-09 18:35:51,115 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901 2022-11-09 18:35:52,371 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670 2022-11-09 18:35:53,586 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680 2022-11-09 18:35:54,801 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757 2022-11-09 18:35:56,179 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559 2022-11-09 18:35:57,517 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248 2022-11-09 18:35:58,778 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745 2022-11-09 18:36:00,115 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077 2022-11-09 18:36:01,448 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821 2022-11-09 18:36:02,692 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192 2022-11-09 18:36:03,924 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898 2022-11-09 18:36:05,223 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432 2022-11-09 18:36:06,503 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201 2022-11-09 18:36:07,777 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668 2022-11-09 18:36:09,042 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642 2022-11-09 18:36:10,335 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617 2022-11-09 18:36:11,556 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012 2022-11-09 18:36:12,770 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219 2022-11-09 18:36:14,011 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239 2022-11-09 18:36:15,287 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575 2022-11-09 18:36:16,596 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067 2022-11-09 18:36:17,806 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395 2022-11-09 18:36:19,008 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719 2022-11-09 18:36:20,214 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989 2022-11-09 18:36:21,466 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708 2022-11-09 18:36:22,778 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786 2022-11-09 18:36:24,067 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072 2022-11-09 18:36:25,324 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554 2022-11-09 18:36:26,577 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401 2022-11-09 18:36:27,952 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027 2022-11-09 18:36:29,183 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473 2022-11-09 18:36:30,482 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660 2022-11-09 18:36:31,713 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551 2022-11-09 18:36:32,984 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582 2022-11-09 18:36:34,199 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044 2022-11-09 18:36:35,469 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521 2022-11-09 18:36:36,739 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970 2022-11-09 18:36:37,989 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554 2022-11-09 18:36:39,212 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222 2022-11-09 18:36:40,417 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357 2022-11-09 18:36:41,727 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285 2022-11-09 18:36:43,005 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024 2022-11-09 18:36:44,203 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651 2022-11-09 18:36:45,454 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443 2022-11-09 18:36:46,733 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032 2022-11-09 18:36:48,110 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716 2022-11-09 18:36:49,362 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475 2022-11-09 18:36:50,667 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245 2022-11-09 18:36:51,937 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590 2022-11-09 18:36:53,218 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909 2022-11-09 18:36:54,461 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710 2022-11-09 18:36:55,765 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058 2022-11-09 18:36:57,086 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477 2022-11-09 18:36:58,432 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559 2022-11-09 18:36:59,675 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941 2022-11-09 18:37:00,930 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007 2022-11-09 18:37:16,233 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:37:16,233 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:37:20,178 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:37:39,169 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 18:37:39,169 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 18:37:43,141 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 18:37:48,925 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315 2022-11-09 18:37:50,656 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413 2022-11-09 18:37:51,882 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901 2022-11-09 18:37:53,162 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670 2022-11-09 18:37:54,390 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680 2022-11-09 18:37:55,637 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757 2022-11-09 18:37:57,002 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559 2022-11-09 18:37:58,316 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248 2022-11-09 18:37:59,598 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745 2022-11-09 18:38:00,856 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077 2022-11-09 18:38:02,174 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821 2022-11-09 18:38:03,394 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192 2022-11-09 18:38:04,641 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898 2022-11-09 18:38:05,902 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432 2022-11-09 18:38:07,200 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201 2022-11-09 18:38:08,493 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668 2022-11-09 18:38:09,756 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642 2022-11-09 18:38:11,031 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617 2022-11-09 18:38:12,325 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012 2022-11-09 18:38:13,602 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219 2022-11-09 18:38:14,896 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239 2022-11-09 18:38:16,080 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575 2022-11-09 18:38:17,308 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067 2022-11-09 18:38:18,523 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395 2022-11-09 18:38:19,812 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719 2022-11-09 18:38:21,158 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989 2022-11-09 18:38:22,407 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708 2022-11-09 18:38:23,642 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786 2022-11-09 18:38:24,924 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072 2022-11-09 18:38:26,162 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554 2022-11-09 18:38:27,448 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401 2022-11-09 18:38:28,704 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027 2022-11-09 18:38:29,937 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473 2022-11-09 18:38:31,228 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660 2022-11-09 18:38:32,501 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551 2022-11-09 18:38:33,756 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582 2022-11-09 18:38:35,018 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044 2022-11-09 18:38:36,345 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521 2022-11-09 18:38:37,572 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970 2022-11-09 18:38:38,768 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554 2022-11-09 18:38:40,015 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222 2022-11-09 18:38:41,341 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357 2022-11-09 18:38:42,612 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285 2022-11-09 18:38:43,889 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024 2022-11-09 18:38:45,128 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651 2022-11-09 18:38:46,435 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443 2022-11-09 18:38:47,666 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032 2022-11-09 18:38:48,942 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716 2022-11-09 18:38:50,208 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475 2022-11-09 18:38:51,582 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245 2022-11-09 18:38:52,899 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590 2022-11-09 18:38:54,186 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909 2022-11-09 18:38:55,521 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710 2022-11-09 18:38:56,764 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058 2022-11-09 18:38:58,075 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477 2022-11-09 18:38:59,427 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559 2022-11-09 18:39:00,683 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941 2022-11-09 18:39:01,934 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007 2022-11-09 18:39:03,203 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:43.6095 2022-11-09 18:39:04,483 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:406.7163 2022-11-09 18:39:05,784 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:60.8267 2022-11-09 18:39:07,095 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:199.1176 2022-11-09 18:39:08,338 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:59.4112 2022-11-09 18:39:09,677 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:95.2976 2022-11-09 18:39:10,952 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:30.8693 2022-11-09 18:39:12,270 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:303.6538 2022-11-09 18:39:13,574 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:103.3871 2022-11-09 18:39:14,826 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:74.9780 2022-11-09 18:39:16,052 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:29.6169 2022-11-09 18:39:17,300 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:99.8470 2022-11-09 18:39:18,552 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:120.8370 2022-11-09 18:39:19,846 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:19.9152 2022-11-09 18:39:21,083 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:156.0164 2022-11-09 18:39:22,370 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:90.8173 2022-11-09 18:39:23,608 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:82.6100 2022-11-09 18:39:24,893 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:80.8683 2022-11-09 18:39:26,143 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:114.0199 2022-11-09 18:39:27,363 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:31.1001 2022-11-09 18:39:28,596 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:89.9733 2022-11-09 18:39:29,903 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:204.4708 2022-11-09 18:39:31,214 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:29.4187 2022-11-09 18:39:32,487 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:158.3213 2022-11-09 18:39:33,730 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:26.3408 2022-11-09 18:39:35,011 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:163.6489 2022-11-09 18:39:36,270 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:33.3513 2022-11-09 18:39:37,538 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:30.0256 2022-11-09 18:39:38,828 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:67.0394 2022-11-09 18:39:40,118 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:111.9282 2022-11-09 18:39:41,417 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:90.7613 2022-11-09 18:39:42,688 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:33.0127 2022-11-09 18:39:43,901 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:37.5084 2022-11-09 18:39:45,171 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:150.8694 2022-11-09 18:39:46,514 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:35.7935 2022-11-09 18:39:47,787 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:24.0617 2022-11-09 18:39:49,016 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:35.2720 2022-11-09 18:39:50,257 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:48.3293 2022-11-09 18:39:51,552 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:92.0753 2022-11-09 18:39:52,777 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:57.7539 2022-11-09 18:39:54,072 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:53.4933 2022-11-09 18:39:55,345 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:175.9615 2022-11-09 18:39:56,637 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:18.8627 2022-11-09 18:39:57,994 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:82.3581 2022-11-09 18:39:59,218 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:64.3166 2022-11-09 18:40:00,527 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:123.4606 2022-11-09 18:40:01,809 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:68.3314 2022-11-09 18:40:03,029 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:127.8958 2022-11-09 18:40:04,278 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:67.8566 2022-11-09 18:40:05,484 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:82.9919 2022-11-09 18:40:06,800 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.0667 2022-11-09 18:40:08,068 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:78.8107 2022-11-09 18:40:09,351 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:57.4205 2022-11-09 18:40:10,617 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:58.2669 2022-11-09 18:40:11,866 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:37.7122 2022-11-09 18:40:13,126 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:59.2715 2022-11-09 18:40:14,492 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:109.2859 2022-11-09 18:40:15,798 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:66.8373 2022-11-09 18:40:17,121 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:100.5893 2022-11-09 18:40:18,403 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:160.0564 2022-11-09 18:40:19,640 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:21.9086 2022-11-09 18:40:20,885 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:47.5741 2022-11-09 18:40:22,153 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:29.9038 2022-11-09 18:40:23,450 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:51.5459 2022-11-09 18:40:24,719 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:61.3329 2022-11-09 18:40:25,972 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:73.5590 2022-11-09 18:40:27,164 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:40.3231 2022-11-09 18:40:28,405 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:80.6520 2022-11-09 18:40:29,707 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:69.2301 2022-11-09 18:40:31,007 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:121.7187 2022-11-09 18:40:32,307 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:46.5610 2022-11-09 18:40:33,563 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:36.8176 2022-11-09 18:40:34,826 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:39.3850 2022-11-09 18:40:36,134 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:37.3555 2022-11-09 18:40:37,343 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:55.8957 2022-11-09 18:40:38,662 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:99.7036 2022-11-09 18:40:39,984 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:31.9459 2022-11-09 18:40:41,258 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:47.3585 2022-11-09 18:40:42,520 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:45.1459 2022-11-09 18:40:43,742 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:14.9006 2022-11-09 18:40:45,123 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:134.6276 2022-11-09 18:40:46,413 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:54.8420 2022-11-09 18:40:47,697 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:29.7027 2022-11-09 18:40:48,948 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:22.8068 2022-11-09 18:40:50,180 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:160.6334 2022-11-09 18:40:51,446 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:30.7702 2022-11-09 18:40:52,711 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:61.3411 2022-11-09 18:40:53,962 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:54.4996 2022-11-09 18:40:55,225 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:18.7288 2022-11-09 18:40:56,538 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:44.8332 2022-11-09 18:40:57,901 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:19.3201 2022-11-09 18:40:59,116 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:27.7792 2022-11-09 18:41:00,377 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:17.8810 2022-11-09 18:41:01,584 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:24.3679 2022-11-09 18:41:02,949 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:67.6738 2022-11-09 18:41:04,146 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:34.6583 2022-11-09 18:41:05,357 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:9.4772 2022-11-09 18:41:06,686 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:58.5267 2022-11-09 18:41:08,016 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:53.4738 2022-11-09 18:41:09,233 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:24.6808 2022-11-09 18:41:10,492 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:32.6800 2022-11-09 18:41:11,736 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:89.3568 2022-11-09 18:41:13,064 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:19.7398 2022-11-09 18:41:14,321 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:39.7384 2022-11-09 18:41:15,577 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:13.7301 2022-11-09 18:41:16,808 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:43.8718 2022-11-09 18:41:18,132 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:21.9532 2022-11-09 18:41:19,421 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:25.6840 2022-11-09 18:41:20,745 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:75.8519 2022-11-09 18:41:22,022 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:38.4785 2022-11-09 18:41:23,225 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:5.6793 2022-11-09 18:41:24,539 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.5726 2022-11-09 18:41:25,765 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:54.8319 2022-11-09 18:41:26,980 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:41.0339 2022-11-09 18:41:28,225 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.2866 2022-11-09 18:41:29,474 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:51.3268 2022-11-09 18:41:30,790 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:62.1816 2022-11-09 18:41:32,081 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.0496 2022-11-09 18:41:33,382 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:75.3190 2022-11-09 18:41:34,730 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:41.8338 2022-11-09 18:41:36,058 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:41.7383 2022-11-09 18:41:37,307 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:31.6100 2022-11-09 18:41:38,574 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:28.7614 2022-11-09 18:41:39,908 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:62.8120 2022-11-09 18:41:41,188 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:35.8153 2022-11-09 18:41:42,478 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:59.6051 2022-11-09 18:41:43,726 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:98.9992 2022-11-09 18:41:45,063 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:55.7362 2022-11-09 18:41:46,364 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:19.6064 2022-11-09 18:41:47,656 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:39.3520 2022-11-09 18:41:48,918 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:23.1798 2022-11-09 18:41:50,134 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:57.9983 2022-11-09 18:41:51,383 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:15.0503 2022-11-09 18:41:52,694 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:28.5482 2022-11-09 18:41:53,917 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:28.3134 2022-11-09 18:41:55,105 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:13.1558 2022-11-09 18:41:56,362 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:21.2622 2022-11-09 18:41:57,690 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:26.6583 2022-11-09 18:41:58,909 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:32.9246 2022-11-09 18:42:00,102 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:19.8522 2022-11-09 18:42:01,370 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:21.9186 2022-11-09 18:42:02,572 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:7.8291 2022-11-09 18:42:03,768 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:46.9642 2022-11-09 18:42:04,991 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:23.5077 2022-11-09 18:42:06,228 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:62.6766 2022-11-09 18:42:07,459 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:54.6998 2022-11-09 18:42:08,697 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:35.6884 2022-11-09 18:42:09,948 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:13.9762 2022-11-09 18:42:11,238 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:23.1779 2022-11-09 18:42:12,468 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:18.8497 2022-11-09 18:42:13,750 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:27.3929 2022-11-09 18:42:15,081 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:11.6609 2022-11-09 18:42:16,296 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:17.4296 2022-11-09 18:42:17,581 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:14.6435 2022-11-09 18:42:18,832 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.3514 2022-11-09 18:42:20,119 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:22.1900 2022-11-09 18:42:21,453 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:16.6185 2022-11-09 18:42:22,669 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:27.2955 2022-11-09 18:42:23,878 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:25.4574 2022-11-09 18:42:25,101 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:95.2818 2022-11-09 18:42:26,548 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:59.8647 2022-11-09 18:42:27,728 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:20.8181 2022-11-09 18:42:29,032 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:39.5670 2022-11-09 18:42:30,315 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:40.8846 2022-11-09 18:42:31,608 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:3.0876 2022-11-09 18:42:32,867 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:18.9693 2022-11-09 18:42:34,089 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:10.3815 2022-11-09 18:42:35,380 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:4.4977 2022-11-09 18:42:36,633 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:26.8075 2022-11-09 18:42:37,990 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:66.0917 2022-11-09 18:42:39,242 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:27.7529 2022-11-09 18:42:40,500 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:30.3438 2022-11-09 18:42:41,704 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:4.6632 2022-11-09 18:42:42,890 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:29.0340 2022-11-09 18:42:44,194 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:106.2216 2022-11-09 18:42:45,468 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:26.2923 2022-11-09 18:42:46,688 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:13.1122 2022-11-09 18:42:47,959 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:34.0507 2022-11-09 18:42:49,243 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:28.3456 2022-11-09 18:42:50,543 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:5.6085 2022-11-09 18:42:51,797 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:6.7618 2022-11-09 18:42:53,108 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:24.8394 2022-11-09 18:42:54,396 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:28.1028 2022-11-09 18:42:55,707 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:31.2807 2022-11-09 18:42:56,947 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:8.9886 2022-11-09 18:42:58,326 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:23.1137 2022-11-09 18:42:59,613 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:12.2010 2022-11-09 18:43:00,820 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:13.8346 2022-11-09 18:43:02,131 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:19.6365 2022-11-09 18:43:03,456 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:21.6641 2022-11-09 18:43:04,760 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:19.5260 2022-11-09 18:43:06,011 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:15.0800 2022-11-09 18:43:07,310 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:31.0788 2022-11-09 18:43:08,656 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:65.8123 2022-11-09 18:43:09,882 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:13.5526 2022-11-09 18:43:11,090 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:64.1057 2022-11-09 18:43:12,274 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:9.4639 2022-11-09 18:43:13,515 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:3.6924 2022-11-09 18:43:14,836 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:12.1447 2022-11-09 18:43:16,085 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:23.6392 2022-11-09 18:43:17,283 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:17.5400 2022-11-09 18:43:18,539 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:32.9995 2022-11-09 18:43:19,803 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:16.9070 2022-11-09 18:43:21,093 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:18.0961 2022-11-09 18:43:22,285 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:7.8411 2022-11-09 18:43:23,621 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:9.0051 2022-11-09 18:43:25,072 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:14.9643 2022-11-09 18:43:26,318 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:53.7642 2022-11-09 18:43:27,622 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:6.7710 2022-11-09 18:43:28,934 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:11.9148 2022-11-09 18:43:30,252 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:35.9298 2022-11-09 18:43:31,485 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:6.7195 2022-11-09 18:43:32,702 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:20.4171 2022-11-09 19:02:23,376 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 19:02:23,376 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 19:02:28,432 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 19:02:33,540 - INFO - main.py - train - 68 - 【train】 epoch:0 0/1490 loss:316.3720 2022-11-09 19:03:27,388 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 19:03:27,388 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 19:03:31,350 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 19:03:35,927 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315 2022-11-09 19:03:37,161 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413 2022-11-09 19:03:38,411 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901 2022-11-09 19:03:39,598 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670 2022-11-09 19:03:40,770 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680 2022-11-09 19:03:41,910 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757 2022-11-09 19:03:43,129 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559 2022-11-09 19:03:44,316 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248 2022-11-09 19:03:45,550 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745 2022-11-09 19:03:46,690 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077 2022-11-09 19:03:48,018 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821 2022-11-09 19:03:49,174 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192 2022-11-09 19:03:50,424 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898 2022-11-09 19:03:51,611 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432 2022-11-09 19:03:52,752 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201 2022-11-09 19:03:53,939 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668 2022-11-09 19:03:55,204 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642 2022-11-09 19:03:56,376 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617 2022-11-09 19:03:57,579 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012 2022-11-09 19:03:58,766 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219 2022-11-09 19:03:59,984 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239 2022-11-09 19:04:01,171 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575 2022-11-09 19:04:02,359 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067 2022-11-09 19:04:03,671 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395 2022-11-09 19:04:04,889 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719 2022-11-09 19:04:06,061 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989 2022-11-09 19:04:07,217 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708 2022-11-09 19:04:08,451 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786 2022-11-09 19:04:09,669 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072 2022-11-09 19:04:10,794 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554 2022-11-09 19:04:12,044 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401 2022-11-09 19:04:13,247 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027 2022-11-09 19:04:14,418 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473 2022-11-09 19:04:15,699 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660 2022-11-09 19:04:16,855 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551 2022-11-09 19:04:18,011 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582 2022-11-09 19:04:19,292 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044 2022-11-09 19:04:20,604 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521 2022-11-09 19:04:21,776 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970 2022-11-09 19:04:22,932 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554 2022-11-09 19:04:24,104 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222 2022-11-09 19:04:25,275 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357 2022-11-09 19:04:26,447 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285 2022-11-09 19:04:27,775 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024 2022-11-09 19:04:29,087 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651 2022-11-09 19:04:30,305 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443 2022-11-09 19:04:31,696 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032 2022-11-09 19:04:32,883 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716 2022-11-09 19:04:34,211 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475 2022-11-09 19:04:35,429 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245 2022-11-09 19:04:36,726 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590 2022-11-09 19:04:37,882 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909 2022-11-09 19:04:39,163 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710 2022-11-09 19:04:40,350 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058 2022-11-09 19:04:41,584 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477 2022-11-09 19:04:42,816 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559 2022-11-09 19:04:44,019 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941 2022-11-09 19:04:45,378 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007 2022-11-09 19:04:46,518 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:43.6095 2022-11-09 19:04:47,705 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:406.7163 2022-11-09 19:04:48,861 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:60.8267 2022-11-09 19:04:50,111 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:199.1176 2022-11-09 19:04:51,283 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:59.4112 2022-11-09 19:04:52,501 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:95.2976 2022-11-09 19:04:53,657 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:30.8693 2022-11-09 19:04:54,875 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:303.6538 2022-11-09 19:04:56,078 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:103.3871 2022-11-09 19:04:57,312 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:74.9780 2022-11-09 19:04:58,640 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:29.6169 2022-11-09 19:04:59,827 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:99.8470 2022-11-09 19:05:01,093 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:120.8370 2022-11-09 19:05:02,264 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:19.9152 2022-11-09 19:05:03,608 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:156.0164 2022-11-09 19:05:04,857 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:90.8173 2022-11-09 19:05:06,076 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:82.6100 2022-11-09 19:05:07,279 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:80.8683 2022-11-09 19:05:08,544 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:114.0199 2022-11-09 19:05:09,763 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:31.1001 2022-11-09 19:05:11,247 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:89.9733 2022-11-09 19:05:12,637 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:204.4708 2022-11-09 19:05:13,777 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:29.4187 2022-11-09 19:05:15,089 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:158.3213 2022-11-09 19:05:16,636 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:26.3408 2022-11-09 19:05:17,870 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:163.6489 2022-11-09 19:05:19,135 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:33.3513 2022-11-09 19:05:20,354 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:30.0256 2022-11-09 19:05:21,666 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:67.0394 2022-11-09 19:05:22,900 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:111.9282 2022-11-09 19:05:24,072 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:90.7613 2022-11-09 19:05:25,228 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:33.0127 2022-11-09 19:05:26,384 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:37.5084 2022-11-09 19:05:27,711 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:150.8694 2022-11-09 19:05:28,992 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:35.7935 2022-11-09 19:05:30,133 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:24.0617 2022-11-09 19:05:31,304 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:35.2720 2022-11-09 19:05:32,617 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:48.3293 2022-11-09 19:05:34,022 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:92.0753 2022-11-09 19:05:35,178 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:57.7539 2022-11-09 19:05:36,381 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:53.4933 2022-11-09 19:05:37,584 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:175.9615 2022-11-09 19:05:38,834 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:18.8627 2022-11-09 19:05:39,990 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:82.3581 2022-11-09 19:05:41,271 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:64.3166 2022-11-09 19:05:42,474 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:123.4606 2022-11-09 19:05:43,661 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:68.3314 2022-11-09 19:05:44,864 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:127.8958 2022-11-09 19:05:46,035 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:67.8566 2022-11-09 19:05:47,222 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:82.9919 2022-11-09 19:05:48,503 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.0667 2022-11-09 19:05:49,894 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:78.8107 2022-11-09 19:05:51,128 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:57.4205 2022-11-09 19:05:52,440 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:58.2669 2022-11-09 19:05:53,721 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:37.7122 2022-11-09 19:05:55,049 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:59.2715 2022-11-09 19:05:56,361 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:109.2859 2022-11-09 19:05:57,533 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:66.8373 2022-11-09 19:05:58,735 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:100.5893 2022-11-09 19:05:59,954 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:160.0564 2022-11-09 19:06:01,110 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:21.9086 2022-11-09 19:06:02,266 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:47.5741 2022-11-09 19:06:03,437 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:29.9038 2022-11-09 19:06:04,625 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:51.5459 2022-11-09 19:06:05,859 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:61.3329 2022-11-09 19:06:07,077 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:73.5590 2022-11-09 19:06:08,233 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:40.3231 2022-11-09 19:06:09,577 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:80.6520 2022-11-09 19:06:10,733 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:69.2301 2022-11-09 19:06:12,123 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:121.7187 2022-11-09 19:06:13,357 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:46.5610 2022-11-09 19:06:14,560 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:36.8176 2022-11-09 19:06:15,856 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:39.3850 2022-11-09 19:06:17,028 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:37.3555 2022-11-09 19:06:18,231 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:55.8957 2022-11-09 19:06:19,434 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:99.7036 2022-11-09 19:06:20,762 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:31.9459 2022-11-09 19:06:22,011 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:47.3585 2022-11-09 19:06:23,214 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:45.1459 2022-11-09 19:06:24,354 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:14.9006 2022-11-09 19:06:25,792 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:134.6276 2022-11-09 19:06:27,104 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:54.8420 2022-11-09 19:06:28,275 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:29.7027 2022-11-09 19:06:29,447 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:22.8068 2022-11-09 19:06:30,697 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:160.6334 2022-11-09 19:06:31,884 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:30.7702 2022-11-09 19:06:33,056 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:61.3411 2022-11-09 19:06:34,430 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:54.4996 2022-11-09 19:06:35,633 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:18.7288 2022-11-09 19:06:36,867 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:44.8332 2022-11-09 19:06:38,054 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:19.3201 2022-11-09 19:06:39,398 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:27.7792 2022-11-09 19:06:40,616 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:17.8810 2022-11-09 19:06:41,772 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:24.3679 2022-11-09 19:06:43,022 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:67.6738 2022-11-09 19:06:44,193 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:34.6583 2022-11-09 19:06:45,412 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:9.4772 2022-11-09 19:06:46,662 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:58.5267 2022-11-09 19:06:47,927 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:53.4738 2022-11-09 19:06:49,099 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:24.6808 2022-11-09 19:06:50,270 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:32.6800 2022-11-09 19:06:51,442 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:89.3568 2022-11-09 19:06:52,645 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:19.7398 2022-11-09 19:06:53,863 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:39.7384 2022-11-09 19:06:55,035 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:13.7301 2022-11-09 19:06:56,284 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:43.8718 2022-11-09 19:06:57,706 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:21.9532 2022-11-09 19:06:59,003 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:25.6840 2022-11-09 19:07:00,346 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:75.8519 2022-11-09 19:07:01,689 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:38.4785 2022-11-09 19:07:02,830 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:5.6793 2022-11-09 19:07:04,158 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.5726 2022-11-09 19:07:05,454 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:54.8319 2022-11-09 19:07:06,735 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:41.0339 2022-11-09 19:07:07,969 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.2866 2022-11-09 19:07:09,297 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:51.3268 2022-11-09 19:07:10,765 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:62.1816 2022-11-09 19:07:12,015 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.0496 2022-11-09 19:07:13,280 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:75.3190 2022-11-09 19:07:14,561 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:41.8338 2022-11-09 19:07:15,795 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:41.7383 2022-11-09 19:07:16,998 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:31.6100 2022-11-09 19:07:18,232 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:28.7614 2022-11-09 19:07:19,513 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:62.8120 2022-11-09 19:07:20,810 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:35.8153 2022-11-09 19:07:22,028 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:59.6051 2022-11-09 19:07:23,450 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:98.9992 2022-11-09 19:07:24,700 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:55.7362 2022-11-09 19:07:25,871 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:19.6064 2022-11-09 19:07:27,183 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:39.3520 2022-11-09 19:07:28,355 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:23.1798 2022-11-09 19:07:29,808 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:57.9983 2022-11-09 19:07:31,136 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:15.0503 2022-11-09 19:07:32,354 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:28.5482 2022-11-09 19:07:33,604 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:28.3134 2022-11-09 19:07:34,760 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:13.1558 2022-11-09 19:07:36,103 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:21.2622 2022-11-09 19:07:37,337 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:26.6583 2022-11-09 19:07:38,868 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:32.9246 2022-11-09 19:07:40,180 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:19.8522 2022-11-09 19:07:41,383 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:21.9186 2022-11-09 19:07:42,727 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:7.8291 2022-11-09 19:07:44,164 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:46.9642 2022-11-09 19:07:45,367 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:23.5077 2022-11-09 19:07:46,554 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:62.6766 2022-11-09 19:07:47,741 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:54.6998 2022-11-09 19:07:49,053 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:35.6884 2022-11-09 19:07:50,225 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:13.9762 2022-11-09 19:07:51,428 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:23.1779 2022-11-09 19:07:52,709 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:18.8497 2022-11-09 19:07:53,943 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:27.3929 2022-11-09 19:07:55,192 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:11.6609 2022-11-09 19:07:56,364 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:17.4296 2022-11-09 19:07:57,520 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:14.6435 2022-11-09 19:07:58,660 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.3514 2022-11-09 19:07:59,848 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:22.1900 2022-11-09 19:08:01,082 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:16.6185 2022-11-09 19:08:02,269 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:27.2955 2022-11-09 19:08:03,441 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:25.4574 2022-11-09 19:08:05,096 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:95.2818 2022-11-09 19:08:06,580 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:59.8647 2022-11-09 19:08:08,096 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:20.8181 2022-11-09 19:08:09,470 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:39.5670 2022-11-09 19:08:12,204 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:40.8846 2022-11-09 19:08:14,329 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:3.0876 2022-11-09 19:08:16,328 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:18.9693 2022-11-09 19:08:18,109 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:10.3815 2022-11-09 19:08:19,796 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:4.4977 2022-11-09 19:08:21,436 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:26.8075 2022-11-09 19:08:23,061 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:66.0917 2022-11-09 19:08:24,529 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:27.7529 2022-11-09 19:08:25,888 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:30.3438 2022-11-09 19:08:27,201 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:4.6632 2022-11-09 19:08:28,654 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:29.0340 2022-11-09 19:08:29,982 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:106.2216 2022-11-09 19:08:31,325 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:26.2923 2022-11-09 19:08:33,075 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:13.1122 2022-11-09 19:08:34,465 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:34.0507 2022-11-09 19:08:35,949 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:28.3456 2022-11-09 19:08:37,308 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:5.6085 2022-11-09 19:08:38,714 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:6.7618 2022-11-09 19:08:40,120 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:24.8394 2022-11-09 19:08:41,510 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:28.1028 2022-11-09 19:08:42,854 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:31.2807 2022-11-09 19:08:44,338 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:8.9886 2022-11-09 19:08:45,650 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:23.1137 2022-11-09 19:08:47,040 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:12.2010 2022-11-09 19:08:48,384 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:13.8346 2022-11-09 19:08:49,790 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:19.6365 2022-11-09 19:08:51,117 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:21.6641 2022-11-09 19:08:52,586 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:19.5260 2022-11-09 19:08:53,945 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:15.0800 2022-11-09 19:08:55,288 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:31.0788 2022-11-09 19:08:56,554 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:65.8123 2022-11-09 19:08:57,835 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:13.5526 2022-11-09 19:08:59,100 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:64.1057 2022-11-09 19:09:00,318 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:9.4639 2022-11-09 19:09:01,537 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:3.6924 2022-11-09 19:09:02,818 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:12.1447 2022-11-09 19:09:04,036 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:23.6392 2022-11-09 19:09:05,302 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:17.5400 2022-11-09 19:09:06,505 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:32.9995 2022-11-09 19:09:07,739 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:16.9070 2022-11-09 19:09:09,020 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:18.0961 2022-11-09 19:09:10,254 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:7.8411 2022-11-09 19:09:11,550 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:9.0051 2022-11-09 19:09:12,784 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:14.9643 2022-11-09 19:09:14,034 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:53.7642 2022-11-09 19:09:15,221 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:6.7710 2022-11-09 19:09:16,440 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:11.9148 2022-11-09 19:09:17,830 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:35.9298 2022-11-09 19:09:19,064 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:6.7195 2022-11-09 19:09:20,564 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:20.4171 2022-11-09 19:09:21,813 - INFO - main.py - train - 68 - 【train】 epoch:0 271/2980 loss:10.6901 2022-11-09 19:09:23,094 - INFO - main.py - train - 68 - 【train】 epoch:0 272/2980 loss:26.3286 2022-11-09 19:09:24,407 - INFO - main.py - train - 68 - 【train】 epoch:0 273/2980 loss:47.1486 2022-11-09 19:09:25,844 - INFO - main.py - train - 68 - 【train】 epoch:0 274/2980 loss:20.3282 2022-11-09 19:09:27,015 - INFO - main.py - train - 68 - 【train】 epoch:0 275/2980 loss:8.6622 2022-11-09 19:09:28,203 - INFO - main.py - train - 68 - 【train】 epoch:0 276/2980 loss:27.1672 2022-11-09 19:09:29,421 - INFO - main.py - train - 68 - 【train】 epoch:0 277/2980 loss:32.8950 2022-11-09 19:09:30,593 - INFO - main.py - train - 68 - 【train】 epoch:0 278/2980 loss:15.2415 2022-11-09 19:09:31,827 - INFO - main.py - train - 68 - 【train】 epoch:0 279/2980 loss:19.7918 2022-11-09 19:09:33,342 - INFO - main.py - train - 68 - 【train】 epoch:0 280/2980 loss:37.7643 2022-11-09 19:09:34,529 - INFO - main.py - train - 68 - 【train】 epoch:0 281/2980 loss:21.9559 2022-11-09 19:09:35,826 - INFO - main.py - train - 68 - 【train】 epoch:0 282/2980 loss:8.1355 2022-11-09 19:09:37,029 - INFO - main.py - train - 68 - 【train】 epoch:0 283/2980 loss:13.1856 2022-11-09 19:09:38,372 - INFO - main.py - train - 68 - 【train】 epoch:0 284/2980 loss:19.2486 2022-11-09 19:09:39,559 - INFO - main.py - train - 68 - 【train】 epoch:0 285/2980 loss:16.8071 2022-11-09 19:09:40,840 - INFO - main.py - train - 68 - 【train】 epoch:0 286/2980 loss:20.2026 2022-11-09 19:09:42,012 - INFO - main.py - train - 68 - 【train】 epoch:0 287/2980 loss:5.6094 2022-11-09 19:09:43,262 - INFO - main.py - train - 68 - 【train】 epoch:0 288/2980 loss:13.8271 2022-11-09 19:09:44,480 - INFO - main.py - train - 68 - 【train】 epoch:0 289/2980 loss:13.6637 2022-11-09 19:09:45,745 - INFO - main.py - train - 68 - 【train】 epoch:0 290/2980 loss:23.8945 2022-11-09 19:09:46,917 - INFO - main.py - train - 68 - 【train】 epoch:0 291/2980 loss:12.9386 2022-11-09 19:09:48,135 - INFO - main.py - train - 68 - 【train】 epoch:0 292/2980 loss:45.5666 2022-11-09 19:09:49,401 - INFO - main.py - train - 68 - 【train】 epoch:0 293/2980 loss:14.6907 2022-11-09 19:09:50,588 - INFO - main.py - train - 68 - 【train】 epoch:0 294/2980 loss:9.5056 2022-11-09 19:09:51,869 - INFO - main.py - train - 68 - 【train】 epoch:0 295/2980 loss:8.4211 2022-11-09 19:09:53,119 - INFO - main.py - train - 68 - 【train】 epoch:0 296/2980 loss:7.2971 2022-11-09 19:09:54,321 - INFO - main.py - train - 68 - 【train】 epoch:0 297/2980 loss:15.3591 2022-11-09 19:09:55,493 - INFO - main.py - train - 68 - 【train】 epoch:0 298/2980 loss:15.8316 2022-11-09 19:09:56,665 - INFO - main.py - train - 68 - 【train】 epoch:0 299/2980 loss:2.6025 2022-11-09 19:09:57,852 - INFO - main.py - train - 68 - 【train】 epoch:0 300/2980 loss:15.6394 2022-11-09 19:09:59,180 - INFO - main.py - train - 68 - 【train】 epoch:0 301/2980 loss:17.9007 2022-11-09 19:10:00,383 - INFO - main.py - train - 68 - 【train】 epoch:0 302/2980 loss:15.4099 2022-11-09 19:10:01,663 - INFO - main.py - train - 68 - 【train】 epoch:0 303/2980 loss:5.8337 2022-11-09 19:10:02,882 - INFO - main.py - train - 68 - 【train】 epoch:0 304/2980 loss:13.5061 2022-11-09 19:10:04,085 - INFO - main.py - train - 68 - 【train】 epoch:0 305/2980 loss:23.1606 2022-11-09 19:10:05,272 - INFO - main.py - train - 68 - 【train】 epoch:0 306/2980 loss:27.6846 2022-11-09 19:10:06,444 - INFO - main.py - train - 68 - 【train】 epoch:0 307/2980 loss:13.6456 2022-11-09 19:10:07,662 - INFO - main.py - train - 68 - 【train】 epoch:0 308/2980 loss:20.2195 2022-11-09 19:10:09,052 - INFO - main.py - train - 68 - 【train】 epoch:0 309/2980 loss:35.2267 2022-11-09 19:10:10,224 - INFO - main.py - train - 68 - 【train】 epoch:0 310/2980 loss:41.3163 2022-11-09 19:10:11,599 - INFO - main.py - train - 68 - 【train】 epoch:0 311/2980 loss:4.6452 2022-11-09 19:10:12,801 - INFO - main.py - train - 68 - 【train】 epoch:0 312/2980 loss:28.2084 2022-11-09 19:10:14,004 - INFO - main.py - train - 68 - 【train】 epoch:0 313/2980 loss:16.2523 2022-11-09 19:10:15,254 - INFO - main.py - train - 68 - 【train】 epoch:0 314/2980 loss:10.3799 2022-11-09 19:10:16,441 - INFO - main.py - train - 68 - 【train】 epoch:0 315/2980 loss:18.1922 2022-11-09 19:10:17,722 - INFO - main.py - train - 68 - 【train】 epoch:0 316/2980 loss:4.7718 2022-11-09 19:10:19,159 - INFO - main.py - train - 68 - 【train】 epoch:0 317/2980 loss:4.6680 2022-11-09 19:10:20,331 - INFO - main.py - train - 68 - 【train】 epoch:0 318/2980 loss:13.6411 2022-11-09 19:10:21,518 - INFO - main.py - train - 68 - 【train】 epoch:0 319/2980 loss:17.1746 2022-11-09 19:10:22,721 - INFO - main.py - train - 68 - 【train】 epoch:0 320/2980 loss:38.8198 2022-11-09 19:10:24,002 - INFO - main.py - train - 68 - 【train】 epoch:0 321/2980 loss:19.7372 2022-11-09 19:10:25,236 - INFO - main.py - train - 68 - 【train】 epoch:0 322/2980 loss:29.0606 2022-11-09 19:10:26,423 - INFO - main.py - train - 68 - 【train】 epoch:0 323/2980 loss:18.6552 2022-11-09 19:10:27,611 - INFO - main.py - train - 68 - 【train】 epoch:0 324/2980 loss:9.6085 2022-11-09 19:10:28,938 - INFO - main.py - train - 68 - 【train】 epoch:0 325/2980 loss:50.8322 2022-11-09 19:10:30,172 - INFO - main.py - train - 68 - 【train】 epoch:0 326/2980 loss:10.2359 2022-11-09 19:10:31,344 - INFO - main.py - train - 68 - 【train】 epoch:0 327/2980 loss:8.8737 2022-11-09 19:10:32,562 - INFO - main.py - train - 68 - 【train】 epoch:0 328/2980 loss:12.8671 2022-11-09 19:10:33,875 - INFO - main.py - train - 68 - 【train】 epoch:0 329/2980 loss:16.9284 2022-11-09 19:10:35,234 - INFO - main.py - train - 68 - 【train】 epoch:0 330/2980 loss:28.2258 2022-11-09 19:10:36,437 - INFO - main.py - train - 68 - 【train】 epoch:0 331/2980 loss:59.7146 2022-11-09 19:10:37,655 - INFO - main.py - train - 68 - 【train】 epoch:0 332/2980 loss:20.3501 2022-11-09 19:10:38,952 - INFO - main.py - train - 68 - 【train】 epoch:0 333/2980 loss:27.0053 2022-11-09 19:10:40,186 - INFO - main.py - train - 68 - 【train】 epoch:0 334/2980 loss:31.6136 2022-11-09 19:10:41,373 - INFO - main.py - train - 68 - 【train】 epoch:0 335/2980 loss:10.4056 2022-11-09 19:10:42,623 - INFO - main.py - train - 68 - 【train】 epoch:0 336/2980 loss:29.7988 2022-11-09 19:10:43,872 - INFO - main.py - train - 68 - 【train】 epoch:0 337/2980 loss:23.9821 2022-11-09 19:10:45,122 - INFO - main.py - train - 68 - 【train】 epoch:0 338/2980 loss:9.8021 2022-11-09 19:10:46,356 - INFO - main.py - train - 68 - 【train】 epoch:0 339/2980 loss:5.5470 2022-11-09 19:10:47,528 - INFO - main.py - train - 68 - 【train】 epoch:0 340/2980 loss:13.5894 2022-11-09 19:10:48,949 - INFO - main.py - train - 68 - 【train】 epoch:0 341/2980 loss:45.4608 2022-11-09 19:10:50,121 - INFO - main.py - train - 68 - 【train】 epoch:0 342/2980 loss:15.7342 2022-11-09 19:10:51,292 - INFO - main.py - train - 68 - 【train】 epoch:0 343/2980 loss:19.4502 2022-11-09 19:10:52,542 - INFO - main.py - train - 68 - 【train】 epoch:0 344/2980 loss:28.2110 2022-11-09 19:10:53,823 - INFO - main.py - train - 68 - 【train】 epoch:0 345/2980 loss:19.2324 2022-11-09 19:10:55,010 - INFO - main.py - train - 68 - 【train】 epoch:0 346/2980 loss:13.8123 2022-11-09 19:10:56,323 - INFO - main.py - train - 68 - 【train】 epoch:0 347/2980 loss:12.4725 2022-11-09 19:10:57,557 - INFO - main.py - train - 68 - 【train】 epoch:0 348/2980 loss:13.2621 2022-11-09 19:10:58,759 - INFO - main.py - train - 68 - 【train】 epoch:0 349/2980 loss:23.0961 2022-11-09 19:11:00,072 - INFO - main.py - train - 68 - 【train】 epoch:0 350/2980 loss:2.8694 2022-11-09 19:11:01,259 - INFO - main.py - train - 68 - 【train】 epoch:0 351/2980 loss:16.6821 2022-11-09 19:11:02,446 - INFO - main.py - train - 68 - 【train】 epoch:0 352/2980 loss:24.4955 2022-11-09 19:11:03,665 - INFO - main.py - train - 68 - 【train】 epoch:0 353/2980 loss:10.2516 2022-11-09 19:11:04,867 - INFO - main.py - train - 68 - 【train】 epoch:0 354/2980 loss:5.5827 2022-11-09 19:11:06,180 - INFO - main.py - train - 68 - 【train】 epoch:0 355/2980 loss:26.6975 2022-11-09 19:11:07,476 - INFO - main.py - train - 68 - 【train】 epoch:0 356/2980 loss:34.4293 2022-11-09 19:11:08,866 - INFO - main.py - train - 68 - 【train】 epoch:0 357/2980 loss:29.9112 2022-11-09 19:11:10,085 - INFO - main.py - train - 68 - 【train】 epoch:0 358/2980 loss:60.2771 2022-11-09 19:11:11,428 - INFO - main.py - train - 68 - 【train】 epoch:0 359/2980 loss:11.9978 2022-11-09 19:11:12,616 - INFO - main.py - train - 68 - 【train】 epoch:0 360/2980 loss:20.5220 2022-11-09 19:11:13,818 - INFO - main.py - train - 68 - 【train】 epoch:0 361/2980 loss:2.2819 2022-11-09 19:11:15,006 - INFO - main.py - train - 68 - 【train】 epoch:0 362/2980 loss:41.5072 2022-11-09 19:11:16,365 - INFO - main.py - train - 68 - 【train】 epoch:0 363/2980 loss:7.9676 2022-11-09 19:11:17,552 - INFO - main.py - train - 68 - 【train】 epoch:0 364/2980 loss:11.1801 2022-11-09 19:11:18,895 - INFO - main.py - train - 68 - 【train】 epoch:0 365/2980 loss:11.2722 2022-11-09 19:11:20,081 - INFO - main.py - train - 68 - 【train】 epoch:0 366/2980 loss:7.8079 2022-11-09 19:11:21,393 - INFO - main.py - train - 68 - 【train】 epoch:0 367/2980 loss:63.3143 2022-11-09 19:11:22,627 - INFO - main.py - train - 68 - 【train】 epoch:0 368/2980 loss:22.5410 2022-11-09 19:11:23,877 - INFO - main.py - train - 68 - 【train】 epoch:0 369/2980 loss:19.5503 2022-11-09 19:11:25,111 - INFO - main.py - train - 68 - 【train】 epoch:0 370/2980 loss:9.8747 2022-11-09 19:11:26,329 - INFO - main.py - train - 68 - 【train】 epoch:0 371/2980 loss:26.5924 2022-11-09 19:11:27,845 - INFO - main.py - train - 68 - 【train】 epoch:0 372/2980 loss:10.8326 2022-11-09 19:11:29,032 - INFO - main.py - train - 68 - 【train】 epoch:0 373/2980 loss:17.1841 2022-11-09 19:11:30,516 - INFO - main.py - train - 68 - 【train】 epoch:0 374/2980 loss:42.0727 2022-11-09 19:11:31,719 - INFO - main.py - train - 68 - 【train】 epoch:0 375/2980 loss:26.4326 2022-11-09 19:11:33,062 - INFO - main.py - train - 68 - 【train】 epoch:0 376/2980 loss:31.7509 2022-11-09 19:11:34,546 - INFO - main.py - train - 68 - 【train】 epoch:0 377/2980 loss:16.2639 2022-11-09 19:11:35,765 - INFO - main.py - train - 68 - 【train】 epoch:0 378/2980 loss:2.6569 2022-11-09 19:11:36,936 - INFO - main.py - train - 68 - 【train】 epoch:0 379/2980 loss:4.8989 2022-11-09 19:11:38,155 - INFO - main.py - train - 68 - 【train】 epoch:0 380/2980 loss:4.7403 2022-11-09 19:11:39,311 - INFO - main.py - train - 68 - 【train】 epoch:0 381/2980 loss:2.6233 2022-11-09 19:11:40,810 - INFO - main.py - train - 68 - 【train】 epoch:0 382/2980 loss:9.6961 2022-11-09 19:11:42,232 - INFO - main.py - train - 68 - 【train】 epoch:0 383/2980 loss:47.0598 2022-11-09 19:11:43,419 - INFO - main.py - train - 68 - 【train】 epoch:0 384/2980 loss:26.3561 2022-11-09 19:11:44,903 - INFO - main.py - train - 68 - 【train】 epoch:0 385/2980 loss:14.6687 2022-11-09 19:11:46,075 - INFO - main.py - train - 68 - 【train】 epoch:0 386/2980 loss:0.9136 2022-11-09 19:11:47,449 - INFO - main.py - train - 68 - 【train】 epoch:0 387/2980 loss:11.9993 2022-11-09 19:11:48,637 - INFO - main.py - train - 68 - 【train】 epoch:0 388/2980 loss:24.7298 2022-11-09 19:11:50,058 - INFO - main.py - train - 68 - 【train】 epoch:0 389/2980 loss:16.5880 2022-11-09 19:11:51,355 - INFO - main.py - train - 68 - 【train】 epoch:0 390/2980 loss:13.2665 2022-11-09 19:11:52,792 - INFO - main.py - train - 68 - 【train】 epoch:0 391/2980 loss:43.3391 2022-11-09 19:11:53,963 - INFO - main.py - train - 68 - 【train】 epoch:0 392/2980 loss:28.5177 2022-11-09 19:11:55,151 - INFO - main.py - train - 68 - 【train】 epoch:0 393/2980 loss:5.1394 2022-11-09 19:11:56,354 - INFO - main.py - train - 68 - 【train】 epoch:0 394/2980 loss:21.9260 2022-11-09 19:11:57,728 - INFO - main.py - train - 68 - 【train】 epoch:0 395/2980 loss:11.5004 2022-11-09 19:11:58,962 - INFO - main.py - train - 68 - 【train】 epoch:0 396/2980 loss:8.0341 2022-11-09 19:12:00,212 - INFO - main.py - train - 68 - 【train】 epoch:0 397/2980 loss:3.1563 2022-11-09 19:12:01,399 - INFO - main.py - train - 68 - 【train】 epoch:0 398/2980 loss:20.5450 2022-11-09 19:12:02,571 - INFO - main.py - train - 68 - 【train】 epoch:0 399/2980 loss:12.6033 2022-11-09 19:12:03,899 - INFO - main.py - train - 68 - 【train】 epoch:0 400/2980 loss:19.8868 2022-11-09 19:12:05,305 - INFO - main.py - train - 68 - 【train】 epoch:0 401/2980 loss:24.1830 2022-11-09 19:12:06,492 - INFO - main.py - train - 68 - 【train】 epoch:0 402/2980 loss:14.7999 2022-11-09 19:12:07,851 - INFO - main.py - train - 68 - 【train】 epoch:0 403/2980 loss:8.8363 2022-11-09 19:12:09,085 - INFO - main.py - train - 68 - 【train】 epoch:0 404/2980 loss:20.4104 2022-11-09 19:12:10,522 - INFO - main.py - train - 68 - 【train】 epoch:0 405/2980 loss:30.7651 2022-11-09 19:12:11,928 - INFO - main.py - train - 68 - 【train】 epoch:0 406/2980 loss:5.6979 2022-11-09 19:12:13,240 - INFO - main.py - train - 68 - 【train】 epoch:0 407/2980 loss:18.0504 2022-11-09 19:12:14,599 - INFO - main.py - train - 68 - 【train】 epoch:0 408/2980 loss:15.4761 2022-11-09 19:12:15,958 - INFO - main.py - train - 68 - 【train】 epoch:0 409/2980 loss:29.6396 2022-11-09 19:12:17,317 - INFO - main.py - train - 68 - 【train】 epoch:0 410/2980 loss:6.6848 2022-11-09 19:12:18,505 - INFO - main.py - train - 68 - 【train】 epoch:0 411/2980 loss:18.0417 2022-11-09 19:12:19,692 - INFO - main.py - train - 68 - 【train】 epoch:0 412/2980 loss:19.5906 2022-11-09 19:12:20,926 - INFO - main.py - train - 68 - 【train】 epoch:0 413/2980 loss:2.9956 2022-11-09 19:12:22,238 - INFO - main.py - train - 68 - 【train】 epoch:0 414/2980 loss:53.5752 2022-11-09 19:12:23,566 - INFO - main.py - train - 68 - 【train】 epoch:0 415/2980 loss:6.3333 2022-11-09 19:12:24,769 - INFO - main.py - train - 68 - 【train】 epoch:0 416/2980 loss:28.2375 2022-11-09 19:12:26,175 - INFO - main.py - train - 68 - 【train】 epoch:0 417/2980 loss:18.2013 2022-11-09 19:12:27,346 - INFO - main.py - train - 68 - 【train】 epoch:0 418/2980 loss:6.8118 2022-11-09 19:12:28,596 - INFO - main.py - train - 68 - 【train】 epoch:0 419/2980 loss:38.9618 2022-11-09 19:12:30,033 - INFO - main.py - train - 68 - 【train】 epoch:0 420/2980 loss:31.7234 2022-11-09 19:12:31,236 - INFO - main.py - train - 68 - 【train】 epoch:0 421/2980 loss:47.1120 2022-11-09 19:12:32,423 - INFO - main.py - train - 68 - 【train】 epoch:0 422/2980 loss:15.4096 2022-11-09 19:12:33,845 - INFO - main.py - train - 68 - 【train】 epoch:0 423/2980 loss:1.1637 2022-11-09 19:12:35,313 - INFO - main.py - train - 68 - 【train】 epoch:0 424/2980 loss:39.9704 2022-11-09 19:12:36,594 - INFO - main.py - train - 68 - 【train】 epoch:0 425/2980 loss:43.6809 2022-11-09 19:12:37,797 - INFO - main.py - train - 68 - 【train】 epoch:0 426/2980 loss:9.8543 2022-11-09 19:12:39,047 - INFO - main.py - train - 68 - 【train】 epoch:0 427/2980 loss:22.6666 2022-11-09 19:12:40,218 - INFO - main.py - train - 68 - 【train】 epoch:0 428/2980 loss:5.8729 2022-11-09 19:12:41,530 - INFO - main.py - train - 68 - 【train】 epoch:0 429/2980 loss:15.1942 2022-11-09 19:12:42,968 - INFO - main.py - train - 68 - 【train】 epoch:0 430/2980 loss:4.7138 2022-11-09 19:12:44,561 - INFO - main.py - train - 68 - 【train】 epoch:0 431/2980 loss:39.3617 2022-11-09 19:12:45,748 - INFO - main.py - train - 68 - 【train】 epoch:0 432/2980 loss:8.0105 2022-11-09 19:12:47,123 - INFO - main.py - train - 68 - 【train】 epoch:0 433/2980 loss:14.3325 2022-11-09 19:12:48,341 - INFO - main.py - train - 68 - 【train】 epoch:0 434/2980 loss:21.6053 2022-11-09 19:12:49,529 - INFO - main.py - train - 68 - 【train】 epoch:0 435/2980 loss:7.3831 2022-11-09 19:12:50,778 - INFO - main.py - train - 68 - 【train】 epoch:0 436/2980 loss:13.0012 2022-11-09 19:12:52,012 - INFO - main.py - train - 68 - 【train】 epoch:0 437/2980 loss:14.9192 2022-11-09 19:12:53,215 - INFO - main.py - train - 68 - 【train】 epoch:0 438/2980 loss:25.9529 2022-11-09 19:12:54,480 - INFO - main.py - train - 68 - 【train】 epoch:0 439/2980 loss:14.0497 2022-11-09 19:12:55,683 - INFO - main.py - train - 68 - 【train】 epoch:0 440/2980 loss:26.4014 2022-11-09 19:12:57,464 - INFO - main.py - train - 68 - 【train】 epoch:0 441/2980 loss:12.9228 2022-11-09 19:12:58,651 - INFO - main.py - train - 68 - 【train】 epoch:0 442/2980 loss:21.4049 2022-11-09 19:12:59,885 - INFO - main.py - train - 68 - 【train】 epoch:0 443/2980 loss:5.1731 2022-11-09 19:13:01,073 - INFO - main.py - train - 68 - 【train】 epoch:0 444/2980 loss:23.7464 2022-11-09 19:13:02,276 - INFO - main.py - train - 68 - 【train】 epoch:0 445/2980 loss:11.0882 2022-11-09 19:13:03,713 - INFO - main.py - train - 68 - 【train】 epoch:0 446/2980 loss:7.4235 2022-11-09 19:13:04,931 - INFO - main.py - train - 68 - 【train】 epoch:0 447/2980 loss:16.1383 2022-11-09 19:13:06,478 - INFO - main.py - train - 68 - 【train】 epoch:0 448/2980 loss:6.1622 2022-11-09 19:13:07,712 - INFO - main.py - train - 68 - 【train】 epoch:0 449/2980 loss:32.7150 2022-11-09 19:13:08,961 - INFO - main.py - train - 68 - 【train】 epoch:0 450/2980 loss:18.7224 2022-11-09 19:13:10,289 - INFO - main.py - train - 68 - 【train】 epoch:0 451/2980 loss:21.4449 2022-11-09 19:13:11,695 - INFO - main.py - train - 68 - 【train】 epoch:0 452/2980 loss:18.4865 2022-11-09 19:13:12,882 - INFO - main.py - train - 68 - 【train】 epoch:0 453/2980 loss:10.1730 2022-11-09 19:13:14,195 - INFO - main.py - train - 68 - 【train】 epoch:0 454/2980 loss:8.5925 2022-11-09 19:13:15,429 - INFO - main.py - train - 68 - 【train】 epoch:0 455/2980 loss:9.5609 2022-11-09 19:13:16,647 - INFO - main.py - train - 68 - 【train】 epoch:0 456/2980 loss:31.5600 2022-11-09 19:13:17,866 - INFO - main.py - train - 68 - 【train】 epoch:0 457/2980 loss:40.7327 2022-11-09 19:13:19,115 - INFO - main.py - train - 68 - 【train】 epoch:0 458/2980 loss:9.1150 2022-11-09 19:13:20,334 - INFO - main.py - train - 68 - 【train】 epoch:0 459/2980 loss:15.2203 2022-11-09 19:13:21,584 - INFO - main.py - train - 68 - 【train】 epoch:0 460/2980 loss:11.2842 2022-11-09 19:13:22,864 - INFO - main.py - train - 68 - 【train】 epoch:0 461/2980 loss:15.8119 2022-11-09 19:13:24,348 - INFO - main.py - train - 68 - 【train】 epoch:0 462/2980 loss:24.7363 2022-11-09 19:13:25,629 - INFO - main.py - train - 68 - 【train】 epoch:0 463/2980 loss:21.7762 2022-11-09 19:13:26,785 - INFO - main.py - train - 68 - 【train】 epoch:0 464/2980 loss:2.8700 2022-11-09 19:13:28,035 - INFO - main.py - train - 68 - 【train】 epoch:0 465/2980 loss:24.7919 2022-11-09 19:13:29,550 - INFO - main.py - train - 68 - 【train】 epoch:0 466/2980 loss:4.7934 2022-11-09 19:13:30,738 - INFO - main.py - train - 68 - 【train】 epoch:0 467/2980 loss:2.0986 2022-11-09 19:13:31,956 - INFO - main.py - train - 68 - 【train】 epoch:0 468/2980 loss:12.7756 2022-11-09 19:13:33,393 - INFO - main.py - train - 68 - 【train】 epoch:0 469/2980 loss:12.5638 2022-11-09 19:13:34,596 - INFO - main.py - train - 68 - 【train】 epoch:0 470/2980 loss:12.1744 2022-11-09 19:13:35,768 - INFO - main.py - train - 68 - 【train】 epoch:0 471/2980 loss:8.1110 2022-11-09 19:13:37,064 - INFO - main.py - train - 68 - 【train】 epoch:0 472/2980 loss:15.0860 2022-11-09 19:13:38,251 - INFO - main.py - train - 68 - 【train】 epoch:0 473/2980 loss:3.4037 2022-11-09 19:13:39,454 - INFO - main.py - train - 68 - 【train】 epoch:0 474/2980 loss:17.0298 2022-11-09 19:13:40,657 - INFO - main.py - train - 68 - 【train】 epoch:0 475/2980 loss:5.0986 2022-11-09 19:13:41,876 - INFO - main.py - train - 68 - 【train】 epoch:0 476/2980 loss:6.5140 2022-11-09 19:13:43,172 - INFO - main.py - train - 68 - 【train】 epoch:0 477/2980 loss:6.9128 2022-11-09 19:13:44,406 - INFO - main.py - train - 68 - 【train】 epoch:0 478/2980 loss:21.1824 2022-11-09 19:13:45,594 - INFO - main.py - train - 68 - 【train】 epoch:0 479/2980 loss:30.6331 2022-11-09 19:13:47,046 - INFO - main.py - train - 68 - 【train】 epoch:0 480/2980 loss:5.5117 2022-11-09 19:13:48,452 - INFO - main.py - train - 68 - 【train】 epoch:0 481/2980 loss:9.3698 2022-11-09 19:13:49,780 - INFO - main.py - train - 68 - 【train】 epoch:0 482/2980 loss:21.6885 2022-11-09 19:13:50,952 - INFO - main.py - train - 68 - 【train】 epoch:0 483/2980 loss:17.5134 2022-11-09 19:13:52,170 - INFO - main.py - train - 68 - 【train】 epoch:0 484/2980 loss:6.6206 2022-11-09 19:13:53,451 - INFO - main.py - train - 68 - 【train】 epoch:0 485/2980 loss:47.5785 2022-11-09 19:13:54,685 - INFO - main.py - train - 68 - 【train】 epoch:0 486/2980 loss:4.8351 2022-11-09 19:13:55,997 - INFO - main.py - train - 68 - 【train】 epoch:0 487/2980 loss:22.9914 2022-11-09 19:13:57,247 - INFO - main.py - train - 68 - 【train】 epoch:0 488/2980 loss:15.4147 2022-11-09 19:13:58,450 - INFO - main.py - train - 68 - 【train】 epoch:0 489/2980 loss:11.2715 2022-11-09 19:13:59,606 - INFO - main.py - train - 68 - 【train】 epoch:0 490/2980 loss:10.7737 2022-11-09 19:14:00,949 - INFO - main.py - train - 68 - 【train】 epoch:0 491/2980 loss:15.7190 2022-11-09 19:14:02,168 - INFO - main.py - train - 68 - 【train】 epoch:0 492/2980 loss:42.0230 2022-11-09 19:14:03,402 - INFO - main.py - train - 68 - 【train】 epoch:0 493/2980 loss:8.4792 2022-11-09 19:14:04,761 - INFO - main.py - train - 68 - 【train】 epoch:0 494/2980 loss:10.4921 2022-11-09 19:14:05,932 - INFO - main.py - train - 68 - 【train】 epoch:0 495/2980 loss:3.5481 2022-11-09 19:14:07,370 - INFO - main.py - train - 68 - 【train】 epoch:0 496/2980 loss:17.9145 2022-11-09 19:14:08,526 - INFO - main.py - train - 68 - 【train】 epoch:0 497/2980 loss:11.2604 2022-11-09 19:14:09,822 - INFO - main.py - train - 68 - 【train】 epoch:0 498/2980 loss:11.8712 2022-11-09 19:14:11,181 - INFO - main.py - train - 68 - 【train】 epoch:0 499/2980 loss:32.3993 2022-11-09 19:14:12,384 - INFO - main.py - train - 68 - 【train】 epoch:0 500/2980 loss:3.8016 2022-11-09 19:14:13,634 - INFO - main.py - train - 68 - 【train】 epoch:0 501/2980 loss:16.9943 2022-11-09 19:14:15,165 - INFO - main.py - train - 68 - 【train】 epoch:0 502/2980 loss:10.6604 2022-11-09 19:14:16,383 - INFO - main.py - train - 68 - 【train】 epoch:0 503/2980 loss:26.6849 2022-11-09 19:14:17,602 - INFO - main.py - train - 68 - 【train】 epoch:0 504/2980 loss:7.7612 2022-11-09 19:14:18,836 - INFO - main.py - train - 68 - 【train】 epoch:0 505/2980 loss:19.3749 2022-11-09 19:14:20,195 - INFO - main.py - train - 68 - 【train】 epoch:0 506/2980 loss:7.0909 2022-11-09 19:14:21,491 - INFO - main.py - train - 68 - 【train】 epoch:0 507/2980 loss:12.9745 2022-11-09 19:14:22,850 - INFO - main.py - train - 68 - 【train】 epoch:0 508/2980 loss:8.7841 2022-11-09 19:14:24,022 - INFO - main.py - train - 68 - 【train】 epoch:0 509/2980 loss:0.9807 2022-11-09 19:14:25,444 - INFO - main.py - train - 68 - 【train】 epoch:0 510/2980 loss:16.0224 2022-11-09 19:14:26,646 - INFO - main.py - train - 68 - 【train】 epoch:0 511/2980 loss:19.4607 2022-11-09 19:14:27,865 - INFO - main.py - train - 68 - 【train】 epoch:0 512/2980 loss:5.0870 2022-11-09 19:14:29,130 - INFO - main.py - train - 68 - 【train】 epoch:0 513/2980 loss:1.9769 2022-11-09 19:14:30,474 - INFO - main.py - train - 68 - 【train】 epoch:0 514/2980 loss:6.6278 2022-11-09 19:14:31,755 - INFO - main.py - train - 68 - 【train】 epoch:0 515/2980 loss:12.0646 2022-11-09 19:14:32,989 - INFO - main.py - train - 68 - 【train】 epoch:0 516/2980 loss:4.7744 2022-11-09 19:14:34,238 - INFO - main.py - train - 68 - 【train】 epoch:0 517/2980 loss:7.6553 2022-11-09 19:14:35,613 - INFO - main.py - train - 68 - 【train】 epoch:0 518/2980 loss:63.1401 2022-11-09 19:14:36,925 - INFO - main.py - train - 68 - 【train】 epoch:0 519/2980 loss:21.5630 2022-11-09 19:14:38,175 - INFO - main.py - train - 68 - 【train】 epoch:0 520/2980 loss:23.0140 2022-11-09 19:14:39,456 - INFO - main.py - train - 68 - 【train】 epoch:0 521/2980 loss:24.8414 2022-11-09 19:14:40,721 - INFO - main.py - train - 68 - 【train】 epoch:0 522/2980 loss:12.7714 2022-11-09 19:14:41,955 - INFO - main.py - train - 68 - 【train】 epoch:0 523/2980 loss:8.9592 2022-11-09 19:14:43,314 - INFO - main.py - train - 68 - 【train】 epoch:0 524/2980 loss:17.6964 2022-11-09 19:14:44,580 - INFO - main.py - train - 68 - 【train】 epoch:0 525/2980 loss:18.6219 2022-11-09 19:14:45,845 - INFO - main.py - train - 68 - 【train】 epoch:0 526/2980 loss:8.4331 2022-11-09 19:14:47,173 - INFO - main.py - train - 68 - 【train】 epoch:0 527/2980 loss:30.2038 2022-11-09 19:14:48,641 - INFO - main.py - train - 68 - 【train】 epoch:0 528/2980 loss:28.9299 2022-11-09 19:14:49,969 - INFO - main.py - train - 68 - 【train】 epoch:0 529/2980 loss:23.1733 2022-11-09 19:14:51,312 - INFO - main.py - train - 68 - 【train】 epoch:0 530/2980 loss:17.7685 2022-11-09 19:14:52,812 - INFO - main.py - train - 68 - 【train】 epoch:0 531/2980 loss:36.1402 2022-11-09 19:14:54,187 - INFO - main.py - train - 68 - 【train】 epoch:0 532/2980 loss:1.6501 2022-11-09 19:14:55,515 - INFO - main.py - train - 68 - 【train】 epoch:0 533/2980 loss:13.4088 2022-11-09 19:14:56,827 - INFO - main.py - train - 68 - 【train】 epoch:0 534/2980 loss:33.7615 2022-11-09 19:14:58,217 - INFO - main.py - train - 68 - 【train】 epoch:0 535/2980 loss:19.2225 2022-11-09 19:14:59,576 - INFO - main.py - train - 68 - 【train】 epoch:0 536/2980 loss:24.9911 2022-11-09 19:15:00,888 - INFO - main.py - train - 68 - 【train】 epoch:0 537/2980 loss:24.5149 2022-11-09 19:15:02,216 - INFO - main.py - train - 68 - 【train】 epoch:0 538/2980 loss:5.4369 2022-11-09 19:15:03,575 - INFO - main.py - train - 68 - 【train】 epoch:0 539/2980 loss:15.4594 2022-11-09 19:15:04,903 - INFO - main.py - train - 68 - 【train】 epoch:0 540/2980 loss:27.2624 2022-11-09 19:15:06,231 - INFO - main.py - train - 68 - 【train】 epoch:0 541/2980 loss:20.4977 2022-11-09 19:15:07,543 - INFO - main.py - train - 68 - 【train】 epoch:0 542/2980 loss:9.9100 2022-11-09 19:15:08,918 - INFO - main.py - train - 68 - 【train】 epoch:0 543/2980 loss:6.0687 2022-11-09 19:15:10,355 - INFO - main.py - train - 68 - 【train】 epoch:0 544/2980 loss:20.7035 2022-11-09 19:15:11,636 - INFO - main.py - train - 68 - 【train】 epoch:0 545/2980 loss:7.0456 2022-11-09 19:15:12,901 - INFO - main.py - train - 68 - 【train】 epoch:0 546/2980 loss:1.5371 2022-11-09 19:15:14,291 - INFO - main.py - train - 68 - 【train】 epoch:0 547/2980 loss:16.7745 2022-11-09 19:15:15,650 - INFO - main.py - train - 68 - 【train】 epoch:0 548/2980 loss:23.2478 2022-11-09 19:15:17,041 - INFO - main.py - train - 68 - 【train】 epoch:0 549/2980 loss:7.8305 2022-11-09 19:15:18,415 - INFO - main.py - train - 68 - 【train】 epoch:0 550/2980 loss:6.0085 2022-11-09 19:15:19,759 - INFO - main.py - train - 68 - 【train】 epoch:0 551/2980 loss:20.1843 2022-11-09 19:15:20,946 - INFO - main.py - train - 68 - 【train】 epoch:0 552/2980 loss:7.4038 2022-11-09 19:15:22,180 - INFO - main.py - train - 68 - 【train】 epoch:0 553/2980 loss:13.0509 2022-11-09 19:15:23,414 - INFO - main.py - train - 68 - 【train】 epoch:0 554/2980 loss:3.5580 2022-11-09 19:15:24,742 - INFO - main.py - train - 68 - 【train】 epoch:0 555/2980 loss:18.1365 2022-11-09 19:15:26,226 - INFO - main.py - train - 68 - 【train】 epoch:0 556/2980 loss:27.6281 2022-11-09 19:15:27,554 - INFO - main.py - train - 68 - 【train】 epoch:0 557/2980 loss:14.2526 2022-11-09 19:15:28,835 - INFO - main.py - train - 68 - 【train】 epoch:0 558/2980 loss:16.9716 2022-11-09 19:15:30,210 - INFO - main.py - train - 68 - 【train】 epoch:0 559/2980 loss:38.9159 2022-11-09 19:15:31,537 - INFO - main.py - train - 68 - 【train】 epoch:0 560/2980 loss:20.8849 2022-11-09 19:15:32,787 - INFO - main.py - train - 68 - 【train】 epoch:0 561/2980 loss:10.9623 2022-11-09 19:15:34,084 - INFO - main.py - train - 68 - 【train】 epoch:0 562/2980 loss:20.2707 2022-11-09 19:15:35,333 - INFO - main.py - train - 68 - 【train】 epoch:0 563/2980 loss:25.1510 2022-11-09 19:15:36,661 - INFO - main.py - train - 68 - 【train】 epoch:0 564/2980 loss:17.8163 2022-11-09 19:15:37,911 - INFO - main.py - train - 68 - 【train】 epoch:0 565/2980 loss:10.2621 2022-11-09 19:15:39,176 - INFO - main.py - train - 68 - 【train】 epoch:0 566/2980 loss:3.8356 2022-11-09 19:15:40,473 - INFO - main.py - train - 68 - 【train】 epoch:0 567/2980 loss:11.0072 2022-11-09 19:15:41,707 - INFO - main.py - train - 68 - 【train】 epoch:0 568/2980 loss:9.8619 2022-11-09 19:15:43,082 - INFO - main.py - train - 68 - 【train】 epoch:0 569/2980 loss:3.0930 2022-11-09 19:15:44,284 - INFO - main.py - train - 68 - 【train】 epoch:0 570/2980 loss:1.6843 2022-11-09 19:15:45,519 - INFO - main.py - train - 68 - 【train】 epoch:0 571/2980 loss:6.6696 2022-11-09 19:15:46,706 - INFO - main.py - train - 68 - 【train】 epoch:0 572/2980 loss:12.0467 2022-11-09 19:15:48,143 - INFO - main.py - train - 68 - 【train】 epoch:0 573/2980 loss:24.9221 2022-11-09 19:15:49,486 - INFO - main.py - train - 68 - 【train】 epoch:0 574/2980 loss:5.6404 2022-11-09 19:15:50,798 - INFO - main.py - train - 68 - 【train】 epoch:0 575/2980 loss:2.4011 2022-11-09 19:15:52,001 - INFO - main.py - train - 68 - 【train】 epoch:0 576/2980 loss:12.7876 2022-11-09 19:15:53,267 - INFO - main.py - train - 68 - 【train】 epoch:0 577/2980 loss:18.6598 2022-11-09 19:15:54,470 - INFO - main.py - train - 68 - 【train】 epoch:0 578/2980 loss:16.0379 2022-11-09 19:15:55,672 - INFO - main.py - train - 68 - 【train】 epoch:0 579/2980 loss:11.8385 2022-11-09 19:15:56,922 - INFO - main.py - train - 68 - 【train】 epoch:0 580/2980 loss:12.0635 2022-11-09 19:15:58,266 - INFO - main.py - train - 68 - 【train】 epoch:0 581/2980 loss:11.9174 2022-11-09 19:15:59,437 - INFO - main.py - train - 68 - 【train】 epoch:0 582/2980 loss:5.2052 2022-11-09 19:16:00,702 - INFO - main.py - train - 68 - 【train】 epoch:0 583/2980 loss:2.7217 2022-11-09 19:16:01,968 - INFO - main.py - train - 68 - 【train】 epoch:0 584/2980 loss:10.7825 2022-11-09 19:16:03,467 - INFO - main.py - train - 68 - 【train】 epoch:0 585/2980 loss:11.3076 2022-11-09 19:16:04,639 - INFO - main.py - train - 68 - 【train】 epoch:0 586/2980 loss:10.2888 2022-11-09 19:16:05,842 - INFO - main.py - train - 68 - 【train】 epoch:0 587/2980 loss:11.1969 2022-11-09 19:16:07,029 - INFO - main.py - train - 68 - 【train】 epoch:0 588/2980 loss:1.6481 2022-11-09 19:16:08,201 - INFO - main.py - train - 68 - 【train】 epoch:0 589/2980 loss:2.1682 2022-11-09 19:16:09,372 - INFO - main.py - train - 68 - 【train】 epoch:0 590/2980 loss:18.1685 2022-11-09 19:16:10,591 - INFO - main.py - train - 68 - 【train】 epoch:0 591/2980 loss:27.3570 2022-11-09 19:16:11,919 - INFO - main.py - train - 68 - 【train】 epoch:0 592/2980 loss:11.9857 2022-11-09 19:16:13,215 - INFO - main.py - train - 68 - 【train】 epoch:0 593/2980 loss:4.2955 2022-11-09 19:16:14,605 - INFO - main.py - train - 68 - 【train】 epoch:0 594/2980 loss:7.3201 2022-11-09 19:16:15,824 - INFO - main.py - train - 68 - 【train】 epoch:0 595/2980 loss:9.8807 2022-11-09 19:16:23,838 - INFO - main.py - train - 68 - 【train】 epoch:1 596/2980 loss:7.1617 2022-11-09 19:16:25,040 - INFO - main.py - train - 68 - 【train】 epoch:1 597/2980 loss:14.7571 2022-11-09 19:16:26,275 - INFO - main.py - train - 68 - 【train】 epoch:1 598/2980 loss:19.8942 2022-11-09 19:16:27,509 - INFO - main.py - train - 68 - 【train】 epoch:1 599/2980 loss:9.7976 2022-11-09 19:16:28,852 - INFO - main.py - train - 68 - 【train】 epoch:1 600/2980 loss:6.3095 2022-11-09 19:16:30,086 - INFO - main.py - train - 68 - 【train】 epoch:1 601/2980 loss:20.7048 2022-11-09 19:16:31,461 - INFO - main.py - train - 68 - 【train】 epoch:1 602/2980 loss:8.2725 2022-11-09 19:16:32,804 - INFO - main.py - train - 68 - 【train】 epoch:1 603/2980 loss:20.5405 2022-11-09 19:16:34,054 - INFO - main.py - train - 68 - 【train】 epoch:1 604/2980 loss:8.0226 2022-11-09 19:16:35,319 - INFO - main.py - train - 68 - 【train】 epoch:1 605/2980 loss:3.4026 2022-11-09 19:16:36,756 - INFO - main.py - train - 68 - 【train】 epoch:1 606/2980 loss:9.8110 2022-11-09 19:16:38,037 - INFO - main.py - train - 68 - 【train】 epoch:1 607/2980 loss:11.1690 2022-11-09 19:16:39,350 - INFO - main.py - train - 68 - 【train】 epoch:1 608/2980 loss:26.8958 2022-11-09 19:16:40,865 - INFO - main.py - train - 68 - 【train】 epoch:1 609/2980 loss:43.6234 2022-11-09 19:16:42,099 - INFO - main.py - train - 68 - 【train】 epoch:1 610/2980 loss:4.7480 2022-11-09 19:16:43,349 - INFO - main.py - train - 68 - 【train】 epoch:1 611/2980 loss:15.4429 2022-11-09 19:16:44,598 - INFO - main.py - train - 68 - 【train】 epoch:1 612/2980 loss:16.9193 2022-11-09 19:16:45,864 - INFO - main.py - train - 68 - 【train】 epoch:1 613/2980 loss:19.6371 2022-11-09 19:16:47,098 - INFO - main.py - train - 68 - 【train】 epoch:1 614/2980 loss:8.2654 2022-11-09 19:16:48,379 - INFO - main.py - train - 68 - 【train】 epoch:1 615/2980 loss:52.9720 2022-11-09 19:16:49,738 - INFO - main.py - train - 68 - 【train】 epoch:1 616/2980 loss:13.0674 2022-11-09 19:16:51,269 - INFO - main.py - train - 68 - 【train】 epoch:1 617/2980 loss:8.7212 2022-11-09 19:16:52,456 - INFO - main.py - train - 68 - 【train】 epoch:1 618/2980 loss:9.2030 2022-11-09 19:16:53,924 - INFO - main.py - train - 68 - 【train】 epoch:1 619/2980 loss:5.8737 2022-11-09 19:16:55,143 - INFO - main.py - train - 68 - 【train】 epoch:1 620/2980 loss:5.6892 2022-11-09 19:16:56,377 - INFO - main.py - train - 68 - 【train】 epoch:1 621/2980 loss:2.3307 2022-11-09 19:16:57,767 - INFO - main.py - train - 68 - 【train】 epoch:1 622/2980 loss:7.7651 2022-11-09 19:16:58,954 - INFO - main.py - train - 68 - 【train】 epoch:1 623/2980 loss:3.2147 2022-11-09 19:17:00,220 - INFO - main.py - train - 68 - 【train】 epoch:1 624/2980 loss:17.6363 2022-11-09 19:17:01,454 - INFO - main.py - train - 68 - 【train】 epoch:1 625/2980 loss:18.6978 2022-11-09 19:17:02,860 - INFO - main.py - train - 68 - 【train】 epoch:1 626/2980 loss:5.8278 2022-11-09 19:17:04,047 - INFO - main.py - train - 68 - 【train】 epoch:1 627/2980 loss:29.0020 2022-11-09 19:17:05,422 - INFO - main.py - train - 68 - 【train】 epoch:1 628/2980 loss:33.5737 2022-11-09 19:17:06,624 - INFO - main.py - train - 68 - 【train】 epoch:1 629/2980 loss:12.6887 2022-11-09 19:17:08,187 - INFO - main.py - train - 68 - 【train】 epoch:1 630/2980 loss:5.1221 2022-11-09 19:17:09,421 - INFO - main.py - train - 68 - 【train】 epoch:1 631/2980 loss:14.6172 2022-11-09 19:17:10,733 - INFO - main.py - train - 68 - 【train】 epoch:1 632/2980 loss:5.0864 2022-11-09 19:17:12,014 - INFO - main.py - train - 68 - 【train】 epoch:1 633/2980 loss:7.0805 2022-11-09 19:17:13,264 - INFO - main.py - train - 68 - 【train】 epoch:1 634/2980 loss:31.6363 2022-11-09 19:17:14,638 - INFO - main.py - train - 68 - 【train】 epoch:1 635/2980 loss:20.4922 2022-11-09 19:17:15,888 - INFO - main.py - train - 68 - 【train】 epoch:1 636/2980 loss:11.3409 2022-11-09 19:17:17,122 - INFO - main.py - train - 68 - 【train】 epoch:1 637/2980 loss:10.2769 2022-11-09 19:17:18,372 - INFO - main.py - train - 68 - 【train】 epoch:1 638/2980 loss:4.8314 2022-11-09 19:17:19,653 - INFO - main.py - train - 68 - 【train】 epoch:1 639/2980 loss:0.5058 2022-11-09 19:17:20,855 - INFO - main.py - train - 68 - 【train】 epoch:1 640/2980 loss:2.7452 2022-11-09 19:17:22,027 - INFO - main.py - train - 68 - 【train】 epoch:1 641/2980 loss:22.8511 2022-11-09 19:17:23,230 - INFO - main.py - train - 68 - 【train】 epoch:1 642/2980 loss:10.7057 2022-11-09 19:17:24,464 - INFO - main.py - train - 68 - 【train】 epoch:1 643/2980 loss:1.3148 2022-11-09 19:17:25,839 - INFO - main.py - train - 68 - 【train】 epoch:1 644/2980 loss:1.7023 2022-11-09 19:17:27,073 - INFO - main.py - train - 68 - 【train】 epoch:1 645/2980 loss:4.1272 2022-11-09 19:17:28,291 - INFO - main.py - train - 68 - 【train】 epoch:1 646/2980 loss:12.9477 2022-11-09 19:17:29,588 - INFO - main.py - train - 68 - 【train】 epoch:1 647/2980 loss:3.7182 2022-11-09 19:17:30,900 - INFO - main.py - train - 68 - 【train】 epoch:1 648/2980 loss:8.4052 2022-11-09 19:17:32,243 - INFO - main.py - train - 68 - 【train】 epoch:1 649/2980 loss:5.9129 2022-11-09 19:17:33,493 - INFO - main.py - train - 68 - 【train】 epoch:1 650/2980 loss:14.0568 2022-11-09 19:17:34,868 - INFO - main.py - train - 68 - 【train】 epoch:1 651/2980 loss:27.0335 2022-11-09 19:17:36,180 - INFO - main.py - train - 68 - 【train】 epoch:1 652/2980 loss:6.6538 2022-11-09 19:17:37,383 - INFO - main.py - train - 68 - 【train】 epoch:1 653/2980 loss:12.5216 2022-11-09 19:17:38,601 - INFO - main.py - train - 68 - 【train】 epoch:1 654/2980 loss:17.1301 2022-11-09 19:17:39,851 - INFO - main.py - train - 68 - 【train】 epoch:1 655/2980 loss:20.6865 2022-11-09 19:17:41,038 - INFO - main.py - train - 68 - 【train】 epoch:1 656/2980 loss:4.4516 2022-11-09 19:17:42,272 - INFO - main.py - train - 68 - 【train】 epoch:1 657/2980 loss:22.5023 2022-11-09 19:17:43,475 - INFO - main.py - train - 68 - 【train】 epoch:1 658/2980 loss:11.5512 2022-11-09 19:17:44,787 - INFO - main.py - train - 68 - 【train】 epoch:1 659/2980 loss:22.0769 2022-11-09 19:17:46,021 - INFO - main.py - train - 68 - 【train】 epoch:1 660/2980 loss:43.0508 2022-11-09 19:17:47,209 - INFO - main.py - train - 68 - 【train】 epoch:1 661/2980 loss:7.6520 2022-11-09 19:17:48,490 - INFO - main.py - train - 68 - 【train】 epoch:1 662/2980 loss:7.7656 2022-11-09 19:17:49,896 - INFO - main.py - train - 68 - 【train】 epoch:1 663/2980 loss:14.3255 2022-11-09 19:17:51,192 - INFO - main.py - train - 68 - 【train】 epoch:1 664/2980 loss:17.7697 2022-11-09 19:17:52,379 - INFO - main.py - train - 68 - 【train】 epoch:1 665/2980 loss:10.4375 2022-11-09 19:17:53,660 - INFO - main.py - train - 68 - 【train】 epoch:1 666/2980 loss:19.3871 2022-11-09 19:17:55,160 - INFO - main.py - train - 68 - 【train】 epoch:1 667/2980 loss:6.3831 2022-11-09 19:17:56,457 - INFO - main.py - train - 68 - 【train】 epoch:1 668/2980 loss:16.8431 2022-11-09 19:17:57,862 - INFO - main.py - train - 68 - 【train】 epoch:1 669/2980 loss:1.9941 2022-11-09 19:17:59,050 - INFO - main.py - train - 68 - 【train】 epoch:1 670/2980 loss:5.8584 2022-11-09 19:18:00,268 - INFO - main.py - train - 68 - 【train】 epoch:1 671/2980 loss:8.6204 2022-11-09 19:18:01,549 - INFO - main.py - train - 68 - 【train】 epoch:1 672/2980 loss:10.2684 2022-11-09 19:18:02,752 - INFO - main.py - train - 68 - 【train】 epoch:1 673/2980 loss:3.6722 2022-11-09 19:18:03,924 - INFO - main.py - train - 68 - 【train】 epoch:1 674/2980 loss:6.2870 2022-11-09 19:18:05,173 - INFO - main.py - train - 68 - 【train】 epoch:1 675/2980 loss:17.9536 2022-11-09 19:18:06,345 - INFO - main.py - train - 68 - 【train】 epoch:1 676/2980 loss:2.6445 2022-11-09 19:18:07,548 - INFO - main.py - train - 68 - 【train】 epoch:1 677/2980 loss:8.4907 2022-11-09 19:18:08,969 - INFO - main.py - train - 68 - 【train】 epoch:1 678/2980 loss:30.3816 2022-11-09 19:18:10,313 - INFO - main.py - train - 68 - 【train】 epoch:1 679/2980 loss:10.0875 2022-11-09 19:18:11,640 - INFO - main.py - train - 68 - 【train】 epoch:1 680/2980 loss:18.3944 2022-11-09 19:18:13,078 - INFO - main.py - train - 68 - 【train】 epoch:1 681/2980 loss:3.7820 2022-11-09 19:18:14,296 - INFO - main.py - train - 68 - 【train】 epoch:1 682/2980 loss:9.9201 2022-11-09 19:18:15,655 - INFO - main.py - train - 68 - 【train】 epoch:1 683/2980 loss:19.3508 2022-11-09 19:18:17,170 - INFO - main.py - train - 68 - 【train】 epoch:1 684/2980 loss:7.8924 2022-11-09 19:18:18,373 - INFO - main.py - train - 68 - 【train】 epoch:1 685/2980 loss:9.2012 2022-11-09 19:18:19,545 - INFO - main.py - train - 68 - 【train】 epoch:1 686/2980 loss:10.1315 2022-11-09 19:18:20,795 - INFO - main.py - train - 68 - 【train】 epoch:1 687/2980 loss:10.9224 2022-11-09 19:18:22,138 - INFO - main.py - train - 68 - 【train】 epoch:1 688/2980 loss:15.1819 2022-11-09 19:18:23,356 - INFO - main.py - train - 68 - 【train】 epoch:1 689/2980 loss:11.5719 2022-11-09 19:18:24,747 - INFO - main.py - train - 68 - 【train】 epoch:1 690/2980 loss:8.1138 2022-11-09 19:18:25,950 - INFO - main.py - train - 68 - 【train】 epoch:1 691/2980 loss:6.4877 2022-11-09 19:18:27,137 - INFO - main.py - train - 68 - 【train】 epoch:1 692/2980 loss:4.9283 2022-11-09 19:18:28,387 - INFO - main.py - train - 68 - 【train】 epoch:1 693/2980 loss:22.4626 2022-11-09 19:18:29,792 - INFO - main.py - train - 68 - 【train】 epoch:1 694/2980 loss:9.1288 2022-11-09 19:18:30,995 - INFO - main.py - train - 68 - 【train】 epoch:1 695/2980 loss:18.3772 2022-11-09 19:18:32,261 - INFO - main.py - train - 68 - 【train】 epoch:1 696/2980 loss:26.9009 2022-11-09 19:18:33,588 - INFO - main.py - train - 68 - 【train】 epoch:1 697/2980 loss:0.3749 2022-11-09 19:18:34,822 - INFO - main.py - train - 68 - 【train】 epoch:1 698/2980 loss:38.8875 2022-11-09 19:18:36,057 - INFO - main.py - train - 68 - 【train】 epoch:1 699/2980 loss:22.0200 2022-11-09 19:18:37,259 - INFO - main.py - train - 68 - 【train】 epoch:1 700/2980 loss:11.6363 2022-11-09 19:18:38,494 - INFO - main.py - train - 68 - 【train】 epoch:1 701/2980 loss:21.3471 2022-11-09 19:18:39,946 - INFO - main.py - train - 68 - 【train】 epoch:1 702/2980 loss:19.3317 2022-11-09 19:18:41,243 - INFO - main.py - train - 68 - 【train】 epoch:1 703/2980 loss:17.9133 2022-11-09 19:18:42,461 - INFO - main.py - train - 68 - 【train】 epoch:1 704/2980 loss:2.0830 2022-11-09 19:18:43,695 - INFO - main.py - train - 68 - 【train】 epoch:1 705/2980 loss:20.1186 2022-11-09 19:18:44,914 - INFO - main.py - train - 68 - 【train】 epoch:1 706/2980 loss:1.7328 2022-11-09 19:18:46,164 - INFO - main.py - train - 68 - 【train】 epoch:1 707/2980 loss:0.7716 2022-11-09 19:18:47,382 - INFO - main.py - train - 68 - 【train】 epoch:1 708/2980 loss:19.1798 2022-11-09 19:18:48,569 - INFO - main.py - train - 68 - 【train】 epoch:1 709/2980 loss:7.5075 2022-11-09 19:18:49,772 - INFO - main.py - train - 68 - 【train】 epoch:1 710/2980 loss:4.2633 2022-11-09 19:18:51,100 - INFO - main.py - train - 68 - 【train】 epoch:1 711/2980 loss:5.2147 2022-11-09 19:18:52,365 - INFO - main.py - train - 68 - 【train】 epoch:1 712/2980 loss:15.6688 2022-11-09 19:18:53,599 - INFO - main.py - train - 68 - 【train】 epoch:1 713/2980 loss:11.3971 2022-11-09 19:18:54,958 - INFO - main.py - train - 68 - 【train】 epoch:1 714/2980 loss:8.8123 2022-11-09 19:18:56,224 - INFO - main.py - train - 68 - 【train】 epoch:1 715/2980 loss:7.9037 2022-11-09 19:18:57,536 - INFO - main.py - train - 68 - 【train】 epoch:1 716/2980 loss:45.8496 2022-11-09 19:18:58,801 - INFO - main.py - train - 68 - 【train】 epoch:1 717/2980 loss:23.1458 2022-11-09 19:19:00,160 - INFO - main.py - train - 68 - 【train】 epoch:1 718/2980 loss:18.8512 2022-11-09 19:19:01,363 - INFO - main.py - train - 68 - 【train】 epoch:1 719/2980 loss:6.3817 2022-11-09 19:19:02,582 - INFO - main.py - train - 68 - 【train】 epoch:1 720/2980 loss:6.9395 2022-11-09 19:19:03,925 - INFO - main.py - train - 68 - 【train】 epoch:1 721/2980 loss:11.9541 2022-11-09 19:19:05,175 - INFO - main.py - train - 68 - 【train】 epoch:1 722/2980 loss:16.3055 2022-11-09 19:19:06,393 - INFO - main.py - train - 68 - 【train】 epoch:1 723/2980 loss:20.4999 2022-11-09 19:19:07,659 - INFO - main.py - train - 68 - 【train】 epoch:1 724/2980 loss:8.7170 2022-11-09 19:19:08,908 - INFO - main.py - train - 68 - 【train】 epoch:1 725/2980 loss:17.1239 2022-11-09 19:19:10,095 - INFO - main.py - train - 68 - 【train】 epoch:1 726/2980 loss:4.7518 2022-11-09 19:19:11,283 - INFO - main.py - train - 68 - 【train】 epoch:1 727/2980 loss:4.2664 2022-11-09 19:19:12,532 - INFO - main.py - train - 68 - 【train】 epoch:1 728/2980 loss:33.7629 2022-11-09 19:19:13,735 - INFO - main.py - train - 68 - 【train】 epoch:1 729/2980 loss:26.0013 2022-11-09 19:19:14,969 - INFO - main.py - train - 68 - 【train】 epoch:1 730/2980 loss:2.9441 2022-11-09 19:19:16,453 - INFO - main.py - train - 68 - 【train】 epoch:1 731/2980 loss:21.1308 2022-11-09 19:19:17,672 - INFO - main.py - train - 68 - 【train】 epoch:1 732/2980 loss:9.2714 2022-11-09 19:19:18,953 - INFO - main.py - train - 68 - 【train】 epoch:1 733/2980 loss:20.5663 2022-11-09 19:19:20,171 - INFO - main.py - train - 68 - 【train】 epoch:1 734/2980 loss:8.3776 2022-11-09 19:19:21,437 - INFO - main.py - train - 68 - 【train】 epoch:1 735/2980 loss:4.9592 2022-11-09 19:19:22,655 - INFO - main.py - train - 68 - 【train】 epoch:1 736/2980 loss:3.3904 2022-11-09 19:19:23,920 - INFO - main.py - train - 68 - 【train】 epoch:1 737/2980 loss:14.3076 2022-11-09 19:19:25,170 - INFO - main.py - train - 68 - 【train】 epoch:1 738/2980 loss:9.4964 2022-11-09 19:19:26,592 - INFO - main.py - train - 68 - 【train】 epoch:1 739/2980 loss:19.9015 2022-11-09 19:19:27,841 - INFO - main.py - train - 68 - 【train】 epoch:1 740/2980 loss:10.6574 2022-11-09 19:19:29,138 - INFO - main.py - train - 68 - 【train】 epoch:1 741/2980 loss:7.4263 2022-11-09 19:19:30,434 - INFO - main.py - train - 68 - 【train】 epoch:1 742/2980 loss:13.5602 2022-11-09 19:19:31,700 - INFO - main.py - train - 68 - 【train】 epoch:1 743/2980 loss:13.0283 2022-11-09 19:19:33,059 - INFO - main.py - train - 68 - 【train】 epoch:1 744/2980 loss:16.5670 2022-11-09 19:19:34,309 - INFO - main.py - train - 68 - 【train】 epoch:1 745/2980 loss:15.6687 2022-11-09 19:19:35,714 - INFO - main.py - train - 68 - 【train】 epoch:1 746/2980 loss:5.7901 2022-11-09 19:19:36,902 - INFO - main.py - train - 68 - 【train】 epoch:1 747/2980 loss:2.8163 2022-11-09 19:19:38,136 - INFO - main.py - train - 68 - 【train】 epoch:1 748/2980 loss:12.2097 2022-11-09 19:19:39,354 - INFO - main.py - train - 68 - 【train】 epoch:1 749/2980 loss:10.9996 2022-11-09 19:19:40,698 - INFO - main.py - train - 68 - 【train】 epoch:1 750/2980 loss:5.3140 2022-11-09 19:19:41,963 - INFO - main.py - train - 68 - 【train】 epoch:1 751/2980 loss:12.1342 2022-11-09 19:19:43,197 - INFO - main.py - train - 68 - 【train】 epoch:1 752/2980 loss:6.4449 2022-11-09 19:19:44,400 - INFO - main.py - train - 68 - 【train】 epoch:1 753/2980 loss:13.3076 2022-11-09 19:19:45,618 - INFO - main.py - train - 68 - 【train】 epoch:1 754/2980 loss:24.7358 2022-11-09 19:19:46,962 - INFO - main.py - train - 68 - 【train】 epoch:1 755/2980 loss:15.0059 2022-11-09 19:19:48,227 - INFO - main.py - train - 68 - 【train】 epoch:1 756/2980 loss:13.1460 2022-11-09 19:19:49,555 - INFO - main.py - train - 68 - 【train】 epoch:1 757/2980 loss:8.2307 2022-11-09 19:19:50,805 - INFO - main.py - train - 68 - 【train】 epoch:1 758/2980 loss:8.1412 2022-11-09 19:19:52,008 - INFO - main.py - train - 68 - 【train】 epoch:1 759/2980 loss:16.8845 2022-11-09 19:19:53,288 - INFO - main.py - train - 68 - 【train】 epoch:1 760/2980 loss:2.3338 2022-11-09 19:19:54,538 - INFO - main.py - train - 68 - 【train】 epoch:1 761/2980 loss:13.6076 2022-11-09 19:19:55,772 - INFO - main.py - train - 68 - 【train】 epoch:1 762/2980 loss:19.4025 2022-11-09 19:19:57,006 - INFO - main.py - train - 68 - 【train】 epoch:1 763/2980 loss:7.5139 2022-11-09 19:19:58,287 - INFO - main.py - train - 68 - 【train】 epoch:1 764/2980 loss:7.7171 2022-11-09 19:19:59,553 - INFO - main.py - train - 68 - 【train】 epoch:1 765/2980 loss:13.6212 2022-11-09 19:20:00,755 - INFO - main.py - train - 68 - 【train】 epoch:1 766/2980 loss:20.9043 2022-11-09 19:20:02,005 - INFO - main.py - train - 68 - 【train】 epoch:1 767/2980 loss:3.4063 2022-11-09 19:20:03,270 - INFO - main.py - train - 68 - 【train】 epoch:1 768/2980 loss:19.9207 2022-11-09 19:20:04,661 - INFO - main.py - train - 68 - 【train】 epoch:1 769/2980 loss:10.5955 2022-11-09 19:20:05,957 - INFO - main.py - train - 68 - 【train】 epoch:1 770/2980 loss:11.7815 2022-11-09 19:20:07,176 - INFO - main.py - train - 68 - 【train】 epoch:1 771/2980 loss:23.4478 2022-11-09 19:20:08,660 - INFO - main.py - train - 68 - 【train】 epoch:1 772/2980 loss:6.9245 2022-11-09 19:20:09,878 - INFO - main.py - train - 68 - 【train】 epoch:1 773/2980 loss:11.8163 2022-11-09 19:20:11,066 - INFO - main.py - train - 68 - 【train】 epoch:1 774/2980 loss:6.4372 2022-11-09 19:20:12,284 - INFO - main.py - train - 68 - 【train】 epoch:1 775/2980 loss:17.0273 2022-11-09 19:20:13,565 - INFO - main.py - train - 68 - 【train】 epoch:1 776/2980 loss:5.6658 2022-11-09 19:20:14,815 - INFO - main.py - train - 68 - 【train】 epoch:1 777/2980 loss:1.2653 2022-11-09 19:20:16,080 - INFO - main.py - train - 68 - 【train】 epoch:1 778/2980 loss:14.0442 2022-11-09 19:20:17,298 - INFO - main.py - train - 68 - 【train】 epoch:1 779/2980 loss:2.8102 2022-11-09 19:20:18,533 - INFO - main.py - train - 68 - 【train】 epoch:1 780/2980 loss:1.4740 2022-11-09 19:20:19,751 - INFO - main.py - train - 68 - 【train】 epoch:1 781/2980 loss:5.8507 2022-11-09 19:20:21,110 - INFO - main.py - train - 68 - 【train】 epoch:1 782/2980 loss:8.6006 2022-11-09 19:20:22,438 - INFO - main.py - train - 68 - 【train】 epoch:1 783/2980 loss:3.5950 2022-11-09 19:20:23,641 - INFO - main.py - train - 68 - 【train】 epoch:1 784/2980 loss:8.4526 2022-11-09 19:20:25,015 - INFO - main.py - train - 68 - 【train】 epoch:1 785/2980 loss:18.9861 2022-11-09 19:20:26,265 - INFO - main.py - train - 68 - 【train】 epoch:1 786/2980 loss:2.6044 2022-11-09 19:20:27,640 - INFO - main.py - train - 68 - 【train】 epoch:1 787/2980 loss:1.6687 2022-11-09 19:20:28,889 - INFO - main.py - train - 68 - 【train】 epoch:1 788/2980 loss:16.6924 2022-11-09 19:20:30,280 - INFO - main.py - train - 68 - 【train】 epoch:1 789/2980 loss:34.1690 2022-11-09 19:20:31,514 - INFO - main.py - train - 68 - 【train】 epoch:1 790/2980 loss:12.0291 2022-11-09 19:20:32,951 - INFO - main.py - train - 68 - 【train】 epoch:1 791/2980 loss:39.7116 2022-11-09 19:20:34,388 - INFO - main.py - train - 68 - 【train】 epoch:1 792/2980 loss:7.3605 2022-11-09 19:20:35,810 - INFO - main.py - train - 68 - 【train】 epoch:1 793/2980 loss:3.8081 2022-11-09 19:20:37,013 - INFO - main.py - train - 68 - 【train】 epoch:1 794/2980 loss:2.6904 2022-11-09 19:20:38,590 - INFO - main.py - train - 68 - 【train】 epoch:1 795/2980 loss:8.0943 2022-11-09 19:20:39,887 - INFO - main.py - train - 68 - 【train】 epoch:1 796/2980 loss:7.7260 2022-11-09 19:20:41,168 - INFO - main.py - train - 68 - 【train】 epoch:1 797/2980 loss:32.5300 2022-11-09 19:20:42,386 - INFO - main.py - train - 68 - 【train】 epoch:1 798/2980 loss:9.0370 2022-11-09 19:20:43,605 - INFO - main.py - train - 68 - 【train】 epoch:1 799/2980 loss:7.0569 2022-11-09 19:20:44,870 - INFO - main.py - train - 68 - 【train】 epoch:1 800/2980 loss:4.7286 2022-11-09 19:20:46,073 - INFO - main.py - train - 68 - 【train】 epoch:1 801/2980 loss:7.7577 2022-11-09 19:20:47,323 - INFO - main.py - train - 68 - 【train】 epoch:1 802/2980 loss:2.5452 2022-11-09 19:20:48,526 - INFO - main.py - train - 68 - 【train】 epoch:1 803/2980 loss:22.9030 2022-11-09 19:20:49,713 - INFO - main.py - train - 68 - 【train】 epoch:1 804/2980 loss:1.1243 2022-11-09 19:20:50,947 - INFO - main.py - train - 68 - 【train】 epoch:1 805/2980 loss:15.9830 2022-11-09 19:20:52,165 - INFO - main.py - train - 68 - 【train】 epoch:1 806/2980 loss:10.3489 2022-11-09 19:20:53,446 - INFO - main.py - train - 68 - 【train】 epoch:1 807/2980 loss:17.0022 2022-11-09 19:20:54,758 - INFO - main.py - train - 68 - 【train】 epoch:1 808/2980 loss:8.9423 2022-11-09 19:20:56,180 - INFO - main.py - train - 68 - 【train】 epoch:1 809/2980 loss:6.4104 2022-11-09 19:20:57,383 - INFO - main.py - train - 68 - 【train】 epoch:1 810/2980 loss:8.7357 2022-11-09 19:20:58,601 - INFO - main.py - train - 68 - 【train】 epoch:1 811/2980 loss:4.1731 2022-11-09 19:20:59,913 - INFO - main.py - train - 68 - 【train】 epoch:1 812/2980 loss:13.4200 2022-11-09 19:21:01,210 - INFO - main.py - train - 68 - 【train】 epoch:1 813/2980 loss:14.0186 2022-11-09 19:21:02,475 - INFO - main.py - train - 68 - 【train】 epoch:1 814/2980 loss:71.1712 2022-11-09 19:21:03,678 - INFO - main.py - train - 68 - 【train】 epoch:1 815/2980 loss:9.1395 2022-11-09 19:21:04,897 - INFO - main.py - train - 68 - 【train】 epoch:1 816/2980 loss:5.5567 2022-11-09 19:21:06,209 - INFO - main.py - train - 68 - 【train】 epoch:1 817/2980 loss:8.2121 2022-11-09 19:21:07,427 - INFO - main.py - train - 68 - 【train】 epoch:1 818/2980 loss:16.2476 2022-11-09 19:21:08,630 - INFO - main.py - train - 68 - 【train】 epoch:1 819/2980 loss:9.2333 2022-11-09 19:21:09,895 - INFO - main.py - train - 68 - 【train】 epoch:1 820/2980 loss:0.9091 2022-11-09 19:21:11,176 - INFO - main.py - train - 68 - 【train】 epoch:1 821/2980 loss:20.3595 2022-11-09 19:21:12,426 - INFO - main.py - train - 68 - 【train】 epoch:1 822/2980 loss:33.7466 2022-11-09 19:21:13,660 - INFO - main.py - train - 68 - 【train】 epoch:1 823/2980 loss:8.3166 2022-11-09 19:21:14,879 - INFO - main.py - train - 68 - 【train】 epoch:1 824/2980 loss:5.0271 2022-11-09 19:21:16,097 - INFO - main.py - train - 68 - 【train】 epoch:1 825/2980 loss:11.6896 2022-11-09 19:21:17,331 - INFO - main.py - train - 68 - 【train】 epoch:1 826/2980 loss:11.5278 2022-11-09 19:21:18,519 - INFO - main.py - train - 68 - 【train】 epoch:1 827/2980 loss:2.6345 2022-11-09 19:21:19,924 - INFO - main.py - train - 68 - 【train】 epoch:1 828/2980 loss:13.4278 2022-11-09 19:21:21,453 - INFO - main.py - train - 68 - 【train】 epoch:1 829/2980 loss:6.5655 2022-11-09 19:21:22,891 - INFO - main.py - train - 68 - 【train】 epoch:1 830/2980 loss:8.5624 2022-11-09 19:21:24,187 - INFO - main.py - train - 68 - 【train】 epoch:1 831/2980 loss:7.0936 2022-11-09 19:21:25,421 - INFO - main.py - train - 68 - 【train】 epoch:1 832/2980 loss:8.4502 2022-11-09 19:21:26,671 - INFO - main.py - train - 68 - 【train】 epoch:1 833/2980 loss:16.3461 2022-11-09 19:21:27,952 - INFO - main.py - train - 68 - 【train】 epoch:1 834/2980 loss:1.0862 2022-11-09 19:21:29,217 - INFO - main.py - train - 68 - 【train】 epoch:1 835/2980 loss:8.9530 2022-11-09 19:21:30,451 - INFO - main.py - train - 68 - 【train】 epoch:1 836/2980 loss:9.5879 2022-11-09 19:21:31,685 - INFO - main.py - train - 68 - 【train】 epoch:1 837/2980 loss:5.6353 2022-11-09 19:21:32,904 - INFO - main.py - train - 68 - 【train】 epoch:1 838/2980 loss:18.7186 2022-11-09 19:21:34,107 - INFO - main.py - train - 68 - 【train】 epoch:1 839/2980 loss:6.2652 2022-11-09 19:21:35,310 - INFO - main.py - train - 68 - 【train】 epoch:1 840/2980 loss:8.9885 2022-11-09 19:21:36,700 - INFO - main.py - train - 68 - 【train】 epoch:1 841/2980 loss:8.3267 2022-11-09 19:21:38,059 - INFO - main.py - train - 68 - 【train】 epoch:1 842/2980 loss:16.7065 2022-11-09 19:21:39,246 - INFO - main.py - train - 68 - 【train】 epoch:1 843/2980 loss:11.8355 2022-11-09 19:21:40,433 - INFO - main.py - train - 68 - 【train】 epoch:1 844/2980 loss:3.6200 2022-11-09 19:21:41,777 - INFO - main.py - train - 68 - 【train】 epoch:1 845/2980 loss:5.7019 2022-11-09 19:21:43,058 - INFO - main.py - train - 68 - 【train】 epoch:1 846/2980 loss:8.6201 2022-11-09 19:21:44,339 - INFO - main.py - train - 68 - 【train】 epoch:1 847/2980 loss:41.0244 2022-11-09 19:21:45,557 - INFO - main.py - train - 68 - 【train】 epoch:1 848/2980 loss:11.1294 2022-11-09 19:21:46,791 - INFO - main.py - train - 68 - 【train】 epoch:1 849/2980 loss:3.2743 2022-11-09 19:21:48,098 - INFO - main.py - train - 68 - 【train】 epoch:1 850/2980 loss:18.7870 2022-11-09 19:21:49,379 - INFO - main.py - train - 68 - 【train】 epoch:1 851/2980 loss:6.0730 2022-11-09 19:21:50,660 - INFO - main.py - train - 68 - 【train】 epoch:1 852/2980 loss:15.5703 2022-11-09 19:21:51,879 - INFO - main.py - train - 68 - 【train】 epoch:1 853/2980 loss:7.5754 2022-11-09 19:21:53,128 - INFO - main.py - train - 68 - 【train】 epoch:1 854/2980 loss:23.7985 2022-11-09 19:21:54,378 - INFO - main.py - train - 68 - 【train】 epoch:1 855/2980 loss:11.6424 2022-11-09 19:21:55,597 - INFO - main.py - train - 68 - 【train】 epoch:1 856/2980 loss:5.2704 2022-11-09 19:21:56,956 - INFO - main.py - train - 68 - 【train】 epoch:1 857/2980 loss:3.4478 2022-11-09 19:21:58,159 - INFO - main.py - train - 68 - 【train】 epoch:1 858/2980 loss:6.1907 2022-11-09 19:21:59,408 - INFO - main.py - train - 68 - 【train】 epoch:1 859/2980 loss:17.8577 2022-11-09 19:22:00,689 - INFO - main.py - train - 68 - 【train】 epoch:1 860/2980 loss:6.4010 2022-11-09 19:22:01,908 - INFO - main.py - train - 68 - 【train】 epoch:1 861/2980 loss:2.1456 2022-11-09 19:22:03,111 - INFO - main.py - train - 68 - 【train】 epoch:1 862/2980 loss:6.1059 2022-11-09 19:22:04,407 - INFO - main.py - train - 68 - 【train】 epoch:1 863/2980 loss:8.8482 2022-11-09 19:22:05,594 - INFO - main.py - train - 68 - 【train】 epoch:1 864/2980 loss:1.6396 2022-11-09 19:22:07,172 - INFO - main.py - train - 68 - 【train】 epoch:1 865/2980 loss:22.8682 2022-11-09 19:22:08,437 - INFO - main.py - train - 68 - 【train】 epoch:1 866/2980 loss:23.3049 2022-11-09 19:22:09,656 - INFO - main.py - train - 68 - 【train】 epoch:1 867/2980 loss:6.5217 2022-11-09 19:22:10,937 - INFO - main.py - train - 68 - 【train】 epoch:1 868/2980 loss:8.0602 2022-11-09 19:22:12,187 - INFO - main.py - train - 68 - 【train】 epoch:1 869/2980 loss:28.3762 2022-11-09 19:22:13,389 - INFO - main.py - train - 68 - 【train】 epoch:1 870/2980 loss:5.1725 2022-11-09 19:22:14,592 - INFO - main.py - train - 68 - 【train】 epoch:1 871/2980 loss:8.3473 2022-11-09 19:22:15,842 - INFO - main.py - train - 68 - 【train】 epoch:1 872/2980 loss:6.3574 2022-11-09 19:22:17,154 - INFO - main.py - train - 68 - 【train】 epoch:1 873/2980 loss:3.8636 2022-11-09 19:22:18,404 - INFO - main.py - train - 68 - 【train】 epoch:1 874/2980 loss:18.5006 2022-11-09 19:22:19,622 - INFO - main.py - train - 68 - 【train】 epoch:1 875/2980 loss:2.7517 2022-11-09 19:22:20,966 - INFO - main.py - train - 68 - 【train】 epoch:1 876/2980 loss:4.6336 2022-11-09 19:22:22,450 - INFO - main.py - train - 68 - 【train】 epoch:1 877/2980 loss:1.5608 2022-11-09 19:22:23,668 - INFO - main.py - train - 68 - 【train】 epoch:1 878/2980 loss:20.2393 2022-11-09 19:22:25,386 - INFO - main.py - train - 68 - 【train】 epoch:1 879/2980 loss:11.3746 2022-11-09 19:22:26,605 - INFO - main.py - train - 68 - 【train】 epoch:1 880/2980 loss:11.4777 2022-11-09 19:22:27,948 - INFO - main.py - train - 68 - 【train】 epoch:1 881/2980 loss:6.6067 2022-11-09 19:22:29,323 - INFO - main.py - train - 68 - 【train】 epoch:1 882/2980 loss:51.0707 2022-11-09 19:22:30,682 - INFO - main.py - train - 68 - 【train】 epoch:1 883/2980 loss:7.9418 2022-11-09 19:22:31,885 - INFO - main.py - train - 68 - 【train】 epoch:1 884/2980 loss:8.4254 2022-11-09 19:22:33,119 - INFO - main.py - train - 68 - 【train】 epoch:1 885/2980 loss:45.3890 2022-11-09 19:22:34,463 - INFO - main.py - train - 68 - 【train】 epoch:1 886/2980 loss:3.3000 2022-11-09 19:22:35,868 - INFO - main.py - train - 68 - 【train】 epoch:1 887/2980 loss:9.7854 2022-11-09 19:22:37,181 - INFO - main.py - train - 68 - 【train】 epoch:1 888/2980 loss:3.6629 2022-11-09 19:22:38,555 - INFO - main.py - train - 68 - 【train】 epoch:1 889/2980 loss:3.4756 2022-11-09 19:22:39,758 - INFO - main.py - train - 68 - 【train】 epoch:1 890/2980 loss:13.8926 2022-11-09 19:22:41,008 - INFO - main.py - train - 68 - 【train】 epoch:1 891/2980 loss:14.0238 2022-11-09 19:22:42,367 - INFO - main.py - train - 68 - 【train】 epoch:1 892/2980 loss:7.0643 2022-11-09 19:22:43,601 - INFO - main.py - train - 68 - 【train】 epoch:1 893/2980 loss:11.8041 2022-11-09 19:22:44,913 - INFO - main.py - train - 68 - 【train】 epoch:1 894/2980 loss:6.0897 2022-11-09 19:22:46,319 - INFO - main.py - train - 68 - 【train】 epoch:1 895/2980 loss:12.0890 2022-11-09 19:22:47,538 - INFO - main.py - train - 68 - 【train】 epoch:1 896/2980 loss:6.5347 2022-11-09 19:22:48,975 - INFO - main.py - train - 68 - 【train】 epoch:1 897/2980 loss:12.8087 2022-11-09 19:22:50,303 - INFO - main.py - train - 68 - 【train】 epoch:1 898/2980 loss:10.6810 2022-11-09 19:22:51,537 - INFO - main.py - train - 68 - 【train】 epoch:1 899/2980 loss:4.1339 2022-11-09 19:22:52,849 - INFO - main.py - train - 68 - 【train】 epoch:1 900/2980 loss:21.2322 2022-11-09 19:22:54,083 - INFO - main.py - train - 68 - 【train】 epoch:1 901/2980 loss:14.2655 2022-11-09 19:22:55,270 - INFO - main.py - train - 68 - 【train】 epoch:1 902/2980 loss:8.0336 2022-11-09 19:22:56,582 - INFO - main.py - train - 68 - 【train】 epoch:1 903/2980 loss:11.6675 2022-11-09 19:22:57,879 - INFO - main.py - train - 68 - 【train】 epoch:1 904/2980 loss:10.7296 2022-11-09 19:22:59,129 - INFO - main.py - train - 68 - 【train】 epoch:1 905/2980 loss:12.8472 2022-11-09 19:23:00,644 - INFO - main.py - train - 68 - 【train】 epoch:1 906/2980 loss:3.8343 2022-11-09 19:23:02,019 - INFO - main.py - train - 68 - 【train】 epoch:1 907/2980 loss:8.7310 2022-11-09 19:23:03,221 - INFO - main.py - train - 68 - 【train】 epoch:1 908/2980 loss:8.6463 2022-11-09 19:23:04,502 - INFO - main.py - train - 68 - 【train】 epoch:1 909/2980 loss:11.7485 2022-11-09 19:23:05,705 - INFO - main.py - train - 68 - 【train】 epoch:1 910/2980 loss:8.0022 2022-11-09 19:23:06,955 - INFO - main.py - train - 68 - 【train】 epoch:1 911/2980 loss:16.9227 2022-11-09 19:23:08,236 - INFO - main.py - train - 68 - 【train】 epoch:1 912/2980 loss:5.7459 2022-11-09 19:23:09,486 - INFO - main.py - train - 68 - 【train】 epoch:1 913/2980 loss:3.0978 2022-11-09 19:23:10,923 - INFO - main.py - train - 68 - 【train】 epoch:1 914/2980 loss:3.3440 2022-11-09 19:23:12,126 - INFO - main.py - train - 68 - 【train】 epoch:1 915/2980 loss:7.9480 2022-11-09 19:23:13,813 - INFO - main.py - train - 68 - 【train】 epoch:1 916/2980 loss:25.6769 2022-11-09 19:23:15,094 - INFO - main.py - train - 68 - 【train】 epoch:1 917/2980 loss:13.6869 2022-11-09 19:23:16,500 - INFO - main.py - train - 68 - 【train】 epoch:1 918/2980 loss:3.3981 2022-11-09 19:23:17,687 - INFO - main.py - train - 68 - 【train】 epoch:1 919/2980 loss:2.4727 2022-11-09 19:23:19,140 - INFO - main.py - train - 68 - 【train】 epoch:1 920/2980 loss:16.5579 2022-11-09 19:23:20,342 - INFO - main.py - train - 68 - 【train】 epoch:1 921/2980 loss:5.9269 2022-11-09 19:23:21,748 - INFO - main.py - train - 68 - 【train】 epoch:1 922/2980 loss:31.4579 2022-11-09 19:23:22,982 - INFO - main.py - train - 68 - 【train】 epoch:1 923/2980 loss:7.9827 2022-11-09 19:23:24,185 - INFO - main.py - train - 68 - 【train】 epoch:1 924/2980 loss:3.2818 2022-11-09 19:23:25,560 - INFO - main.py - train - 68 - 【train】 epoch:1 925/2980 loss:13.1354 2022-11-09 19:23:26,794 - INFO - main.py - train - 68 - 【train】 epoch:1 926/2980 loss:14.5516 2022-11-09 19:23:28,137 - INFO - main.py - train - 68 - 【train】 epoch:1 927/2980 loss:1.5940 2022-11-09 19:23:29,559 - INFO - main.py - train - 68 - 【train】 epoch:1 928/2980 loss:0.2022 2022-11-09 19:23:31,043 - INFO - main.py - train - 68 - 【train】 epoch:1 929/2980 loss:12.0408 2022-11-09 19:23:32,277 - INFO - main.py - train - 68 - 【train】 epoch:1 930/2980 loss:8.3221 2022-11-09 19:23:33,605 - INFO - main.py - train - 68 - 【train】 epoch:1 931/2980 loss:25.6993 2022-11-09 19:23:34,823 - INFO - main.py - train - 68 - 【train】 epoch:1 932/2980 loss:6.1966 2022-11-09 19:23:36,089 - INFO - main.py - train - 68 - 【train】 epoch:1 933/2980 loss:12.3935 2022-11-09 19:23:37,401 - INFO - main.py - train - 68 - 【train】 epoch:1 934/2980 loss:6.9745 2022-11-09 19:23:38,713 - INFO - main.py - train - 68 - 【train】 epoch:1 935/2980 loss:4.2238 2022-11-09 19:23:39,916 - INFO - main.py - train - 68 - 【train】 epoch:1 936/2980 loss:11.5205 2022-11-09 19:23:41,587 - INFO - main.py - train - 68 - 【train】 epoch:1 937/2980 loss:26.4675 2022-11-09 19:23:42,900 - INFO - main.py - train - 68 - 【train】 epoch:1 938/2980 loss:14.5001 2022-11-09 19:23:44,165 - INFO - main.py - train - 68 - 【train】 epoch:1 939/2980 loss:6.7071 2022-11-09 19:23:45,571 - INFO - main.py - train - 68 - 【train】 epoch:1 940/2980 loss:5.8171 2022-11-09 19:23:46,946 - INFO - main.py - train - 68 - 【train】 epoch:1 941/2980 loss:12.8470 2022-11-09 19:23:48,226 - INFO - main.py - train - 68 - 【train】 epoch:1 942/2980 loss:4.7248 2022-11-09 19:23:49,476 - INFO - main.py - train - 68 - 【train】 epoch:1 943/2980 loss:16.8215 2022-11-09 19:23:50,710 - INFO - main.py - train - 68 - 【train】 epoch:1 944/2980 loss:10.6816 2022-11-09 19:23:51,960 - INFO - main.py - train - 68 - 【train】 epoch:1 945/2980 loss:2.9182 2022-11-09 19:23:53,272 - INFO - main.py - train - 68 - 【train】 epoch:1 946/2980 loss:17.5761 2022-11-09 19:23:54,491 - INFO - main.py - train - 68 - 【train】 epoch:1 947/2980 loss:2.2417 2022-11-09 19:23:55,693 - INFO - main.py - train - 68 - 【train】 epoch:1 948/2980 loss:41.5622 2022-11-09 19:23:57,037 - INFO - main.py - train - 68 - 【train】 epoch:1 949/2980 loss:25.4352 2022-11-09 19:23:58,287 - INFO - main.py - train - 68 - 【train】 epoch:1 950/2980 loss:12.5034 2022-11-09 19:23:59,552 - INFO - main.py - train - 68 - 【train】 epoch:1 951/2980 loss:5.1109 2022-11-09 19:24:01,005 - INFO - main.py - train - 68 - 【train】 epoch:1 952/2980 loss:9.1519 2022-11-09 19:24:02,176 - INFO - main.py - train - 68 - 【train】 epoch:1 953/2980 loss:7.1905 2022-11-09 19:24:03,410 - INFO - main.py - train - 68 - 【train】 epoch:1 954/2980 loss:22.9547 2022-11-09 19:24:04,629 - INFO - main.py - train - 68 - 【train】 epoch:1 955/2980 loss:9.7188 2022-11-09 19:24:05,910 - INFO - main.py - train - 68 - 【train】 epoch:1 956/2980 loss:13.2275 2022-11-09 19:24:07,144 - INFO - main.py - train - 68 - 【train】 epoch:1 957/2980 loss:6.0255 2022-11-09 19:24:08,440 - INFO - main.py - train - 68 - 【train】 epoch:1 958/2980 loss:7.6552 2022-11-09 19:24:09,846 - INFO - main.py - train - 68 - 【train】 epoch:1 959/2980 loss:4.6330 2022-11-09 19:24:11,127 - INFO - main.py - train - 68 - 【train】 epoch:1 960/2980 loss:4.2734 2022-11-09 19:24:12,486 - INFO - main.py - train - 68 - 【train】 epoch:1 961/2980 loss:28.0870 2022-11-09 19:24:13,814 - INFO - main.py - train - 68 - 【train】 epoch:1 962/2980 loss:30.7786 2022-11-09 19:24:15,080 - INFO - main.py - train - 68 - 【train】 epoch:1 963/2980 loss:12.5662 2022-11-09 19:24:16,282 - INFO - main.py - train - 68 - 【train】 epoch:1 964/2980 loss:16.3999 2022-11-09 19:24:17,876 - INFO - main.py - train - 68 - 【train】 epoch:1 965/2980 loss:8.5984 2022-11-09 19:24:19,157 - INFO - main.py - train - 68 - 【train】 epoch:1 966/2980 loss:9.3793 2022-11-09 19:24:20,375 - INFO - main.py - train - 68 - 【train】 epoch:1 967/2980 loss:4.6440 2022-11-09 19:24:22,000 - INFO - main.py - train - 68 - 【train】 epoch:1 968/2980 loss:5.5898 2022-11-09 19:24:23,390 - INFO - main.py - train - 68 - 【train】 epoch:1 969/2980 loss:4.4801 2022-11-09 19:24:24,827 - INFO - main.py - train - 68 - 【train】 epoch:1 970/2980 loss:12.1069 2022-11-09 19:24:26,093 - INFO - main.py - train - 68 - 【train】 epoch:1 971/2980 loss:17.1982 2022-11-09 19:24:27,342 - INFO - main.py - train - 68 - 【train】 epoch:1 972/2980 loss:11.6995 2022-11-09 19:24:28,576 - INFO - main.py - train - 68 - 【train】 epoch:1 973/2980 loss:17.1827 2022-11-09 19:24:29,967 - INFO - main.py - train - 68 - 【train】 epoch:1 974/2980 loss:15.2523 2022-11-09 19:24:31,341 - INFO - main.py - train - 68 - 【train】 epoch:1 975/2980 loss:3.1503 2022-11-09 19:24:32,654 - INFO - main.py - train - 68 - 【train】 epoch:1 976/2980 loss:7.7131 2022-11-09 19:24:33,981 - INFO - main.py - train - 68 - 【train】 epoch:1 977/2980 loss:26.8074 2022-11-09 19:24:35,403 - INFO - main.py - train - 68 - 【train】 epoch:1 978/2980 loss:10.2899 2022-11-09 19:24:36,653 - INFO - main.py - train - 68 - 【train】 epoch:1 979/2980 loss:11.6049 2022-11-09 19:24:37,855 - INFO - main.py - train - 68 - 【train】 epoch:1 980/2980 loss:10.3455 2022-11-09 19:24:39,058 - INFO - main.py - train - 68 - 【train】 epoch:1 981/2980 loss:0.3707 2022-11-09 19:24:40,292 - INFO - main.py - train - 68 - 【train】 epoch:1 982/2980 loss:0.7706 2022-11-09 19:24:41,683 - INFO - main.py - train - 68 - 【train】 epoch:1 983/2980 loss:1.1401 2022-11-09 19:24:42,870 - INFO - main.py - train - 68 - 【train】 epoch:1 984/2980 loss:4.1321 2022-11-09 19:24:44,120 - INFO - main.py - train - 68 - 【train】 epoch:1 985/2980 loss:7.4753 2022-11-09 19:24:45,385 - INFO - main.py - train - 68 - 【train】 epoch:1 986/2980 loss:9.9120 2022-11-09 19:24:46,783 - INFO - main.py - train - 68 - 【train】 epoch:1 987/2980 loss:6.6775 2022-11-09 19:24:48,048 - INFO - main.py - train - 68 - 【train】 epoch:1 988/2980 loss:14.0884 2022-11-09 19:24:49,845 - INFO - main.py - train - 68 - 【train】 epoch:1 989/2980 loss:9.5311 2022-11-09 19:24:51,047 - INFO - main.py - train - 68 - 【train】 epoch:1 990/2980 loss:7.7634 2022-11-09 19:24:52,282 - INFO - main.py - train - 68 - 【train】 epoch:1 991/2980 loss:10.1512 2022-11-09 19:24:53,578 - INFO - main.py - train - 68 - 【train】 epoch:1 992/2980 loss:0.8114 2022-11-09 19:24:54,937 - INFO - main.py - train - 68 - 【train】 epoch:1 993/2980 loss:5.4784 2022-11-09 19:24:56,327 - INFO - main.py - train - 68 - 【train】 epoch:1 994/2980 loss:1.2686 2022-11-09 19:24:57,530 - INFO - main.py - train - 68 - 【train】 epoch:1 995/2980 loss:1.6239 2022-11-09 19:24:58,749 - INFO - main.py - train - 68 - 【train】 epoch:1 996/2980 loss:13.3472 2022-11-09 19:25:00,373 - INFO - main.py - train - 68 - 【train】 epoch:1 997/2980 loss:6.1109 2022-11-09 19:25:01,607 - INFO - main.py - train - 68 - 【train】 epoch:1 998/2980 loss:18.7407 2022-11-09 19:25:02,795 - INFO - main.py - train - 68 - 【train】 epoch:1 999/2980 loss:3.9205 2022-11-09 19:25:04,247 - INFO - main.py - train - 68 - 【train】 epoch:1 1000/2980 loss:9.3895 2022-11-09 19:25:05,450 - INFO - main.py - train - 68 - 【train】 epoch:1 1001/2980 loss:4.9154 2022-11-09 19:25:06,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1002/2980 loss:3.9290 2022-11-09 19:25:08,278 - INFO - main.py - train - 68 - 【train】 epoch:1 1003/2980 loss:8.8142 2022-11-09 19:25:09,777 - INFO - main.py - train - 68 - 【train】 epoch:1 1004/2980 loss:25.2054 2022-11-09 19:25:11,152 - INFO - main.py - train - 68 - 【train】 epoch:1 1005/2980 loss:14.7895 2022-11-09 19:25:12,558 - INFO - main.py - train - 68 - 【train】 epoch:1 1006/2980 loss:10.1668 2022-11-09 19:25:13,761 - INFO - main.py - train - 68 - 【train】 epoch:1 1007/2980 loss:22.6615 2022-11-09 19:25:15,167 - INFO - main.py - train - 68 - 【train】 epoch:1 1008/2980 loss:26.2800 2022-11-09 19:25:16,416 - INFO - main.py - train - 68 - 【train】 epoch:1 1009/2980 loss:9.8442 2022-11-09 19:25:17,651 - INFO - main.py - train - 68 - 【train】 epoch:1 1010/2980 loss:10.6412 2022-11-09 19:25:18,947 - INFO - main.py - train - 68 - 【train】 epoch:1 1011/2980 loss:8.1007 2022-11-09 19:25:20,166 - INFO - main.py - train - 68 - 【train】 epoch:1 1012/2980 loss:8.4580 2022-11-09 19:25:21,415 - INFO - main.py - train - 68 - 【train】 epoch:1 1013/2980 loss:20.1312 2022-11-09 19:25:22,899 - INFO - main.py - train - 68 - 【train】 epoch:1 1014/2980 loss:21.3305 2022-11-09 19:25:24,149 - INFO - main.py - train - 68 - 【train】 epoch:1 1015/2980 loss:0.9938 2022-11-09 19:25:25,399 - INFO - main.py - train - 68 - 【train】 epoch:1 1016/2980 loss:9.5907 2022-11-09 19:25:26,711 - INFO - main.py - train - 68 - 【train】 epoch:1 1017/2980 loss:5.9076 2022-11-09 19:25:27,914 - INFO - main.py - train - 68 - 【train】 epoch:1 1018/2980 loss:20.2133 2022-11-09 19:25:29,398 - INFO - main.py - train - 68 - 【train】 epoch:1 1019/2980 loss:19.3834 2022-11-09 19:25:30,616 - INFO - main.py - train - 68 - 【train】 epoch:1 1020/2980 loss:22.4818 2022-11-09 19:25:31,913 - INFO - main.py - train - 68 - 【train】 epoch:1 1021/2980 loss:6.6624 2022-11-09 19:25:33,241 - INFO - main.py - train - 68 - 【train】 epoch:1 1022/2980 loss:6.7862 2022-11-09 19:25:34,537 - INFO - main.py - train - 68 - 【train】 epoch:1 1023/2980 loss:7.2648 2022-11-09 19:25:35,771 - INFO - main.py - train - 68 - 【train】 epoch:1 1024/2980 loss:8.5652 2022-11-09 19:25:37,068 - INFO - main.py - train - 68 - 【train】 epoch:1 1025/2980 loss:4.5263 2022-11-09 19:25:38,536 - INFO - main.py - train - 68 - 【train】 epoch:1 1026/2980 loss:4.0087 2022-11-09 19:25:39,755 - INFO - main.py - train - 68 - 【train】 epoch:1 1027/2980 loss:5.4438 2022-11-09 19:25:41,036 - INFO - main.py - train - 68 - 【train】 epoch:1 1028/2980 loss:4.4680 2022-11-09 19:25:42,754 - INFO - main.py - train - 68 - 【train】 epoch:1 1029/2980 loss:4.1107 2022-11-09 19:25:43,957 - INFO - main.py - train - 68 - 【train】 epoch:1 1030/2980 loss:4.9934 2022-11-09 19:25:45,175 - INFO - main.py - train - 68 - 【train】 epoch:1 1031/2980 loss:15.6807 2022-11-09 19:25:46,691 - INFO - main.py - train - 68 - 【train】 epoch:1 1032/2980 loss:6.0825 2022-11-09 19:25:47,940 - INFO - main.py - train - 68 - 【train】 epoch:1 1033/2980 loss:9.6429 2022-11-09 19:25:49,174 - INFO - main.py - train - 68 - 【train】 epoch:1 1034/2980 loss:8.9120 2022-11-09 19:25:50,440 - INFO - main.py - train - 68 - 【train】 epoch:1 1035/2980 loss:11.8177 2022-11-09 19:25:51,658 - INFO - main.py - train - 68 - 【train】 epoch:1 1036/2980 loss:22.2524 2022-11-09 19:25:52,845 - INFO - main.py - train - 68 - 【train】 epoch:1 1037/2980 loss:4.9980 2022-11-09 19:25:54,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1038/2980 loss:12.2012 2022-11-09 19:25:55,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1039/2980 loss:15.2086 2022-11-09 19:25:56,704 - INFO - main.py - train - 68 - 【train】 epoch:1 1040/2980 loss:18.6521 2022-11-09 19:25:57,954 - INFO - main.py - train - 68 - 【train】 epoch:1 1041/2980 loss:2.0149 2022-11-09 19:25:59,438 - INFO - main.py - train - 68 - 【train】 epoch:1 1042/2980 loss:13.3363 2022-11-09 19:26:00,656 - INFO - main.py - train - 68 - 【train】 epoch:1 1043/2980 loss:1.9957 2022-11-09 19:26:01,875 - INFO - main.py - train - 68 - 【train】 epoch:1 1044/2980 loss:7.9954 2022-11-09 19:26:03,499 - INFO - main.py - train - 68 - 【train】 epoch:1 1045/2980 loss:20.6829 2022-11-09 19:26:04,796 - INFO - main.py - train - 68 - 【train】 epoch:1 1046/2980 loss:4.1753 2022-11-09 19:26:06,186 - INFO - main.py - train - 68 - 【train】 epoch:1 1047/2980 loss:3.3975 2022-11-09 19:26:07,451 - INFO - main.py - train - 68 - 【train】 epoch:1 1048/2980 loss:2.2007 2022-11-09 19:26:08,639 - INFO - main.py - train - 68 - 【train】 epoch:1 1049/2980 loss:3.5119 2022-11-09 19:26:09,888 - INFO - main.py - train - 68 - 【train】 epoch:1 1050/2980 loss:5.3834 2022-11-09 19:26:11,325 - INFO - main.py - train - 68 - 【train】 epoch:1 1051/2980 loss:6.3615 2022-11-09 19:26:12,716 - INFO - main.py - train - 68 - 【train】 epoch:1 1052/2980 loss:4.7635 2022-11-09 19:26:13,950 - INFO - main.py - train - 68 - 【train】 epoch:1 1053/2980 loss:6.1989 2022-11-09 19:26:15,231 - INFO - main.py - train - 68 - 【train】 epoch:1 1054/2980 loss:10.8073 2022-11-09 19:26:16,449 - INFO - main.py - train - 68 - 【train】 epoch:1 1055/2980 loss:11.5276 2022-11-09 19:26:18,011 - INFO - main.py - train - 68 - 【train】 epoch:1 1056/2980 loss:4.8633 2022-11-09 19:26:19,199 - INFO - main.py - train - 68 - 【train】 epoch:1 1057/2980 loss:5.0773 2022-11-09 19:26:20,542 - INFO - main.py - train - 68 - 【train】 epoch:1 1058/2980 loss:9.4993 2022-11-09 19:26:21,792 - INFO - main.py - train - 68 - 【train】 epoch:1 1059/2980 loss:21.5765 2022-11-09 19:26:23,010 - INFO - main.py - train - 68 - 【train】 epoch:1 1060/2980 loss:4.0365 2022-11-09 19:26:24,401 - INFO - main.py - train - 68 - 【train】 epoch:1 1061/2980 loss:2.5065 2022-11-09 19:26:25,619 - INFO - main.py - train - 68 - 【train】 epoch:1 1062/2980 loss:3.1360 2022-11-09 19:26:26,822 - INFO - main.py - train - 68 - 【train】 epoch:1 1063/2980 loss:7.6761 2022-11-09 19:26:28,118 - INFO - main.py - train - 68 - 【train】 epoch:1 1064/2980 loss:8.9882 2022-11-09 19:26:29,415 - INFO - main.py - train - 68 - 【train】 epoch:1 1065/2980 loss:1.6476 2022-11-09 19:26:30,774 - INFO - main.py - train - 68 - 【train】 epoch:1 1066/2980 loss:16.6879 2022-11-09 19:26:31,993 - INFO - main.py - train - 68 - 【train】 epoch:1 1067/2980 loss:5.3940 2022-11-09 19:26:33,461 - INFO - main.py - train - 68 - 【train】 epoch:1 1068/2980 loss:19.6579 2022-11-09 19:26:34,679 - INFO - main.py - train - 68 - 【train】 epoch:1 1069/2980 loss:14.2421 2022-11-09 19:26:35,945 - INFO - main.py - train - 68 - 【train】 epoch:1 1070/2980 loss:2.7627 2022-11-09 19:26:37,179 - INFO - main.py - train - 68 - 【train】 epoch:1 1071/2980 loss:7.7115 2022-11-09 19:26:38,366 - INFO - main.py - train - 68 - 【train】 epoch:1 1072/2980 loss:9.9180 2022-11-09 19:26:39,647 - INFO - main.py - train - 68 - 【train】 epoch:1 1073/2980 loss:11.9397 2022-11-09 19:26:40,959 - INFO - main.py - train - 68 - 【train】 epoch:1 1074/2980 loss:2.3427 2022-11-09 19:26:42,162 - INFO - main.py - train - 68 - 【train】 epoch:1 1075/2980 loss:13.1314 2022-11-09 19:26:43,490 - INFO - main.py - train - 68 - 【train】 epoch:1 1076/2980 loss:12.9195 2022-11-09 19:26:44,989 - INFO - main.py - train - 68 - 【train】 epoch:1 1077/2980 loss:7.5304 2022-11-09 19:26:46,255 - INFO - main.py - train - 68 - 【train】 epoch:1 1078/2980 loss:12.7341 2022-11-09 19:26:47,598 - INFO - main.py - train - 68 - 【train】 epoch:1 1079/2980 loss:20.2626 2022-11-09 19:26:49,035 - INFO - main.py - train - 68 - 【train】 epoch:1 1080/2980 loss:27.6249 2022-11-09 19:26:50,441 - INFO - main.py - train - 68 - 【train】 epoch:1 1081/2980 loss:26.4278 2022-11-09 19:26:52,019 - INFO - main.py - train - 68 - 【train】 epoch:1 1082/2980 loss:20.0259 2022-11-09 19:26:53,347 - INFO - main.py - train - 68 - 【train】 epoch:1 1083/2980 loss:15.7004 2022-11-09 19:26:54,800 - INFO - main.py - train - 68 - 【train】 epoch:1 1084/2980 loss:9.8219 2022-11-09 19:26:56,034 - INFO - main.py - train - 68 - 【train】 epoch:1 1085/2980 loss:12.1918 2022-11-09 19:26:57,643 - INFO - main.py - train - 68 - 【train】 epoch:1 1086/2980 loss:18.4264 2022-11-09 19:26:59,220 - INFO - main.py - train - 68 - 【train】 epoch:1 1087/2980 loss:13.3307 2022-11-09 19:27:00,455 - INFO - main.py - train - 68 - 【train】 epoch:1 1088/2980 loss:2.2517 2022-11-09 19:27:01,845 - INFO - main.py - train - 68 - 【train】 epoch:1 1089/2980 loss:15.3607 2022-11-09 19:27:03,360 - INFO - main.py - train - 68 - 【train】 epoch:1 1090/2980 loss:8.2730 2022-11-09 19:27:04,766 - INFO - main.py - train - 68 - 【train】 epoch:1 1091/2980 loss:29.9637 2022-11-09 19:27:06,156 - INFO - main.py - train - 68 - 【train】 epoch:1 1092/2980 loss:7.2467 2022-11-09 19:27:07,453 - INFO - main.py - train - 68 - 【train】 epoch:1 1093/2980 loss:2.2733 2022-11-09 19:27:08,828 - INFO - main.py - train - 68 - 【train】 epoch:1 1094/2980 loss:18.5029 2022-11-09 19:27:10,077 - INFO - main.py - train - 68 - 【train】 epoch:1 1095/2980 loss:5.3554 2022-11-09 19:27:11,546 - INFO - main.py - train - 68 - 【train】 epoch:1 1096/2980 loss:8.3989 2022-11-09 19:27:12,952 - INFO - main.py - train - 68 - 【train】 epoch:1 1097/2980 loss:15.8151 2022-11-09 19:27:14,404 - INFO - main.py - train - 68 - 【train】 epoch:1 1098/2980 loss:10.5382 2022-11-09 19:27:15,607 - INFO - main.py - train - 68 - 【train】 epoch:1 1099/2980 loss:10.4130 2022-11-09 19:27:17,497 - INFO - main.py - train - 68 - 【train】 epoch:1 1100/2980 loss:3.8703 2022-11-09 19:27:18,732 - INFO - main.py - train - 68 - 【train】 epoch:1 1101/2980 loss:7.9366 2022-11-09 19:27:20,137 - INFO - main.py - train - 68 - 【train】 epoch:1 1102/2980 loss:18.3127 2022-11-09 19:27:21,512 - INFO - main.py - train - 68 - 【train】 epoch:1 1103/2980 loss:23.4215 2022-11-09 19:27:22,949 - INFO - main.py - train - 68 - 【train】 epoch:1 1104/2980 loss:10.5717 2022-11-09 19:27:24,152 - INFO - main.py - train - 68 - 【train】 epoch:1 1105/2980 loss:9.8636 2022-11-09 19:27:25,339 - INFO - main.py - train - 68 - 【train】 epoch:1 1106/2980 loss:11.6966 2022-11-09 19:27:26,620 - INFO - main.py - train - 68 - 【train】 epoch:1 1107/2980 loss:10.2719 2022-11-09 19:27:28,011 - INFO - main.py - train - 68 - 【train】 epoch:1 1108/2980 loss:12.2258 2022-11-09 19:27:29,276 - INFO - main.py - train - 68 - 【train】 epoch:1 1109/2980 loss:18.3887 2022-11-09 19:27:30,838 - INFO - main.py - train - 68 - 【train】 epoch:1 1110/2980 loss:38.7695 2022-11-09 19:27:32,057 - INFO - main.py - train - 68 - 【train】 epoch:1 1111/2980 loss:3.1267 2022-11-09 19:27:33,462 - INFO - main.py - train - 68 - 【train】 epoch:1 1112/2980 loss:11.3574 2022-11-09 19:27:34,712 - INFO - main.py - train - 68 - 【train】 epoch:1 1113/2980 loss:15.5102 2022-11-09 19:27:35,993 - INFO - main.py - train - 68 - 【train】 epoch:1 1114/2980 loss:2.0789 2022-11-09 19:27:37,180 - INFO - main.py - train - 68 - 【train】 epoch:1 1115/2980 loss:2.7797 2022-11-09 19:27:38,446 - INFO - main.py - train - 68 - 【train】 epoch:1 1116/2980 loss:23.5745 2022-11-09 19:27:39,664 - INFO - main.py - train - 68 - 【train】 epoch:1 1117/2980 loss:16.7361 2022-11-09 19:27:41,023 - INFO - main.py - train - 68 - 【train】 epoch:1 1118/2980 loss:7.7123 2022-11-09 19:27:42,382 - INFO - main.py - train - 68 - 【train】 epoch:1 1119/2980 loss:13.5116 2022-11-09 19:27:43,819 - INFO - main.py - train - 68 - 【train】 epoch:1 1120/2980 loss:8.4412 2022-11-09 19:27:45,038 - INFO - main.py - train - 68 - 【train】 epoch:1 1121/2980 loss:15.0331 2022-11-09 19:27:46,225 - INFO - main.py - train - 68 - 【train】 epoch:1 1122/2980 loss:4.7430 2022-11-09 19:27:47,662 - INFO - main.py - train - 68 - 【train】 epoch:1 1123/2980 loss:11.1311 2022-11-09 19:27:49,037 - INFO - main.py - train - 68 - 【train】 epoch:1 1124/2980 loss:6.8563 2022-11-09 19:27:50,505 - INFO - main.py - train - 68 - 【train】 epoch:1 1125/2980 loss:5.6798 2022-11-09 19:27:51,818 - INFO - main.py - train - 68 - 【train】 epoch:1 1126/2980 loss:9.8034 2022-11-09 19:27:53,380 - INFO - main.py - train - 68 - 【train】 epoch:1 1127/2980 loss:7.5378 2022-11-09 19:27:54,864 - INFO - main.py - train - 68 - 【train】 epoch:1 1128/2980 loss:6.3706 2022-11-09 19:27:56,207 - INFO - main.py - train - 68 - 【train】 epoch:1 1129/2980 loss:2.4588 2022-11-09 19:27:57,488 - INFO - main.py - train - 68 - 【train】 epoch:1 1130/2980 loss:11.6378 2022-11-09 19:27:58,847 - INFO - main.py - train - 68 - 【train】 epoch:1 1131/2980 loss:31.6859 2022-11-09 19:28:00,284 - INFO - main.py - train - 68 - 【train】 epoch:1 1132/2980 loss:3.6792 2022-11-09 19:28:01,534 - INFO - main.py - train - 68 - 【train】 epoch:1 1133/2980 loss:2.5789 2022-11-09 19:28:02,737 - INFO - main.py - train - 68 - 【train】 epoch:1 1134/2980 loss:16.1003 2022-11-09 19:28:03,940 - INFO - main.py - train - 68 - 【train】 epoch:1 1135/2980 loss:7.1980 2022-11-09 19:28:05,299 - INFO - main.py - train - 68 - 【train】 epoch:1 1136/2980 loss:14.2225 2022-11-09 19:28:06,939 - INFO - main.py - train - 68 - 【train】 epoch:1 1137/2980 loss:26.5985 2022-11-09 19:28:08,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1138/2980 loss:13.1967 2022-11-09 19:28:09,735 - INFO - main.py - train - 68 - 【train】 epoch:1 1139/2980 loss:4.8948 2022-11-09 19:28:11,063 - INFO - main.py - train - 68 - 【train】 epoch:1 1140/2980 loss:16.1298 2022-11-09 19:28:12,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1141/2980 loss:6.1751 2022-11-09 19:28:13,594 - INFO - main.py - train - 68 - 【train】 epoch:1 1142/2980 loss:17.1040 2022-11-09 19:28:14,812 - INFO - main.py - train - 68 - 【train】 epoch:1 1143/2980 loss:8.6583 2022-11-09 19:28:16,015 - INFO - main.py - train - 68 - 【train】 epoch:1 1144/2980 loss:12.7346 2022-11-09 19:28:17,343 - INFO - main.py - train - 68 - 【train】 epoch:1 1145/2980 loss:7.2559 2022-11-09 19:28:18,561 - INFO - main.py - train - 68 - 【train】 epoch:1 1146/2980 loss:3.4705 2022-11-09 19:28:19,967 - INFO - main.py - train - 68 - 【train】 epoch:1 1147/2980 loss:7.8344 2022-11-09 19:28:21,420 - INFO - main.py - train - 68 - 【train】 epoch:1 1148/2980 loss:7.4361 2022-11-09 19:28:22,826 - INFO - main.py - train - 68 - 【train】 epoch:1 1149/2980 loss:20.7975 2022-11-09 19:28:24,279 - INFO - main.py - train - 68 - 【train】 epoch:1 1150/2980 loss:3.8787 2022-11-09 19:28:25,482 - INFO - main.py - train - 68 - 【train】 epoch:1 1151/2980 loss:26.9503 2022-11-09 19:28:26,747 - INFO - main.py - train - 68 - 【train】 epoch:1 1152/2980 loss:6.5833 2022-11-09 19:28:27,997 - INFO - main.py - train - 68 - 【train】 epoch:1 1153/2980 loss:18.6551 2022-11-09 19:28:29,246 - INFO - main.py - train - 68 - 【train】 epoch:1 1154/2980 loss:10.7973 2022-11-09 19:28:30,449 - INFO - main.py - train - 68 - 【train】 epoch:1 1155/2980 loss:5.7823 2022-11-09 19:28:31,714 - INFO - main.py - train - 68 - 【train】 epoch:1 1156/2980 loss:5.4180 2022-11-09 19:28:32,949 - INFO - main.py - train - 68 - 【train】 epoch:1 1157/2980 loss:10.3670 2022-11-09 19:28:34,433 - INFO - main.py - train - 68 - 【train】 epoch:1 1158/2980 loss:11.9582 2022-11-09 19:28:35,651 - INFO - main.py - train - 68 - 【train】 epoch:1 1159/2980 loss:12.5801 2022-11-09 19:28:37,026 - INFO - main.py - train - 68 - 【train】 epoch:1 1160/2980 loss:12.4812 2022-11-09 19:28:38,244 - INFO - main.py - train - 68 - 【train】 epoch:1 1161/2980 loss:13.6296 2022-11-09 19:28:39,447 - INFO - main.py - train - 68 - 【train】 epoch:1 1162/2980 loss:4.4591 2022-11-09 19:28:40,790 - INFO - main.py - train - 68 - 【train】 epoch:1 1163/2980 loss:11.0720 2022-11-09 19:28:42,368 - INFO - main.py - train - 68 - 【train】 epoch:1 1164/2980 loss:7.7031 2022-11-09 19:28:43,618 - INFO - main.py - train - 68 - 【train】 epoch:1 1165/2980 loss:12.3201 2022-11-09 19:28:45,367 - INFO - main.py - train - 68 - 【train】 epoch:1 1166/2980 loss:11.2918 2022-11-09 19:28:46,789 - INFO - main.py - train - 68 - 【train】 epoch:1 1167/2980 loss:10.6639 2022-11-09 19:28:47,976 - INFO - main.py - train - 68 - 【train】 epoch:1 1168/2980 loss:2.6936 2022-11-09 19:28:49,304 - INFO - main.py - train - 68 - 【train】 epoch:1 1169/2980 loss:41.1356 2022-11-09 19:28:50,757 - INFO - main.py - train - 68 - 【train】 epoch:1 1170/2980 loss:1.2310 2022-11-09 19:28:52,007 - INFO - main.py - train - 68 - 【train】 epoch:1 1171/2980 loss:12.0690 2022-11-09 19:28:53,256 - INFO - main.py - train - 68 - 【train】 epoch:1 1172/2980 loss:4.8254 2022-11-09 19:28:54,553 - INFO - main.py - train - 68 - 【train】 epoch:1 1173/2980 loss:11.1647 2022-11-09 19:28:55,771 - INFO - main.py - train - 68 - 【train】 epoch:1 1174/2980 loss:8.6579 2022-11-09 19:28:56,959 - INFO - main.py - train - 68 - 【train】 epoch:1 1175/2980 loss:1.2878 2022-11-09 19:28:58,255 - INFO - main.py - train - 68 - 【train】 epoch:1 1176/2980 loss:0.4050 2022-11-09 19:28:59,442 - INFO - main.py - train - 68 - 【train】 epoch:1 1177/2980 loss:1.0231 2022-11-09 19:29:00,786 - INFO - main.py - train - 68 - 【train】 epoch:1 1178/2980 loss:22.5190 2022-11-09 19:29:02,004 - INFO - main.py - train - 68 - 【train】 epoch:1 1179/2980 loss:6.2317 2022-11-09 19:29:03,332 - INFO - main.py - train - 68 - 【train】 epoch:1 1180/2980 loss:23.4619 2022-11-09 19:29:04,519 - INFO - main.py - train - 68 - 【train】 epoch:1 1181/2980 loss:26.3393 2022-11-09 19:29:05,941 - INFO - main.py - train - 68 - 【train】 epoch:1 1182/2980 loss:4.2402 2022-11-09 19:29:07,222 - INFO - main.py - train - 68 - 【train】 epoch:1 1183/2980 loss:5.5948 2022-11-09 19:29:08,503 - INFO - main.py - train - 68 - 【train】 epoch:1 1184/2980 loss:5.2040 2022-11-09 19:29:09,737 - INFO - main.py - train - 68 - 【train】 epoch:1 1185/2980 loss:11.0268 2022-11-09 19:29:11,002 - INFO - main.py - train - 68 - 【train】 epoch:1 1186/2980 loss:6.2717 2022-11-09 19:29:12,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1187/2980 loss:10.6066 2022-11-09 19:29:13,455 - INFO - main.py - train - 68 - 【train】 epoch:1 1188/2980 loss:13.4137 2022-11-09 19:29:14,720 - INFO - main.py - train - 68 - 【train】 epoch:1 1189/2980 loss:16.4662 2022-11-09 19:29:16,048 - INFO - main.py - train - 68 - 【train】 epoch:1 1190/2980 loss:7.5184 2022-11-09 19:29:17,251 - INFO - main.py - train - 68 - 【train】 epoch:1 1191/2980 loss:7.4271 2022-11-09 19:29:21,859 - INFO - main.py - train - 68 - 【train】 epoch:2 1192/2980 loss:5.9312 2022-11-09 19:29:23,077 - INFO - main.py - train - 68 - 【train】 epoch:2 1193/2980 loss:14.9066 2022-11-09 19:29:24,686 - INFO - main.py - train - 68 - 【train】 epoch:2 1194/2980 loss:1.6103 2022-11-09 19:29:26,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1195/2980 loss:3.4713 2022-11-09 19:29:27,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1196/2980 loss:11.8361 2022-11-09 19:29:28,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1197/2980 loss:31.2257 2022-11-09 19:29:30,107 - INFO - main.py - train - 68 - 【train】 epoch:2 1198/2980 loss:5.3805 2022-11-09 19:29:31,404 - INFO - main.py - train - 68 - 【train】 epoch:2 1199/2980 loss:7.4820 2022-11-09 19:29:32,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1200/2980 loss:7.2189 2022-11-09 19:29:34,137 - INFO - main.py - train - 68 - 【train】 epoch:2 1201/2980 loss:11.8843 2022-11-09 19:29:35,653 - INFO - main.py - train - 68 - 【train】 epoch:2 1202/2980 loss:5.1297 2022-11-09 19:29:36,902 - INFO - main.py - train - 68 - 【train】 epoch:2 1203/2980 loss:14.9018 2022-11-09 19:29:38,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1204/2980 loss:21.9160 2022-11-09 19:29:39,558 - INFO - main.py - train - 68 - 【train】 epoch:2 1205/2980 loss:13.7391 2022-11-09 19:29:40,792 - INFO - main.py - train - 68 - 【train】 epoch:2 1206/2980 loss:21.7070 2022-11-09 19:29:42,198 - INFO - main.py - train - 68 - 【train】 epoch:2 1207/2980 loss:31.7543 2022-11-09 19:29:43,541 - INFO - main.py - train - 68 - 【train】 epoch:2 1208/2980 loss:1.5070 2022-11-09 19:29:44,807 - INFO - main.py - train - 68 - 【train】 epoch:2 1209/2980 loss:2.2591 2022-11-09 19:29:46,134 - INFO - main.py - train - 68 - 【train】 epoch:2 1210/2980 loss:4.9962 2022-11-09 19:29:47,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1211/2980 loss:8.4591 2022-11-09 19:29:48,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1212/2980 loss:6.1013 2022-11-09 19:29:49,930 - INFO - main.py - train - 68 - 【train】 epoch:2 1213/2980 loss:2.9235 2022-11-09 19:29:51,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1214/2980 loss:14.2195 2022-11-09 19:29:52,492 - INFO - main.py - train - 68 - 【train】 epoch:2 1215/2980 loss:2.6164 2022-11-09 19:29:53,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1216/2980 loss:2.3886 2022-11-09 19:29:54,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1217/2980 loss:3.6908 2022-11-09 19:29:56,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1218/2980 loss:4.7959 2022-11-09 19:29:57,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1219/2980 loss:4.8749 2022-11-09 19:29:58,694 - INFO - main.py - train - 68 - 【train】 epoch:2 1220/2980 loss:11.1700 2022-11-09 19:29:59,913 - INFO - main.py - train - 68 - 【train】 epoch:2 1221/2980 loss:4.6760 2022-11-09 19:30:01,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1222/2980 loss:2.7570 2022-11-09 19:30:02,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1223/2980 loss:6.9388 2022-11-09 19:30:03,787 - INFO - main.py - train - 68 - 【train】 epoch:2 1224/2980 loss:4.4132 2022-11-09 19:30:05,005 - INFO - main.py - train - 68 - 【train】 epoch:2 1225/2980 loss:3.0387 2022-11-09 19:30:06,255 - INFO - main.py - train - 68 - 【train】 epoch:2 1226/2980 loss:26.4326 2022-11-09 19:30:07,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1227/2980 loss:3.5595 2022-11-09 19:30:08,864 - INFO - main.py - train - 68 - 【train】 epoch:2 1228/2980 loss:7.2112 2022-11-09 19:30:10,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1229/2980 loss:1.1943 2022-11-09 19:30:11,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1230/2980 loss:3.6567 2022-11-09 19:30:12,738 - INFO - main.py - train - 68 - 【train】 epoch:2 1231/2980 loss:6.6868 2022-11-09 19:30:13,940 - INFO - main.py - train - 68 - 【train】 epoch:2 1232/2980 loss:5.1006 2022-11-09 19:30:15,143 - INFO - main.py - train - 68 - 【train】 epoch:2 1233/2980 loss:1.6994 2022-11-09 19:30:16,346 - INFO - main.py - train - 68 - 【train】 epoch:2 1234/2980 loss:3.2330 2022-11-09 19:30:17,674 - INFO - main.py - train - 68 - 【train】 epoch:2 1235/2980 loss:11.8045 2022-11-09 19:30:19,158 - INFO - main.py - train - 68 - 【train】 epoch:2 1236/2980 loss:21.6766 2022-11-09 19:30:20,376 - INFO - main.py - train - 68 - 【train】 epoch:2 1237/2980 loss:19.6778 2022-11-09 19:30:21,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1238/2980 loss:0.4269 2022-11-09 19:30:22,970 - INFO - main.py - train - 68 - 【train】 epoch:2 1239/2980 loss:5.4500 2022-11-09 19:30:24,204 - INFO - main.py - train - 68 - 【train】 epoch:2 1240/2980 loss:5.0252 2022-11-09 19:30:25,422 - INFO - main.py - train - 68 - 【train】 epoch:2 1241/2980 loss:10.8799 2022-11-09 19:30:26,844 - INFO - main.py - train - 68 - 【train】 epoch:2 1242/2980 loss:10.9295 2022-11-09 19:30:28,156 - INFO - main.py - train - 68 - 【train】 epoch:2 1243/2980 loss:11.9329 2022-11-09 19:30:29,406 - INFO - main.py - train - 68 - 【train】 epoch:2 1244/2980 loss:11.7753 2022-11-09 19:30:30,843 - INFO - main.py - train - 68 - 【train】 epoch:2 1245/2980 loss:14.0070 2022-11-09 19:30:32,264 - INFO - main.py - train - 68 - 【train】 epoch:2 1246/2980 loss:13.3033 2022-11-09 19:30:33,592 - INFO - main.py - train - 68 - 【train】 epoch:2 1247/2980 loss:10.3868 2022-11-09 19:30:34,779 - INFO - main.py - train - 68 - 【train】 epoch:2 1248/2980 loss:8.1032 2022-11-09 19:30:35,998 - INFO - main.py - train - 68 - 【train】 epoch:2 1249/2980 loss:2.9177 2022-11-09 19:30:37,310 - INFO - main.py - train - 68 - 【train】 epoch:2 1250/2980 loss:7.6028 2022-11-09 19:30:38,528 - INFO - main.py - train - 68 - 【train】 epoch:2 1251/2980 loss:7.1977 2022-11-09 19:30:39,919 - INFO - main.py - train - 68 - 【train】 epoch:2 1252/2980 loss:15.9074 2022-11-09 19:30:41,106 - INFO - main.py - train - 68 - 【train】 epoch:2 1253/2980 loss:9.3073 2022-11-09 19:30:42,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1254/2980 loss:6.3658 2022-11-09 19:30:43,744 - INFO - main.py - train - 68 - 【train】 epoch:2 1255/2980 loss:18.4804 2022-11-09 19:30:44,994 - INFO - main.py - train - 68 - 【train】 epoch:2 1256/2980 loss:6.7843 2022-11-09 19:30:46,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1257/2980 loss:1.2896 2022-11-09 19:30:47,555 - INFO - main.py - train - 68 - 【train】 epoch:2 1258/2980 loss:10.6856 2022-11-09 19:30:48,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1259/2980 loss:38.9316 2022-11-09 19:30:50,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1260/2980 loss:4.0998 2022-11-09 19:30:51,336 - INFO - main.py - train - 68 - 【train】 epoch:2 1261/2980 loss:57.3672 2022-11-09 19:30:52,570 - INFO - main.py - train - 68 - 【train】 epoch:2 1262/2980 loss:2.8280 2022-11-09 19:30:54,195 - INFO - main.py - train - 68 - 【train】 epoch:2 1263/2980 loss:11.6053 2022-11-09 19:30:55,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1264/2980 loss:8.5794 2022-11-09 19:30:56,678 - INFO - main.py - train - 68 - 【train】 epoch:2 1265/2980 loss:15.8244 2022-11-09 19:30:57,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1266/2980 loss:6.8546 2022-11-09 19:30:59,162 - INFO - main.py - train - 68 - 【train】 epoch:2 1267/2980 loss:2.8527 2022-11-09 19:31:00,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1268/2980 loss:5.7488 2022-11-09 19:31:01,615 - INFO - main.py - train - 68 - 【train】 epoch:2 1269/2980 loss:9.4413 2022-11-09 19:31:02,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1270/2980 loss:23.8679 2022-11-09 19:31:04,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1271/2980 loss:1.7474 2022-11-09 19:31:05,286 - INFO - main.py - train - 68 - 【train】 epoch:2 1272/2980 loss:1.7946 2022-11-09 19:31:06,504 - INFO - main.py - train - 68 - 【train】 epoch:2 1273/2980 loss:3.6684 2022-11-09 19:31:07,707 - INFO - main.py - train - 68 - 【train】 epoch:2 1274/2980 loss:5.7138 2022-11-09 19:31:09,175 - INFO - main.py - train - 68 - 【train】 epoch:2 1275/2980 loss:6.1098 2022-11-09 19:31:10,503 - INFO - main.py - train - 68 - 【train】 epoch:2 1276/2980 loss:0.5116 2022-11-09 19:31:11,831 - INFO - main.py - train - 68 - 【train】 epoch:2 1277/2980 loss:8.3896 2022-11-09 19:31:13,065 - INFO - main.py - train - 68 - 【train】 epoch:2 1278/2980 loss:11.5561 2022-11-09 19:31:14,440 - INFO - main.py - train - 68 - 【train】 epoch:2 1279/2980 loss:3.1819 2022-11-09 19:31:15,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1280/2980 loss:2.5992 2022-11-09 19:31:17,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1281/2980 loss:2.1632 2022-11-09 19:31:18,361 - INFO - main.py - train - 68 - 【train】 epoch:2 1282/2980 loss:3.8535 2022-11-09 19:31:19,751 - INFO - main.py - train - 68 - 【train】 epoch:2 1283/2980 loss:12.7827 2022-11-09 19:31:20,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1284/2980 loss:4.3655 2022-11-09 19:31:22,280 - INFO - main.py - train - 68 - 【train】 epoch:2 1285/2980 loss:3.4868 2022-11-09 19:31:23,530 - INFO - main.py - train - 68 - 【train】 epoch:2 1286/2980 loss:5.8757 2022-11-09 19:31:24,748 - INFO - main.py - train - 68 - 【train】 epoch:2 1287/2980 loss:14.7995 2022-11-09 19:31:25,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1288/2980 loss:7.3600 2022-11-09 19:31:27,279 - INFO - main.py - train - 68 - 【train】 epoch:2 1289/2980 loss:2.8638 2022-11-09 19:31:28,607 - INFO - main.py - train - 68 - 【train】 epoch:2 1290/2980 loss:13.6230 2022-11-09 19:31:30,044 - INFO - main.py - train - 68 - 【train】 epoch:2 1291/2980 loss:10.4500 2022-11-09 19:31:31,387 - INFO - main.py - train - 68 - 【train】 epoch:2 1292/2980 loss:2.7633 2022-11-09 19:31:32,700 - INFO - main.py - train - 68 - 【train】 epoch:2 1293/2980 loss:13.5237 2022-11-09 19:31:33,918 - INFO - main.py - train - 68 - 【train】 epoch:2 1294/2980 loss:8.4180 2022-11-09 19:31:35,184 - INFO - main.py - train - 68 - 【train】 epoch:2 1295/2980 loss:4.9642 2022-11-09 19:31:36,449 - INFO - main.py - train - 68 - 【train】 epoch:2 1296/2980 loss:12.7438 2022-11-09 19:31:37,683 - INFO - main.py - train - 68 - 【train】 epoch:2 1297/2980 loss:2.0078 2022-11-09 19:31:38,901 - INFO - main.py - train - 68 - 【train】 epoch:2 1298/2980 loss:7.5930 2022-11-09 19:31:40,214 - INFO - main.py - train - 68 - 【train】 epoch:2 1299/2980 loss:1.4884 2022-11-09 19:31:41,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1300/2980 loss:9.6438 2022-11-09 19:31:42,791 - INFO - main.py - train - 68 - 【train】 epoch:2 1301/2980 loss:8.6119 2022-11-09 19:31:44,134 - INFO - main.py - train - 68 - 【train】 epoch:2 1302/2980 loss:9.2808 2022-11-09 19:31:45,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1303/2980 loss:2.6145 2022-11-09 19:31:46,603 - INFO - main.py - train - 68 - 【train】 epoch:2 1304/2980 loss:1.9866 2022-11-09 19:31:47,946 - INFO - main.py - train - 68 - 【train】 epoch:2 1305/2980 loss:6.5210 2022-11-09 19:31:49,321 - INFO - main.py - train - 68 - 【train】 epoch:2 1306/2980 loss:8.1370 2022-11-09 19:31:50,695 - INFO - main.py - train - 68 - 【train】 epoch:2 1307/2980 loss:0.5876 2022-11-09 19:31:51,961 - INFO - main.py - train - 68 - 【train】 epoch:2 1308/2980 loss:16.5477 2022-11-09 19:31:53,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1309/2980 loss:2.3536 2022-11-09 19:31:54,445 - INFO - main.py - train - 68 - 【train】 epoch:2 1310/2980 loss:6.2584 2022-11-09 19:31:55,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1311/2980 loss:12.1786 2022-11-09 19:31:57,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1312/2980 loss:14.9160 2022-11-09 19:31:58,366 - INFO - main.py - train - 68 - 【train】 epoch:2 1313/2980 loss:15.9308 2022-11-09 19:31:59,584 - INFO - main.py - train - 68 - 【train】 epoch:2 1314/2980 loss:1.0346 2022-11-09 19:32:00,865 - INFO - main.py - train - 68 - 【train】 epoch:2 1315/2980 loss:4.4991 2022-11-09 19:32:02,099 - INFO - main.py - train - 68 - 【train】 epoch:2 1316/2980 loss:3.6086 2022-11-09 19:32:03,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1317/2980 loss:12.1863 2022-11-09 19:32:04,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1318/2980 loss:7.7448 2022-11-09 19:32:06,114 - INFO - main.py - train - 68 - 【train】 epoch:2 1319/2980 loss:14.1663 2022-11-09 19:32:07,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1320/2980 loss:5.9250 2022-11-09 19:32:08,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1321/2980 loss:4.9702 2022-11-09 19:32:10,207 - INFO - main.py - train - 68 - 【train】 epoch:2 1322/2980 loss:5.1589 2022-11-09 19:32:11,534 - INFO - main.py - train - 68 - 【train】 epoch:2 1323/2980 loss:7.8822 2022-11-09 19:32:12,768 - INFO - main.py - train - 68 - 【train】 epoch:2 1324/2980 loss:22.6576 2022-11-09 19:32:14,034 - INFO - main.py - train - 68 - 【train】 epoch:2 1325/2980 loss:4.9422 2022-11-09 19:32:15,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1326/2980 loss:4.4571 2022-11-09 19:32:16,689 - INFO - main.py - train - 68 - 【train】 epoch:2 1327/2980 loss:3.5363 2022-11-09 19:32:18,002 - INFO - main.py - train - 68 - 【train】 epoch:2 1328/2980 loss:8.8940 2022-11-09 19:32:19,298 - INFO - main.py - train - 68 - 【train】 epoch:2 1329/2980 loss:3.0458 2022-11-09 19:32:20,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1330/2980 loss:26.7973 2022-11-09 19:32:21,969 - INFO - main.py - train - 68 - 【train】 epoch:2 1331/2980 loss:11.0334 2022-11-09 19:32:23,219 - INFO - main.py - train - 68 - 【train】 epoch:2 1332/2980 loss:1.3341 2022-11-09 19:32:24,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1333/2980 loss:10.8333 2022-11-09 19:32:25,672 - INFO - main.py - train - 68 - 【train】 epoch:2 1334/2980 loss:0.2948 2022-11-09 19:32:26,921 - INFO - main.py - train - 68 - 【train】 epoch:2 1335/2980 loss:10.5924 2022-11-09 19:32:28,171 - INFO - main.py - train - 68 - 【train】 epoch:2 1336/2980 loss:21.9603 2022-11-09 19:32:29,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1337/2980 loss:3.8861 2022-11-09 19:32:30,827 - INFO - main.py - train - 68 - 【train】 epoch:2 1338/2980 loss:10.2856 2022-11-09 19:32:32,030 - INFO - main.py - train - 68 - 【train】 epoch:2 1339/2980 loss:4.6755 2022-11-09 19:32:33,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1340/2980 loss:4.1412 2022-11-09 19:32:34,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1341/2980 loss:0.6902 2022-11-09 19:32:35,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1342/2980 loss:3.9085 2022-11-09 19:32:36,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1343/2980 loss:5.4741 2022-11-09 19:32:38,247 - INFO - main.py - train - 68 - 【train】 epoch:2 1344/2980 loss:20.8293 2022-11-09 19:32:39,497 - INFO - main.py - train - 68 - 【train】 epoch:2 1345/2980 loss:5.2336 2022-11-09 19:32:40,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1346/2980 loss:25.2069 2022-11-09 19:32:42,074 - INFO - main.py - train - 68 - 【train】 epoch:2 1347/2980 loss:6.1646 2022-11-09 19:32:43,386 - INFO - main.py - train - 68 - 【train】 epoch:2 1348/2980 loss:3.5639 2022-11-09 19:32:44,620 - INFO - main.py - train - 68 - 【train】 epoch:2 1349/2980 loss:1.6796 2022-11-09 19:32:45,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1350/2980 loss:3.1485 2022-11-09 19:32:47,151 - INFO - main.py - train - 68 - 【train】 epoch:2 1351/2980 loss:5.6238 2022-11-09 19:32:48,416 - INFO - main.py - train - 68 - 【train】 epoch:2 1352/2980 loss:8.1730 2022-11-09 19:32:49,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1353/2980 loss:30.0854 2022-11-09 19:32:51,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1354/2980 loss:15.1083 2022-11-09 19:32:52,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1355/2980 loss:8.9187 2022-11-09 19:32:53,603 - INFO - main.py - train - 68 - 【train】 epoch:2 1356/2980 loss:3.4447 2022-11-09 19:32:54,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1357/2980 loss:13.2064 2022-11-09 19:32:56,352 - INFO - main.py - train - 68 - 【train】 epoch:2 1358/2980 loss:5.8092 2022-11-09 19:32:57,539 - INFO - main.py - train - 68 - 【train】 epoch:2 1359/2980 loss:12.4419 2022-11-09 19:32:58,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1360/2980 loss:3.8046 2022-11-09 19:33:00,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1361/2980 loss:3.4921 2022-11-09 19:33:01,304 - INFO - main.py - train - 68 - 【train】 epoch:2 1362/2980 loss:2.5405 2022-11-09 19:33:02,507 - INFO - main.py - train - 68 - 【train】 epoch:2 1363/2980 loss:0.9950 2022-11-09 19:33:03,850 - INFO - main.py - train - 68 - 【train】 epoch:2 1364/2980 loss:27.3466 2022-11-09 19:33:05,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1365/2980 loss:4.2244 2022-11-09 19:33:06,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1366/2980 loss:34.9261 2022-11-09 19:33:07,631 - INFO - main.py - train - 68 - 【train】 epoch:2 1367/2980 loss:8.9894 2022-11-09 19:33:08,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1368/2980 loss:4.1724 2022-11-09 19:33:10,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1369/2980 loss:4.6279 2022-11-09 19:33:11,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1370/2980 loss:2.8110 2022-11-09 19:33:12,676 - INFO - main.py - train - 68 - 【train】 epoch:2 1371/2980 loss:27.5466 2022-11-09 19:33:14,004 - INFO - main.py - train - 68 - 【train】 epoch:2 1372/2980 loss:5.2144 2022-11-09 19:33:15,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1373/2980 loss:4.0916 2022-11-09 19:33:16,472 - INFO - main.py - train - 68 - 【train】 epoch:2 1374/2980 loss:4.4027 2022-11-09 19:33:17,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1375/2980 loss:3.3075 2022-11-09 19:33:18,847 - INFO - main.py - train - 68 - 【train】 epoch:2 1376/2980 loss:0.5565 2022-11-09 19:33:20,050 - INFO - main.py - train - 68 - 【train】 epoch:2 1377/2980 loss:7.9671 2022-11-09 19:33:21,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1378/2980 loss:6.8863 2022-11-09 19:33:22,549 - INFO - main.py - train - 68 - 【train】 epoch:2 1379/2980 loss:3.5868 2022-11-09 19:33:23,767 - INFO - main.py - train - 68 - 【train】 epoch:2 1380/2980 loss:12.2752 2022-11-09 19:33:25,033 - INFO - main.py - train - 68 - 【train】 epoch:2 1381/2980 loss:29.8150 2022-11-09 19:33:26,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1382/2980 loss:5.3303 2022-11-09 19:33:27,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1383/2980 loss:12.2962 2022-11-09 19:33:28,766 - INFO - main.py - train - 68 - 【train】 epoch:2 1384/2980 loss:8.0055 2022-11-09 19:33:30,250 - INFO - main.py - train - 68 - 【train】 epoch:2 1385/2980 loss:1.8210 2022-11-09 19:33:31,437 - INFO - main.py - train - 68 - 【train】 epoch:2 1386/2980 loss:5.4918 2022-11-09 19:33:32,703 - INFO - main.py - train - 68 - 【train】 epoch:2 1387/2980 loss:5.8735 2022-11-09 19:33:33,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1388/2980 loss:10.9118 2022-11-09 19:33:35,327 - INFO - main.py - train - 68 - 【train】 epoch:2 1389/2980 loss:5.9297 2022-11-09 19:33:36,561 - INFO - main.py - train - 68 - 【train】 epoch:2 1390/2980 loss:9.8435 2022-11-09 19:33:37,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1391/2980 loss:10.2826 2022-11-09 19:33:39,326 - INFO - main.py - train - 68 - 【train】 epoch:2 1392/2980 loss:5.8807 2022-11-09 19:33:40,779 - INFO - main.py - train - 68 - 【train】 epoch:2 1393/2980 loss:6.9847 2022-11-09 19:33:42,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1394/2980 loss:19.1031 2022-11-09 19:33:43,216 - INFO - main.py - train - 68 - 【train】 epoch:2 1395/2980 loss:2.5260 2022-11-09 19:33:44,434 - INFO - main.py - train - 68 - 【train】 epoch:2 1396/2980 loss:5.8065 2022-11-09 19:33:45,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1397/2980 loss:25.4089 2022-11-09 19:33:47,012 - INFO - main.py - train - 68 - 【train】 epoch:2 1398/2980 loss:4.8739 2022-11-09 19:33:48,512 - INFO - main.py - train - 68 - 【train】 epoch:2 1399/2980 loss:10.1784 2022-11-09 19:33:49,808 - INFO - main.py - train - 68 - 【train】 epoch:2 1400/2980 loss:2.7370 2022-11-09 19:33:51,027 - INFO - main.py - train - 68 - 【train】 epoch:2 1401/2980 loss:7.4138 2022-11-09 19:33:52,448 - INFO - main.py - train - 68 - 【train】 epoch:2 1402/2980 loss:0.7709 2022-11-09 19:33:53,854 - INFO - main.py - train - 68 - 【train】 epoch:2 1403/2980 loss:5.1997 2022-11-09 19:33:55,041 - INFO - main.py - train - 68 - 【train】 epoch:2 1404/2980 loss:1.8866 2022-11-09 19:33:56,338 - INFO - main.py - train - 68 - 【train】 epoch:2 1405/2980 loss:13.4097 2022-11-09 19:33:57,588 - INFO - main.py - train - 68 - 【train】 epoch:2 1406/2980 loss:19.3980 2022-11-09 19:33:59,103 - INFO - main.py - train - 68 - 【train】 epoch:2 1407/2980 loss:12.6040 2022-11-09 19:34:00,399 - INFO - main.py - train - 68 - 【train】 epoch:2 1408/2980 loss:3.7399 2022-11-09 19:34:01,649 - INFO - main.py - train - 68 - 【train】 epoch:2 1409/2980 loss:34.2876 2022-11-09 19:34:02,993 - INFO - main.py - train - 68 - 【train】 epoch:2 1410/2980 loss:14.5999 2022-11-09 19:34:04,289 - INFO - main.py - train - 68 - 【train】 epoch:2 1411/2980 loss:4.8123 2022-11-09 19:34:05,539 - INFO - main.py - train - 68 - 【train】 epoch:2 1412/2980 loss:8.1095 2022-11-09 19:34:07,335 - INFO - main.py - train - 68 - 【train】 epoch:2 1413/2980 loss:5.0064 2022-11-09 19:34:08,569 - INFO - main.py - train - 68 - 【train】 epoch:2 1414/2980 loss:9.1827 2022-11-09 19:34:09,975 - INFO - main.py - train - 68 - 【train】 epoch:2 1415/2980 loss:4.7550 2022-11-09 19:34:11,194 - INFO - main.py - train - 68 - 【train】 epoch:2 1416/2980 loss:10.0007 2022-11-09 19:34:12,459 - INFO - main.py - train - 68 - 【train】 epoch:2 1417/2980 loss:3.9620 2022-11-09 19:34:13,709 - INFO - main.py - train - 68 - 【train】 epoch:2 1418/2980 loss:14.1954 2022-11-09 19:34:15,162 - INFO - main.py - train - 68 - 【train】 epoch:2 1419/2980 loss:7.4727 2022-11-09 19:34:16,505 - INFO - main.py - train - 68 - 【train】 epoch:2 1420/2980 loss:10.0565 2022-11-09 19:34:17,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1421/2980 loss:1.5366 2022-11-09 19:34:18,973 - INFO - main.py - train - 68 - 【train】 epoch:2 1422/2980 loss:11.3370 2022-11-09 19:34:20,192 - INFO - main.py - train - 68 - 【train】 epoch:2 1423/2980 loss:12.1651 2022-11-09 19:34:21,598 - INFO - main.py - train - 68 - 【train】 epoch:2 1424/2980 loss:5.0861 2022-11-09 19:34:22,832 - INFO - main.py - train - 68 - 【train】 epoch:2 1425/2980 loss:6.6476 2022-11-09 19:34:24,066 - INFO - main.py - train - 68 - 【train】 epoch:2 1426/2980 loss:6.4626 2022-11-09 19:34:25,315 - INFO - main.py - train - 68 - 【train】 epoch:2 1427/2980 loss:16.5489 2022-11-09 19:34:26,550 - INFO - main.py - train - 68 - 【train】 epoch:2 1428/2980 loss:2.9310 2022-11-09 19:34:27,971 - INFO - main.py - train - 68 - 【train】 epoch:2 1429/2980 loss:8.6891 2022-11-09 19:34:29,205 - INFO - main.py - train - 68 - 【train】 epoch:2 1430/2980 loss:19.2483 2022-11-09 19:34:30,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1431/2980 loss:11.9820 2022-11-09 19:34:31,736 - INFO - main.py - train - 68 - 【train】 epoch:2 1432/2980 loss:8.4160 2022-11-09 19:34:32,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1433/2980 loss:10.6018 2022-11-09 19:34:34,298 - INFO - main.py - train - 68 - 【train】 epoch:2 1434/2980 loss:2.4559 2022-11-09 19:34:35,782 - INFO - main.py - train - 68 - 【train】 epoch:2 1435/2980 loss:7.8031 2022-11-09 19:34:37,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1436/2980 loss:3.8948 2022-11-09 19:34:38,594 - INFO - main.py - train - 68 - 【train】 epoch:2 1437/2980 loss:12.8610 2022-11-09 19:34:39,859 - INFO - main.py - train - 68 - 【train】 epoch:2 1438/2980 loss:4.7644 2022-11-09 19:34:41,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1439/2980 loss:1.9598 2022-11-09 19:34:42,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1440/2980 loss:4.4245 2022-11-09 19:34:43,733 - INFO - main.py - train - 68 - 【train】 epoch:2 1441/2980 loss:22.4370 2022-11-09 19:34:45,061 - INFO - main.py - train - 68 - 【train】 epoch:2 1442/2980 loss:27.3944 2022-11-09 19:34:46,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1443/2980 loss:9.7435 2022-11-09 19:34:47,670 - INFO - main.py - train - 68 - 【train】 epoch:2 1444/2980 loss:5.3622 2022-11-09 19:34:48,951 - INFO - main.py - train - 68 - 【train】 epoch:2 1445/2980 loss:10.3976 2022-11-09 19:34:50,169 - INFO - main.py - train - 68 - 【train】 epoch:2 1446/2980 loss:3.8487 2022-11-09 19:34:51,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1447/2980 loss:7.0968 2022-11-09 19:34:52,871 - INFO - main.py - train - 68 - 【train】 epoch:2 1448/2980 loss:40.0502 2022-11-09 19:34:54,074 - INFO - main.py - train - 68 - 【train】 epoch:2 1449/2980 loss:1.2778 2022-11-09 19:34:55,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1450/2980 loss:12.2727 2022-11-09 19:34:56,543 - INFO - main.py - train - 68 - 【train】 epoch:2 1451/2980 loss:16.3309 2022-11-09 19:34:57,886 - INFO - main.py - train - 68 - 【train】 epoch:2 1452/2980 loss:17.9988 2022-11-09 19:34:59,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1453/2980 loss:11.2233 2022-11-09 19:35:00,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1454/2980 loss:7.4649 2022-11-09 19:35:01,729 - INFO - main.py - train - 68 - 【train】 epoch:2 1455/2980 loss:6.6373 2022-11-09 19:35:02,947 - INFO - main.py - train - 68 - 【train】 epoch:2 1456/2980 loss:6.8683 2022-11-09 19:35:04,322 - INFO - main.py - train - 68 - 【train】 epoch:2 1457/2980 loss:14.4820 2022-11-09 19:35:05,556 - INFO - main.py - train - 68 - 【train】 epoch:2 1458/2980 loss:9.0817 2022-11-09 19:35:06,743 - INFO - main.py - train - 68 - 【train】 epoch:2 1459/2980 loss:5.9819 2022-11-09 19:35:07,977 - INFO - main.py - train - 68 - 【train】 epoch:2 1460/2980 loss:11.0450 2022-11-09 19:35:09,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1461/2980 loss:13.9271 2022-11-09 19:35:10,992 - INFO - main.py - train - 68 - 【train】 epoch:2 1462/2980 loss:11.5690 2022-11-09 19:35:12,195 - INFO - main.py - train - 68 - 【train】 epoch:2 1463/2980 loss:5.4278 2022-11-09 19:35:13,476 - INFO - main.py - train - 68 - 【train】 epoch:2 1464/2980 loss:13.1121 2022-11-09 19:35:14,960 - INFO - main.py - train - 68 - 【train】 epoch:2 1465/2980 loss:3.3740 2022-11-09 19:35:16,147 - INFO - main.py - train - 68 - 【train】 epoch:2 1466/2980 loss:4.8523 2022-11-09 19:35:17,647 - INFO - main.py - train - 68 - 【train】 epoch:2 1467/2980 loss:11.3373 2022-11-09 19:35:18,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1468/2980 loss:16.0160 2022-11-09 19:35:20,318 - INFO - main.py - train - 68 - 【train】 epoch:2 1469/2980 loss:4.3045 2022-11-09 19:35:21,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1470/2980 loss:1.9194 2022-11-09 19:35:23,474 - INFO - main.py - train - 68 - 【train】 epoch:2 1471/2980 loss:1.6973 2022-11-09 19:35:24,692 - INFO - main.py - train - 68 - 【train】 epoch:2 1472/2980 loss:6.6070 2022-11-09 19:35:26,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1473/2980 loss:8.4987 2022-11-09 19:35:27,363 - INFO - main.py - train - 68 - 【train】 epoch:2 1474/2980 loss:4.7264 2022-11-09 19:35:28,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1475/2980 loss:8.7861 2022-11-09 19:35:30,222 - INFO - main.py - train - 68 - 【train】 epoch:2 1476/2980 loss:4.1533 2022-11-09 19:35:31,441 - INFO - main.py - train - 68 - 【train】 epoch:2 1477/2980 loss:8.3600 2022-11-09 19:35:33,003 - INFO - main.py - train - 68 - 【train】 epoch:2 1478/2980 loss:2.8061 2022-11-09 19:35:34,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1479/2980 loss:17.2079 2022-11-09 19:35:35,768 - INFO - main.py - train - 68 - 【train】 epoch:2 1480/2980 loss:1.9800 2022-11-09 19:35:37,002 - INFO - main.py - train - 68 - 【train】 epoch:2 1481/2980 loss:8.1095 2022-11-09 19:35:38,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1482/2980 loss:3.5472 2022-11-09 19:35:39,611 - INFO - main.py - train - 68 - 【train】 epoch:2 1483/2980 loss:5.8529 2022-11-09 19:35:41,423 - INFO - main.py - train - 68 - 【train】 epoch:2 1484/2980 loss:16.1329 2022-11-09 19:35:42,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1485/2980 loss:2.7484 2022-11-09 19:35:44,078 - INFO - main.py - train - 68 - 【train】 epoch:2 1486/2980 loss:1.4459 2022-11-09 19:35:45,578 - INFO - main.py - train - 68 - 【train】 epoch:2 1487/2980 loss:12.3500 2022-11-09 19:35:46,953 - INFO - main.py - train - 68 - 【train】 epoch:2 1488/2980 loss:7.1447 2022-11-09 19:35:48,171 - INFO - main.py - train - 68 - 【train】 epoch:2 1489/2980 loss:3.1824 2022-11-09 19:35:49,436 - INFO - main.py - train - 68 - 【train】 epoch:2 1490/2980 loss:22.1362 2022-11-09 19:35:50,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1491/2980 loss:5.1268 2022-11-09 19:35:52,092 - INFO - main.py - train - 68 - 【train】 epoch:2 1492/2980 loss:11.9422 2022-11-09 19:35:53,513 - INFO - main.py - train - 68 - 【train】 epoch:2 1493/2980 loss:4.3029 2022-11-09 19:35:55,279 - INFO - main.py - train - 68 - 【train】 epoch:2 1494/2980 loss:3.8279 2022-11-09 19:35:56,482 - INFO - main.py - train - 68 - 【train】 epoch:2 1495/2980 loss:6.0278 2022-11-09 19:35:57,700 - INFO - main.py - train - 68 - 【train】 epoch:2 1496/2980 loss:4.7884 2022-11-09 19:35:59,247 - INFO - main.py - train - 68 - 【train】 epoch:2 1497/2980 loss:8.3655 2022-11-09 19:36:00,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1498/2980 loss:11.3722 2022-11-09 19:36:01,762 - INFO - main.py - train - 68 - 【train】 epoch:2 1499/2980 loss:4.9509 2022-11-09 19:36:03,027 - INFO - main.py - train - 68 - 【train】 epoch:2 1500/2980 loss:6.9220 2022-11-09 19:36:04,323 - INFO - main.py - train - 68 - 【train】 epoch:2 1501/2980 loss:30.1602 2022-11-09 19:36:05,495 - INFO - main.py - train - 68 - 【train】 epoch:2 1502/2980 loss:1.4575 2022-11-09 19:36:06,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1503/2980 loss:6.2479 2022-11-09 19:36:08,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1504/2980 loss:11.7579 2022-11-09 19:36:10,010 - INFO - main.py - train - 68 - 【train】 epoch:2 1505/2980 loss:3.3624 2022-11-09 19:36:11,228 - INFO - main.py - train - 68 - 【train】 epoch:2 1506/2980 loss:9.2679 2022-11-09 19:36:12,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1507/2980 loss:7.4666 2022-11-09 19:36:13,852 - INFO - main.py - train - 68 - 【train】 epoch:2 1508/2980 loss:3.1688 2022-11-09 19:36:15,133 - INFO - main.py - train - 68 - 【train】 epoch:2 1509/2980 loss:6.2498 2022-11-09 19:36:16,336 - INFO - main.py - train - 68 - 【train】 epoch:2 1510/2980 loss:6.4912 2022-11-09 19:36:17,602 - INFO - main.py - train - 68 - 【train】 epoch:2 1511/2980 loss:1.1950 2022-11-09 19:36:19,148 - INFO - main.py - train - 68 - 【train】 epoch:2 1512/2980 loss:5.4696 2022-11-09 19:36:20,382 - INFO - main.py - train - 68 - 【train】 epoch:2 1513/2980 loss:18.7745 2022-11-09 19:36:21,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1514/2980 loss:2.7113 2022-11-09 19:36:22,975 - INFO - main.py - train - 68 - 【train】 epoch:2 1515/2980 loss:7.2943 2022-11-09 19:36:24,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1516/2980 loss:10.4109 2022-11-09 19:36:25,428 - INFO - main.py - train - 68 - 【train】 epoch:2 1517/2980 loss:1.6450 2022-11-09 19:36:26,678 - INFO - main.py - train - 68 - 【train】 epoch:2 1518/2980 loss:2.4336 2022-11-09 19:36:27,927 - INFO - main.py - train - 68 - 【train】 epoch:2 1519/2980 loss:1.4648 2022-11-09 19:36:29,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1520/2980 loss:3.6874 2022-11-09 19:36:30,942 - INFO - main.py - train - 68 - 【train】 epoch:2 1521/2980 loss:3.8806 2022-11-09 19:36:32,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1522/2980 loss:1.6294 2022-11-09 19:36:33,817 - INFO - main.py - train - 68 - 【train】 epoch:2 1523/2980 loss:0.7809 2022-11-09 19:36:35,051 - INFO - main.py - train - 68 - 【train】 epoch:2 1524/2980 loss:3.9964 2022-11-09 19:36:36,253 - INFO - main.py - train - 68 - 【train】 epoch:2 1525/2980 loss:5.6733 2022-11-09 19:36:37,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1526/2980 loss:2.5758 2022-11-09 19:36:39,081 - INFO - main.py - train - 68 - 【train】 epoch:2 1527/2980 loss:9.5719 2022-11-09 19:36:40,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1528/2980 loss:4.1550 2022-11-09 19:36:41,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1529/2980 loss:8.3913 2022-11-09 19:36:43,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1530/2980 loss:3.8897 2022-11-09 19:36:44,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1531/2980 loss:4.5290 2022-11-09 19:36:45,916 - INFO - main.py - train - 68 - 【train】 epoch:2 1532/2980 loss:10.7979 2022-11-09 19:36:47,353 - INFO - main.py - train - 68 - 【train】 epoch:2 1533/2980 loss:7.0484 2022-11-09 19:36:48,571 - INFO - main.py - train - 68 - 【train】 epoch:2 1534/2980 loss:5.0957 2022-11-09 19:36:49,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1535/2980 loss:4.5475 2022-11-09 19:36:51,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1536/2980 loss:11.0533 2022-11-09 19:36:52,555 - INFO - main.py - train - 68 - 【train】 epoch:2 1537/2980 loss:12.1459 2022-11-09 19:36:53,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1538/2980 loss:9.4324 2022-11-09 19:36:55,164 - INFO - main.py - train - 68 - 【train】 epoch:2 1539/2980 loss:1.7077 2022-11-09 19:36:56,585 - INFO - main.py - train - 68 - 【train】 epoch:2 1540/2980 loss:8.8502 2022-11-09 19:36:57,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1541/2980 loss:14.9248 2022-11-09 19:36:59,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1542/2980 loss:1.3760 2022-11-09 19:37:00,584 - INFO - main.py - train - 68 - 【train】 epoch:2 1543/2980 loss:16.1577 2022-11-09 19:37:01,756 - INFO - main.py - train - 68 - 【train】 epoch:2 1544/2980 loss:0.4490 2022-11-09 19:37:02,974 - INFO - main.py - train - 68 - 【train】 epoch:2 1545/2980 loss:6.1854 2022-11-09 19:37:04,208 - INFO - main.py - train - 68 - 【train】 epoch:2 1546/2980 loss:1.5579 2022-11-09 19:37:05,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1547/2980 loss:13.4670 2022-11-09 19:37:06,817 - INFO - main.py - train - 68 - 【train】 epoch:2 1548/2980 loss:12.2180 2022-11-09 19:37:08,082 - INFO - main.py - train - 68 - 【train】 epoch:2 1549/2980 loss:12.6025 2022-11-09 19:37:09,301 - INFO - main.py - train - 68 - 【train】 epoch:2 1550/2980 loss:11.3885 2022-11-09 19:37:10,551 - INFO - main.py - train - 68 - 【train】 epoch:2 1551/2980 loss:6.6250 2022-11-09 19:37:11,832 - INFO - main.py - train - 68 - 【train】 epoch:2 1552/2980 loss:7.3215 2022-11-09 19:37:13,019 - INFO - main.py - train - 68 - 【train】 epoch:2 1553/2980 loss:2.3705 2022-11-09 19:37:14,237 - INFO - main.py - train - 68 - 【train】 epoch:2 1554/2980 loss:15.4381 2022-11-09 19:37:15,440 - INFO - main.py - train - 68 - 【train】 epoch:2 1555/2980 loss:2.7182 2022-11-09 19:37:16,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1556/2980 loss:16.5300 2022-11-09 19:37:17,955 - INFO - main.py - train - 68 - 【train】 epoch:2 1557/2980 loss:9.5238 2022-11-09 19:37:19,267 - INFO - main.py - train - 68 - 【train】 epoch:2 1558/2980 loss:4.2491 2022-11-09 19:37:20,455 - INFO - main.py - train - 68 - 【train】 epoch:2 1559/2980 loss:5.1103 2022-11-09 19:37:21,720 - INFO - main.py - train - 68 - 【train】 epoch:2 1560/2980 loss:0.3819 2022-11-09 19:37:22,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1561/2980 loss:14.8600 2022-11-09 19:37:24,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1562/2980 loss:11.9108 2022-11-09 19:37:25,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1563/2980 loss:3.2090 2022-11-09 19:37:26,922 - INFO - main.py - train - 68 - 【train】 epoch:2 1564/2980 loss:17.9613 2022-11-09 19:37:28,156 - INFO - main.py - train - 68 - 【train】 epoch:2 1565/2980 loss:6.7761 2022-11-09 19:37:29,452 - INFO - main.py - train - 68 - 【train】 epoch:2 1566/2980 loss:3.2298 2022-11-09 19:37:30,655 - INFO - main.py - train - 68 - 【train】 epoch:2 1567/2980 loss:3.5609 2022-11-09 19:37:31,952 - INFO - main.py - train - 68 - 【train】 epoch:2 1568/2980 loss:13.3151 2022-11-09 19:37:33,170 - INFO - main.py - train - 68 - 【train】 epoch:2 1569/2980 loss:0.4172 2022-11-09 19:37:34,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1570/2980 loss:23.5598 2022-11-09 19:37:35,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1571/2980 loss:27.8597 2022-11-09 19:37:37,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1572/2980 loss:2.1358 2022-11-09 19:37:38,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1573/2980 loss:15.3207 2022-11-09 19:37:39,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1574/2980 loss:0.6016 2022-11-09 19:37:40,903 - INFO - main.py - train - 68 - 【train】 epoch:2 1575/2980 loss:6.5639 2022-11-09 19:37:42,715 - INFO - main.py - train - 68 - 【train】 epoch:2 1576/2980 loss:3.6579 2022-11-09 19:37:43,933 - INFO - main.py - train - 68 - 【train】 epoch:2 1577/2980 loss:4.7820 2022-11-09 19:37:45,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1578/2980 loss:2.0977 2022-11-09 19:37:46,417 - INFO - main.py - train - 68 - 【train】 epoch:2 1579/2980 loss:6.2633 2022-11-09 19:37:47,761 - INFO - main.py - train - 68 - 【train】 epoch:2 1580/2980 loss:10.6429 2022-11-09 19:37:49,120 - INFO - main.py - train - 68 - 【train】 epoch:2 1581/2980 loss:13.7162 2022-11-09 19:37:50,338 - INFO - main.py - train - 68 - 【train】 epoch:2 1582/2980 loss:7.7870 2022-11-09 19:37:51,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1583/2980 loss:13.0133 2022-11-09 19:37:52,838 - INFO - main.py - train - 68 - 【train】 epoch:2 1584/2980 loss:8.1330 2022-11-09 19:37:54,150 - INFO - main.py - train - 68 - 【train】 epoch:2 1585/2980 loss:13.8452 2022-11-09 19:37:55,431 - INFO - main.py - train - 68 - 【train】 epoch:2 1586/2980 loss:5.9103 2022-11-09 19:37:56,665 - INFO - main.py - train - 68 - 【train】 epoch:2 1587/2980 loss:4.7986 2022-11-09 19:37:57,914 - INFO - main.py - train - 68 - 【train】 epoch:2 1588/2980 loss:6.8932 2022-11-09 19:37:59,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1589/2980 loss:7.5110 2022-11-09 19:38:00,508 - INFO - main.py - train - 68 - 【train】 epoch:2 1590/2980 loss:13.0655 2022-11-09 19:38:01,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1591/2980 loss:2.8706 2022-11-09 19:38:03,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1592/2980 loss:15.4536 2022-11-09 19:38:04,335 - INFO - main.py - train - 68 - 【train】 epoch:2 1593/2980 loss:11.0938 2022-11-09 19:38:05,600 - INFO - main.py - train - 68 - 【train】 epoch:2 1594/2980 loss:4.8637 2022-11-09 19:38:06,803 - INFO - main.py - train - 68 - 【train】 epoch:2 1595/2980 loss:0.8563 2022-11-09 19:38:08,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1596/2980 loss:23.2700 2022-11-09 19:38:09,912 - INFO - main.py - train - 68 - 【train】 epoch:2 1597/2980 loss:20.5530 2022-11-09 19:38:11,396 - INFO - main.py - train - 68 - 【train】 epoch:2 1598/2980 loss:4.1632 2022-11-09 19:38:12,802 - INFO - main.py - train - 68 - 【train】 epoch:2 1599/2980 loss:8.9677 2022-11-09 19:38:14,129 - INFO - main.py - train - 68 - 【train】 epoch:2 1600/2980 loss:9.8652 2022-11-09 19:38:15,613 - INFO - main.py - train - 68 - 【train】 epoch:2 1601/2980 loss:2.8466 2022-11-09 19:38:16,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1602/2980 loss:8.8157 2022-11-09 19:38:18,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1603/2980 loss:0.7183 2022-11-09 19:38:19,597 - INFO - main.py - train - 68 - 【train】 epoch:2 1604/2980 loss:0.6484 2022-11-09 19:38:21,175 - INFO - main.py - train - 68 - 【train】 epoch:2 1605/2980 loss:10.5781 2022-11-09 19:38:22,502 - INFO - main.py - train - 68 - 【train】 epoch:2 1606/2980 loss:6.7119 2022-11-09 19:38:23,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1607/2980 loss:10.1706 2022-11-09 19:38:25,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1608/2980 loss:9.6469 2022-11-09 19:38:26,673 - INFO - main.py - train - 68 - 【train】 epoch:2 1609/2980 loss:21.8677 2022-11-09 19:38:28,126 - INFO - main.py - train - 68 - 【train】 epoch:2 1610/2980 loss:7.6371 2022-11-09 19:38:29,423 - INFO - main.py - train - 68 - 【train】 epoch:2 1611/2980 loss:17.5643 2022-11-09 19:38:30,860 - INFO - main.py - train - 68 - 【train】 epoch:2 1612/2980 loss:1.5125 2022-11-09 19:38:32,422 - INFO - main.py - train - 68 - 【train】 epoch:2 1613/2980 loss:8.2371 2022-11-09 19:38:33,797 - INFO - main.py - train - 68 - 【train】 epoch:2 1614/2980 loss:8.3551 2022-11-09 19:38:35,187 - INFO - main.py - train - 68 - 【train】 epoch:2 1615/2980 loss:6.3841 2022-11-09 19:38:36,515 - INFO - main.py - train - 68 - 【train】 epoch:2 1616/2980 loss:13.3133 2022-11-09 19:38:37,936 - INFO - main.py - train - 68 - 【train】 epoch:2 1617/2980 loss:13.1829 2022-11-09 19:38:39,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1618/2980 loss:3.2250 2022-11-09 19:38:40,748 - INFO - main.py - train - 68 - 【train】 epoch:2 1619/2980 loss:4.2770 2022-11-09 19:38:41,967 - INFO - main.py - train - 68 - 【train】 epoch:2 1620/2980 loss:3.8124 2022-11-09 19:38:43,591 - INFO - main.py - train - 68 - 【train】 epoch:2 1621/2980 loss:5.1748 2022-11-09 19:38:44,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1622/2980 loss:7.4533 2022-11-09 19:38:46,106 - INFO - main.py - train - 68 - 【train】 epoch:2 1623/2980 loss:5.4316 2022-11-09 19:38:47,372 - INFO - main.py - train - 68 - 【train】 epoch:2 1624/2980 loss:3.6036 2022-11-09 19:38:48,621 - INFO - main.py - train - 68 - 【train】 epoch:2 1625/2980 loss:14.8389 2022-11-09 19:38:49,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1626/2980 loss:1.2543 2022-11-09 19:38:51,121 - INFO - main.py - train - 68 - 【train】 epoch:2 1627/2980 loss:20.6375 2022-11-09 19:38:52,355 - INFO - main.py - train - 68 - 【train】 epoch:2 1628/2980 loss:1.7576 2022-11-09 19:38:53,651 - INFO - main.py - train - 68 - 【train】 epoch:2 1629/2980 loss:7.7404 2022-11-09 19:38:54,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1630/2980 loss:7.4985 2022-11-09 19:38:56,213 - INFO - main.py - train - 68 - 【train】 epoch:2 1631/2980 loss:9.8291 2022-11-09 19:38:57,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1632/2980 loss:1.1633 2022-11-09 19:38:58,697 - INFO - main.py - train - 68 - 【train】 epoch:2 1633/2980 loss:6.1685 2022-11-09 19:39:00,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1634/2980 loss:6.1808 2022-11-09 19:39:01,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1635/2980 loss:5.1600 2022-11-09 19:39:02,806 - INFO - main.py - train - 68 - 【train】 epoch:2 1636/2980 loss:6.5405 2022-11-09 19:39:04,180 - INFO - main.py - train - 68 - 【train】 epoch:2 1637/2980 loss:17.5535 2022-11-09 19:39:05,399 - INFO - main.py - train - 68 - 【train】 epoch:2 1638/2980 loss:9.4675 2022-11-09 19:39:06,711 - INFO - main.py - train - 68 - 【train】 epoch:2 1639/2980 loss:15.7294 2022-11-09 19:39:07,914 - INFO - main.py - train - 68 - 【train】 epoch:2 1640/2980 loss:5.5219 2022-11-09 19:39:09,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1641/2980 loss:11.5948 2022-11-09 19:39:10,491 - INFO - main.py - train - 68 - 【train】 epoch:2 1642/2980 loss:12.2448 2022-11-09 19:39:11,960 - INFO - main.py - train - 68 - 【train】 epoch:2 1643/2980 loss:7.0064 2022-11-09 19:39:13,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1644/2980 loss:2.2382 2022-11-09 19:39:14,631 - INFO - main.py - train - 68 - 【train】 epoch:2 1645/2980 loss:2.0529 2022-11-09 19:39:15,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1646/2980 loss:0.9262 2022-11-09 19:39:17,255 - INFO - main.py - train - 68 - 【train】 epoch:2 1647/2980 loss:10.3580 2022-11-09 19:39:18,661 - INFO - main.py - train - 68 - 【train】 epoch:2 1648/2980 loss:6.3628 2022-11-09 19:39:19,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1649/2980 loss:0.4074 2022-11-09 19:39:21,426 - INFO - main.py - train - 68 - 【train】 epoch:2 1650/2980 loss:11.3310 2022-11-09 19:39:22,629 - INFO - main.py - train - 68 - 【train】 epoch:2 1651/2980 loss:3.5028 2022-11-09 19:39:23,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1652/2980 loss:0.8759 2022-11-09 19:39:25,394 - INFO - main.py - train - 68 - 【train】 epoch:2 1653/2980 loss:2.6706 2022-11-09 19:39:26,815 - INFO - main.py - train - 68 - 【train】 epoch:2 1654/2980 loss:14.8026 2022-11-09 19:39:28,050 - INFO - main.py - train - 68 - 【train】 epoch:2 1655/2980 loss:5.6178 2022-11-09 19:39:29,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1656/2980 loss:4.7064 2022-11-09 19:39:30,986 - INFO - main.py - train - 68 - 【train】 epoch:2 1657/2980 loss:2.9684 2022-11-09 19:39:32,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1658/2980 loss:1.4064 2022-11-09 19:39:33,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1659/2980 loss:10.5353 2022-11-09 19:39:35,064 - INFO - main.py - train - 68 - 【train】 epoch:2 1660/2980 loss:1.4182 2022-11-09 19:39:36,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1661/2980 loss:6.9135 2022-11-09 19:39:37,516 - INFO - main.py - train - 68 - 【train】 epoch:2 1662/2980 loss:13.7261 2022-11-09 19:39:38,797 - INFO - main.py - train - 68 - 【train】 epoch:2 1663/2980 loss:0.9665 2022-11-09 19:39:40,265 - INFO - main.py - train - 68 - 【train】 epoch:2 1664/2980 loss:4.8511 2022-11-09 19:39:41,578 - INFO - main.py - train - 68 - 【train】 epoch:2 1665/2980 loss:3.1790 2022-11-09 19:39:42,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1666/2980 loss:2.6626 2022-11-09 19:39:44,343 - INFO - main.py - train - 68 - 【train】 epoch:2 1667/2980 loss:3.0606 2022-11-09 19:39:45,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1668/2980 loss:4.9648 2022-11-09 19:39:46,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1669/2980 loss:7.3115 2022-11-09 19:39:48,107 - INFO - main.py - train - 68 - 【train】 epoch:2 1670/2980 loss:9.9873 2022-11-09 19:39:49,560 - INFO - main.py - train - 68 - 【train】 epoch:2 1671/2980 loss:5.7872 2022-11-09 19:39:50,763 - INFO - main.py - train - 68 - 【train】 epoch:2 1672/2980 loss:6.2443 2022-11-09 19:39:52,185 - INFO - main.py - train - 68 - 【train】 epoch:2 1673/2980 loss:10.9521 2022-11-09 19:39:53,575 - INFO - main.py - train - 68 - 【train】 epoch:2 1674/2980 loss:4.3125 2022-11-09 19:39:54,996 - INFO - main.py - train - 68 - 【train】 epoch:2 1675/2980 loss:1.9474 2022-11-09 19:39:56,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1676/2980 loss:9.3020 2022-11-09 19:39:57,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1677/2980 loss:10.2043 2022-11-09 19:39:59,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1678/2980 loss:7.9669 2022-11-09 19:40:00,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1679/2980 loss:3.9025 2022-11-09 19:40:01,963 - INFO - main.py - train - 68 - 【train】 epoch:2 1680/2980 loss:1.0127 2022-11-09 19:40:03,213 - INFO - main.py - train - 68 - 【train】 epoch:2 1681/2980 loss:6.6499 2022-11-09 19:40:04,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1682/2980 loss:10.6642 2022-11-09 19:40:05,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1683/2980 loss:13.8268 2022-11-09 19:40:07,212 - INFO - main.py - train - 68 - 【train】 epoch:2 1684/2980 loss:4.8331 2022-11-09 19:40:08,571 - INFO - main.py - train - 68 - 【train】 epoch:2 1685/2980 loss:0.6691 2022-11-09 19:40:09,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1686/2980 loss:10.9442 2022-11-09 19:40:11,024 - INFO - main.py - train - 68 - 【train】 epoch:2 1687/2980 loss:5.2270 2022-11-09 19:40:12,523 - INFO - main.py - train - 68 - 【train】 epoch:2 1688/2980 loss:13.7997 2022-11-09 19:40:13,742 - INFO - main.py - train - 68 - 【train】 epoch:2 1689/2980 loss:2.9096 2022-11-09 19:40:15,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1690/2980 loss:6.9434 2022-11-09 19:40:16,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1691/2980 loss:18.9285 2022-11-09 19:40:18,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1692/2980 loss:1.7381 2022-11-09 19:40:19,475 - INFO - main.py - train - 68 - 【train】 epoch:2 1693/2980 loss:11.3171 2022-11-09 19:40:20,725 - INFO - main.py - train - 68 - 【train】 epoch:2 1694/2980 loss:6.4544 2022-11-09 19:40:22,193 - INFO - main.py - train - 68 - 【train】 epoch:2 1695/2980 loss:11.6625 2022-11-09 19:40:23,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1696/2980 loss:2.0881 2022-11-09 19:40:24,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1697/2980 loss:7.1348 2022-11-09 19:40:26,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1698/2980 loss:14.1697 2022-11-09 19:40:27,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1699/2980 loss:2.3342 2022-11-09 19:40:28,879 - INFO - main.py - train - 68 - 【train】 epoch:2 1700/2980 loss:4.0471 2022-11-09 19:40:30,129 - INFO - main.py - train - 68 - 【train】 epoch:2 1701/2980 loss:3.8025 2022-11-09 19:40:31,706 - INFO - main.py - train - 68 - 【train】 epoch:2 1702/2980 loss:6.0625 2022-11-09 19:40:32,941 - INFO - main.py - train - 68 - 【train】 epoch:2 1703/2980 loss:10.1595 2022-11-09 19:40:34,300 - INFO - main.py - train - 68 - 【train】 epoch:2 1704/2980 loss:9.5634 2022-11-09 19:40:35,690 - INFO - main.py - train - 68 - 【train】 epoch:2 1705/2980 loss:2.9766 2022-11-09 19:40:36,940 - INFO - main.py - train - 68 - 【train】 epoch:2 1706/2980 loss:1.9428 2022-11-09 19:40:38,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1707/2980 loss:4.6639 2022-11-09 19:40:39,455 - INFO - main.py - train - 68 - 【train】 epoch:2 1708/2980 loss:3.7505 2022-11-09 19:40:40,658 - INFO - main.py - train - 68 - 【train】 epoch:2 1709/2980 loss:6.3019 2022-11-09 19:40:42,173 - INFO - main.py - train - 68 - 【train】 epoch:2 1710/2980 loss:4.2058 2022-11-09 19:40:43,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1711/2980 loss:22.6029 2022-11-09 19:40:44,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1712/2980 loss:4.7852 2022-11-09 19:40:46,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1713/2980 loss:25.8160 2022-11-09 19:40:47,406 - INFO - main.py - train - 68 - 【train】 epoch:2 1714/2980 loss:0.2757 2022-11-09 19:40:48,781 - INFO - main.py - train - 68 - 【train】 epoch:2 1715/2980 loss:3.4377 2022-11-09 19:40:50,015 - INFO - main.py - train - 68 - 【train】 epoch:2 1716/2980 loss:5.3432 2022-11-09 19:40:51,358 - INFO - main.py - train - 68 - 【train】 epoch:2 1717/2980 loss:15.8291 2022-11-09 19:40:52,608 - INFO - main.py - train - 68 - 【train】 epoch:2 1718/2980 loss:11.7439 2022-11-09 19:40:54,232 - INFO - main.py - train - 68 - 【train】 epoch:2 1719/2980 loss:12.8558 2022-11-09 19:40:55,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1720/2980 loss:12.2404 2022-11-09 19:40:57,154 - INFO - main.py - train - 68 - 【train】 epoch:2 1721/2980 loss:7.7461 2022-11-09 19:40:58,575 - INFO - main.py - train - 68 - 【train】 epoch:2 1722/2980 loss:7.4942 2022-11-09 19:40:59,778 - INFO - main.py - train - 68 - 【train】 epoch:2 1723/2980 loss:10.0869 2022-11-09 19:41:01,028 - INFO - main.py - train - 68 - 【train】 epoch:2 1724/2980 loss:4.2238 2022-11-09 19:41:02,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1725/2980 loss:21.7425 2022-11-09 19:41:03,465 - INFO - main.py - train - 68 - 【train】 epoch:2 1726/2980 loss:7.6532 2022-11-09 19:41:05,121 - INFO - main.py - train - 68 - 【train】 epoch:2 1727/2980 loss:17.6375 2022-11-09 19:41:06,339 - INFO - main.py - train - 68 - 【train】 epoch:2 1728/2980 loss:6.1104 2022-11-09 19:41:07,823 - INFO - main.py - train - 68 - 【train】 epoch:2 1729/2980 loss:13.0301 2022-11-09 19:41:09,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1730/2980 loss:3.3698 2022-11-09 19:41:10,432 - INFO - main.py - train - 68 - 【train】 epoch:2 1731/2980 loss:8.1173 2022-11-09 19:41:11,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1732/2980 loss:7.6716 2022-11-09 19:41:13,072 - INFO - main.py - train - 68 - 【train】 epoch:2 1733/2980 loss:9.9004 2022-11-09 19:41:14,415 - INFO - main.py - train - 68 - 【train】 epoch:2 1734/2980 loss:14.1273 2022-11-09 19:41:15,618 - INFO - main.py - train - 68 - 【train】 epoch:2 1735/2980 loss:3.2484 2022-11-09 19:41:16,868 - INFO - main.py - train - 68 - 【train】 epoch:2 1736/2980 loss:7.2173 2022-11-09 19:41:18,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1737/2980 loss:4.1392 2022-11-09 19:41:19,477 - INFO - main.py - train - 68 - 【train】 epoch:2 1738/2980 loss:2.8440 2022-11-09 19:41:20,819 - INFO - main.py - train - 68 - 【train】 epoch:2 1739/2980 loss:7.1274 2022-11-09 19:41:22,053 - INFO - main.py - train - 68 - 【train】 epoch:2 1740/2980 loss:23.1565 2022-11-09 19:41:23,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1741/2980 loss:10.5067 2022-11-09 19:41:24,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1742/2980 loss:3.7810 2022-11-09 19:41:25,942 - INFO - main.py - train - 68 - 【train】 epoch:2 1743/2980 loss:23.2404 2022-11-09 19:41:27,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1744/2980 loss:7.4635 2022-11-09 19:41:28,567 - INFO - main.py - train - 68 - 【train】 epoch:2 1745/2980 loss:7.2137 2022-11-09 19:41:29,879 - INFO - main.py - train - 68 - 【train】 epoch:2 1746/2980 loss:2.6924 2022-11-09 19:41:31,222 - INFO - main.py - train - 68 - 【train】 epoch:2 1747/2980 loss:9.6021 2022-11-09 19:41:32,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1748/2980 loss:2.7536 2022-11-09 19:41:33,894 - INFO - main.py - train - 68 - 【train】 epoch:2 1749/2980 loss:1.7109 2022-11-09 19:41:35,471 - INFO - main.py - train - 68 - 【train】 epoch:2 1750/2980 loss:16.6074 2022-11-09 19:41:37,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1751/2980 loss:17.3047 2022-11-09 19:41:38,533 - INFO - main.py - train - 68 - 【train】 epoch:2 1752/2980 loss:2.9894 2022-11-09 19:41:39,752 - INFO - main.py - train - 68 - 【train】 epoch:2 1753/2980 loss:8.1296 2022-11-09 19:41:41,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1754/2980 loss:0.5379 2022-11-09 19:41:42,626 - INFO - main.py - train - 68 - 【train】 epoch:2 1755/2980 loss:4.4142 2022-11-09 19:41:43,891 - INFO - main.py - train - 68 - 【train】 epoch:2 1756/2980 loss:11.8648 2022-11-09 19:41:45,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1757/2980 loss:16.0272 2022-11-09 19:41:46,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1758/2980 loss:2.8537 2022-11-09 19:41:47,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1759/2980 loss:5.7682 2022-11-09 19:41:49,046 - INFO - main.py - train - 68 - 【train】 epoch:2 1760/2980 loss:7.4695 2022-11-09 19:41:50,265 - INFO - main.py - train - 68 - 【train】 epoch:2 1761/2980 loss:7.3708 2022-11-09 19:41:51,515 - INFO - main.py - train - 68 - 【train】 epoch:2 1762/2980 loss:17.8952 2022-11-09 19:41:52,749 - INFO - main.py - train - 68 - 【train】 epoch:2 1763/2980 loss:13.5664 2022-11-09 19:41:53,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1764/2980 loss:13.0042 2022-11-09 19:41:55,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1765/2980 loss:0.9464 2022-11-09 19:41:56,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1766/2980 loss:4.8302 2022-11-09 19:41:57,685 - INFO - main.py - train - 68 - 【train】 epoch:2 1767/2980 loss:8.1051 2022-11-09 19:41:58,966 - INFO - main.py - train - 68 - 【train】 epoch:2 1768/2980 loss:1.6168 2022-11-09 19:42:00,512 - INFO - main.py - train - 68 - 【train】 epoch:2 1769/2980 loss:14.6113 2022-11-09 19:42:01,778 - INFO - main.py - train - 68 - 【train】 epoch:2 1770/2980 loss:4.4657 2022-11-09 19:42:03,621 - INFO - main.py - train - 68 - 【train】 epoch:2 1771/2980 loss:9.3895 2022-11-09 19:42:04,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1772/2980 loss:0.6420 2022-11-09 19:42:06,058 - INFO - main.py - train - 68 - 【train】 epoch:2 1773/2980 loss:2.0415 2022-11-09 19:42:07,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1774/2980 loss:17.3841 2022-11-09 19:42:08,854 - INFO - main.py - train - 68 - 【train】 epoch:2 1775/2980 loss:9.7059 2022-11-09 19:42:10,135 - INFO - main.py - train - 68 - 【train】 epoch:2 1776/2980 loss:17.9254 2022-11-09 19:42:11,463 - INFO - main.py - train - 68 - 【train】 epoch:2 1777/2980 loss:4.4008 2022-11-09 19:42:12,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1778/2980 loss:21.1686 2022-11-09 19:42:14,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1779/2980 loss:9.4750 2022-11-09 19:42:15,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1780/2980 loss:2.5117 2022-11-09 19:42:16,681 - INFO - main.py - train - 68 - 【train】 epoch:2 1781/2980 loss:15.5348 2022-11-09 19:42:17,946 - INFO - main.py - train - 68 - 【train】 epoch:2 1782/2980 loss:12.3820 2022-11-09 19:42:19,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1783/2980 loss:13.7912 2022-11-09 19:42:20,461 - INFO - main.py - train - 68 - 【train】 epoch:2 1784/2980 loss:2.8347 2022-11-09 19:42:21,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1785/2980 loss:1.3813 2022-11-09 19:42:23,148 - INFO - main.py - train - 68 - 【train】 epoch:2 1786/2980 loss:2.6952 2022-11-09 19:42:24,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1787/2980 loss:36.1618 2022-11-09 19:42:29,224 - INFO - main.py - train - 68 - 【train】 epoch:3 1788/2980 loss:8.8240 2022-11-09 19:42:30,427 - INFO - main.py - train - 68 - 【train】 epoch:3 1789/2980 loss:12.3918 2022-11-09 19:42:31,708 - INFO - main.py - train - 68 - 【train】 epoch:3 1790/2980 loss:2.8292 2022-11-09 19:42:32,927 - INFO - main.py - train - 68 - 【train】 epoch:3 1791/2980 loss:7.6035 2022-11-09 19:42:34,192 - INFO - main.py - train - 68 - 【train】 epoch:3 1792/2980 loss:4.0272 2022-11-09 19:42:35,426 - INFO - main.py - train - 68 - 【train】 epoch:3 1793/2980 loss:5.3875 2022-11-09 19:42:36,707 - INFO - main.py - train - 68 - 【train】 epoch:3 1794/2980 loss:9.6330 2022-11-09 19:42:37,972 - INFO - main.py - train - 68 - 【train】 epoch:3 1795/2980 loss:2.0736 2022-11-09 19:42:39,285 - INFO - main.py - train - 68 - 【train】 epoch:3 1796/2980 loss:14.7170 2022-11-09 19:42:40,503 - INFO - main.py - train - 68 - 【train】 epoch:3 1797/2980 loss:7.9797 2022-11-09 19:42:41,722 - INFO - main.py - train - 68 - 【train】 epoch:3 1798/2980 loss:4.9186 2022-11-09 19:42:42,940 - INFO - main.py - train - 68 - 【train】 epoch:3 1799/2980 loss:4.1856 2022-11-09 19:42:44,174 - INFO - main.py - train - 68 - 【train】 epoch:3 1800/2980 loss:4.7505 2022-11-09 19:42:45,455 - INFO - main.py - train - 68 - 【train】 epoch:3 1801/2980 loss:4.2593 2022-11-09 19:42:46,736 - INFO - main.py - train - 68 - 【train】 epoch:3 1802/2980 loss:3.9799 2022-11-09 19:42:48,173 - INFO - main.py - train - 68 - 【train】 epoch:3 1803/2980 loss:1.9576 2022-11-09 19:42:49,392 - INFO - main.py - train - 68 - 【train】 epoch:3 1804/2980 loss:3.9610 2022-11-09 19:42:50,610 - INFO - main.py - train - 68 - 【train】 epoch:3 1805/2980 loss:6.9952 2022-11-09 19:42:51,985 - INFO - main.py - train - 68 - 【train】 epoch:3 1806/2980 loss:5.6878 2022-11-09 19:42:53,219 - INFO - main.py - train - 68 - 【train】 epoch:3 1807/2980 loss:19.9670 2022-11-09 19:42:54,437 - INFO - main.py - train - 68 - 【train】 epoch:3 1808/2980 loss:6.2648 2022-11-09 19:42:55,656 - INFO - main.py - train - 68 - 【train】 epoch:3 1809/2980 loss:9.4900 2022-11-09 19:42:56,890 - INFO - main.py - train - 68 - 【train】 epoch:3 1810/2980 loss:3.6146 2022-11-09 19:42:58,202 - INFO - main.py - train - 68 - 【train】 epoch:3 1811/2980 loss:0.9061 2022-11-09 19:42:59,389 - INFO - main.py - train - 68 - 【train】 epoch:3 1812/2980 loss:4.9130 2022-11-09 19:43:00,670 - INFO - main.py - train - 68 - 【train】 epoch:3 1813/2980 loss:14.9498 2022-11-09 19:43:01,904 - INFO - main.py - train - 68 - 【train】 epoch:3 1814/2980 loss:7.7017 2022-11-09 19:43:03,154 - INFO - main.py - train - 68 - 【train】 epoch:3 1815/2980 loss:5.5295 2022-11-09 19:43:04,404 - INFO - main.py - train - 68 - 【train】 epoch:3 1816/2980 loss:3.1331 2022-11-09 19:43:05,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1817/2980 loss:8.5901 2022-11-09 19:43:06,950 - INFO - main.py - train - 68 - 【train】 epoch:3 1818/2980 loss:6.8087 2022-11-09 19:43:08,278 - INFO - main.py - train - 68 - 【train】 epoch:3 1819/2980 loss:8.8649 2022-11-09 19:43:09,512 - INFO - main.py - train - 68 - 【train】 epoch:3 1820/2980 loss:9.8708 2022-11-09 19:43:10,746 - INFO - main.py - train - 68 - 【train】 epoch:3 1821/2980 loss:4.1222 2022-11-09 19:43:12,168 - INFO - main.py - train - 68 - 【train】 epoch:3 1822/2980 loss:5.9062 2022-11-09 19:43:13,402 - INFO - main.py - train - 68 - 【train】 epoch:3 1823/2980 loss:9.9948 2022-11-09 19:43:14,604 - INFO - main.py - train - 68 - 【train】 epoch:3 1824/2980 loss:2.2752 2022-11-09 19:43:15,807 - INFO - main.py - train - 68 - 【train】 epoch:3 1825/2980 loss:4.3673 2022-11-09 19:43:17,119 - INFO - main.py - train - 68 - 【train】 epoch:3 1826/2980 loss:7.9074 2022-11-09 19:43:18,650 - INFO - main.py - train - 68 - 【train】 epoch:3 1827/2980 loss:3.6884 2022-11-09 19:43:20,072 - INFO - main.py - train - 68 - 【train】 epoch:3 1828/2980 loss:1.1944 2022-11-09 19:43:21,290 - INFO - main.py - train - 68 - 【train】 epoch:3 1829/2980 loss:11.1585 2022-11-09 19:43:22,618 - INFO - main.py - train - 68 - 【train】 epoch:3 1830/2980 loss:1.6995 2022-11-09 19:43:23,852 - INFO - main.py - train - 68 - 【train】 epoch:3 1831/2980 loss:4.5924 2022-11-09 19:43:25,118 - INFO - main.py - train - 68 - 【train】 epoch:3 1832/2980 loss:3.8288 2022-11-09 19:43:26,399 - INFO - main.py - train - 68 - 【train】 epoch:3 1833/2980 loss:16.3912 2022-11-09 19:43:27,726 - INFO - main.py - train - 68 - 【train】 epoch:3 1834/2980 loss:3.3349 2022-11-09 19:43:29,164 - INFO - main.py - train - 68 - 【train】 epoch:3 1835/2980 loss:3.8013 2022-11-09 19:43:30,398 - INFO - main.py - train - 68 - 【train】 epoch:3 1836/2980 loss:20.4617 2022-11-09 19:43:31,663 - INFO - main.py - train - 68 - 【train】 epoch:3 1837/2980 loss:3.7216 2022-11-09 19:43:32,928 - INFO - main.py - train - 68 - 【train】 epoch:3 1838/2980 loss:3.2133 2022-11-09 19:43:34,365 - INFO - main.py - train - 68 - 【train】 epoch:3 1839/2980 loss:22.5358 2022-11-09 19:43:35,771 - INFO - main.py - train - 68 - 【train】 epoch:3 1840/2980 loss:3.2878 2022-11-09 19:43:37,177 - INFO - main.py - train - 68 - 【train】 epoch:3 1841/2980 loss:5.9286 2022-11-09 19:43:38,443 - INFO - main.py - train - 68 - 【train】 epoch:3 1842/2980 loss:8.8531 2022-11-09 19:43:39,895 - INFO - main.py - train - 68 - 【train】 epoch:3 1843/2980 loss:2.6568 2022-11-09 19:43:41,223 - INFO - main.py - train - 68 - 【train】 epoch:3 1844/2980 loss:9.5821 2022-11-09 19:43:42,535 - INFO - main.py - train - 68 - 【train】 epoch:3 1845/2980 loss:8.2549 2022-11-09 19:43:43,988 - INFO - main.py - train - 68 - 【train】 epoch:3 1846/2980 loss:6.8388 2022-11-09 19:43:45,300 - INFO - main.py - train - 68 - 【train】 epoch:3 1847/2980 loss:1.4866 2022-11-09 19:43:46,722 - INFO - main.py - train - 68 - 【train】 epoch:3 1848/2980 loss:11.6807 2022-11-09 19:43:48,034 - INFO - main.py - train - 68 - 【train】 epoch:3 1849/2980 loss:3.6416 2022-11-09 19:43:49,503 - INFO - main.py - train - 68 - 【train】 epoch:3 1850/2980 loss:0.5830 2022-11-09 19:43:50,768 - INFO - main.py - train - 68 - 【train】 epoch:3 1851/2980 loss:2.7012 2022-11-09 19:43:52,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1852/2980 loss:1.6195 2022-11-09 19:43:53,533 - INFO - main.py - train - 68 - 【train】 epoch:3 1853/2980 loss:2.6296 2022-11-09 19:43:54,814 - INFO - main.py - train - 68 - 【train】 epoch:3 1854/2980 loss:5.0958 2022-11-09 19:43:56,110 - INFO - main.py - train - 68 - 【train】 epoch:3 1855/2980 loss:6.8109 2022-11-09 19:43:57,469 - INFO - main.py - train - 68 - 【train】 epoch:3 1856/2980 loss:1.3811 2022-11-09 19:43:58,891 - INFO - main.py - train - 68 - 【train】 epoch:3 1857/2980 loss:0.9896 2022-11-09 19:44:00,156 - INFO - main.py - train - 68 - 【train】 epoch:3 1858/2980 loss:3.5533 2022-11-09 19:44:01,422 - INFO - main.py - train - 68 - 【train】 epoch:3 1859/2980 loss:11.2828 2022-11-09 19:44:02,734 - INFO - main.py - train - 68 - 【train】 epoch:3 1860/2980 loss:6.6569 2022-11-09 19:44:03,999 - INFO - main.py - train - 68 - 【train】 epoch:3 1861/2980 loss:9.9686 2022-11-09 19:44:05,405 - INFO - main.py - train - 68 - 【train】 epoch:3 1862/2980 loss:17.5181 2022-11-09 19:44:06,889 - INFO - main.py - train - 68 - 【train】 epoch:3 1863/2980 loss:2.3724 2022-11-09 19:44:08,186 - INFO - main.py - train - 68 - 【train】 epoch:3 1864/2980 loss:2.9340 2022-11-09 19:44:09,435 - INFO - main.py - train - 68 - 【train】 epoch:3 1865/2980 loss:8.7570 2022-11-09 19:44:11,310 - INFO - main.py - train - 68 - 【train】 epoch:3 1866/2980 loss:5.6250 2022-11-09 19:44:12,544 - INFO - main.py - train - 68 - 【train】 epoch:3 1867/2980 loss:1.6472 2022-11-09 19:44:13,762 - INFO - main.py - train - 68 - 【train】 epoch:3 1868/2980 loss:4.5866 2022-11-09 19:44:15,043 - INFO - main.py - train - 68 - 【train】 epoch:3 1869/2980 loss:2.6903 2022-11-09 19:44:16,340 - INFO - main.py - train - 68 - 【train】 epoch:3 1870/2980 loss:4.9836 2022-11-09 19:44:17,605 - INFO - main.py - train - 68 - 【train】 epoch:3 1871/2980 loss:3.1562 2022-11-09 19:44:18,902 - INFO - main.py - train - 68 - 【train】 epoch:3 1872/2980 loss:18.7857 2022-11-09 19:44:20,136 - INFO - main.py - train - 68 - 【train】 epoch:3 1873/2980 loss:0.4651 2022-11-09 19:44:21,401 - INFO - main.py - train - 68 - 【train】 epoch:3 1874/2980 loss:8.0647 2022-11-09 19:44:22,760 - INFO - main.py - train - 68 - 【train】 epoch:3 1875/2980 loss:6.6382 2022-11-09 19:44:24,073 - INFO - main.py - train - 68 - 【train】 epoch:3 1876/2980 loss:3.6758 2022-11-09 19:44:25,447 - INFO - main.py - train - 68 - 【train】 epoch:3 1877/2980 loss:1.6441 2022-11-09 19:44:26,666 - INFO - main.py - train - 68 - 【train】 epoch:3 1878/2980 loss:5.9020 2022-11-09 19:44:28,009 - INFO - main.py - train - 68 - 【train】 epoch:3 1879/2980 loss:5.0646 2022-11-09 19:44:29,212 - INFO - main.py - train - 68 - 【train】 epoch:3 1880/2980 loss:0.9704 2022-11-09 19:44:30,430 - INFO - main.py - train - 68 - 【train】 epoch:3 1881/2980 loss:1.4998 2022-11-09 19:44:31,805 - INFO - main.py - train - 68 - 【train】 epoch:3 1882/2980 loss:10.8268 2022-11-09 19:44:33,086 - INFO - main.py - train - 68 - 【train】 epoch:3 1883/2980 loss:4.0557 2022-11-09 19:44:34,351 - INFO - main.py - train - 68 - 【train】 epoch:3 1884/2980 loss:3.6349 2022-11-09 19:44:35,554 - INFO - main.py - train - 68 - 【train】 epoch:3 1885/2980 loss:3.1354 2022-11-09 19:44:37,023 - INFO - main.py - train - 68 - 【train】 epoch:3 1886/2980 loss:5.5817 2022-11-09 19:44:38,241 - INFO - main.py - train - 68 - 【train】 epoch:3 1887/2980 loss:3.8993 2022-11-09 19:44:39,506 - INFO - main.py - train - 68 - 【train】 epoch:3 1888/2980 loss:6.1745 2022-11-09 19:44:40,725 - INFO - main.py - train - 68 - 【train】 epoch:3 1889/2980 loss:0.5642 2022-11-09 19:44:42,021 - INFO - main.py - train - 68 - 【train】 epoch:3 1890/2980 loss:24.0659 2022-11-09 19:44:43,381 - INFO - main.py - train - 68 - 【train】 epoch:3 1891/2980 loss:2.5896 2022-11-09 19:44:44,583 - INFO - main.py - train - 68 - 【train】 epoch:3 1892/2980 loss:1.0718 2022-11-09 19:44:45,864 - INFO - main.py - train - 68 - 【train】 epoch:3 1893/2980 loss:4.6188 2022-11-09 19:44:47,145 - INFO - main.py - train - 68 - 【train】 epoch:3 1894/2980 loss:1.8852 2022-11-09 19:44:48,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1895/2980 loss:3.7526 2022-11-09 19:44:49,707 - INFO - main.py - train - 68 - 【train】 epoch:3 1896/2980 loss:4.0554 2022-11-09 19:44:50,926 - INFO - main.py - train - 68 - 【train】 epoch:3 1897/2980 loss:3.7527 2022-11-09 19:44:52,160 - INFO - main.py - train - 68 - 【train】 epoch:3 1898/2980 loss:9.0816 2022-11-09 19:44:53,363 - INFO - main.py - train - 68 - 【train】 epoch:3 1899/2980 loss:3.0098 2022-11-09 19:44:54,706 - INFO - main.py - train - 68 - 【train】 epoch:3 1900/2980 loss:0.1917 2022-11-09 19:44:55,924 - INFO - main.py - train - 68 - 【train】 epoch:3 1901/2980 loss:3.3513 2022-11-09 19:44:57,190 - INFO - main.py - train - 68 - 【train】 epoch:3 1902/2980 loss:6.4007 2022-11-09 19:44:58,549 - INFO - main.py - train - 68 - 【train】 epoch:3 1903/2980 loss:4.2947 2022-11-09 19:44:59,814 - INFO - main.py - train - 68 - 【train】 epoch:3 1904/2980 loss:6.8919 2022-11-09 19:45:01,329 - INFO - main.py - train - 68 - 【train】 epoch:3 1905/2980 loss:3.2345 2022-11-09 19:45:02,563 - INFO - main.py - train - 68 - 【train】 epoch:3 1906/2980 loss:0.6183 2022-11-09 19:45:03,829 - INFO - main.py - train - 68 - 【train】 epoch:3 1907/2980 loss:2.8291 2022-11-09 19:45:05,110 - INFO - main.py - train - 68 - 【train】 epoch:3 1908/2980 loss:2.8883 2022-11-09 19:45:06,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1909/2980 loss:4.4710 2022-11-09 19:45:07,594 - INFO - main.py - train - 68 - 【train】 epoch:3 1910/2980 loss:4.5293 2022-11-09 19:45:08,828 - INFO - main.py - train - 68 - 【train】 epoch:3 1911/2980 loss:0.5429 2022-11-09 19:45:10,077 - INFO - main.py - train - 68 - 【train】 epoch:3 1912/2980 loss:9.6340 2022-11-09 19:45:11,358 - INFO - main.py - train - 68 - 【train】 epoch:3 1913/2980 loss:3.4762 2022-11-09 19:45:12,624 - INFO - main.py - train - 68 - 【train】 epoch:3 1914/2980 loss:9.3016 2022-11-09 19:45:14,045 - INFO - main.py - train - 68 - 【train】 epoch:3 1915/2980 loss:1.4203 2022-11-09 19:45:15,342 - INFO - main.py - train - 68 - 【train】 epoch:3 1916/2980 loss:1.7912 2022-11-09 19:45:16,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1917/2980 loss:13.7995 2022-11-09 19:45:18,185 - INFO - main.py - train - 68 - 【train】 epoch:3 1918/2980 loss:7.7719 2022-11-09 19:45:19,450 - INFO - main.py - train - 68 - 【train】 epoch:3 1919/2980 loss:3.0086 2022-11-09 19:45:20,653 - INFO - main.py - train - 68 - 【train】 epoch:3 1920/2980 loss:10.9337 2022-11-09 19:45:22,012 - INFO - main.py - train - 68 - 【train】 epoch:3 1921/2980 loss:5.1152 2022-11-09 19:45:23,262 - INFO - main.py - train - 68 - 【train】 epoch:3 1922/2980 loss:2.0545 2022-11-09 19:45:24,543 - INFO - main.py - train - 68 - 【train】 epoch:3 1923/2980 loss:9.1042 2022-11-09 19:45:25,902 - INFO - main.py - train - 68 - 【train】 epoch:3 1924/2980 loss:4.2745 2022-11-09 19:45:27,136 - INFO - main.py - train - 68 - 【train】 epoch:3 1925/2980 loss:4.9549 2022-11-09 19:45:28,354 - INFO - main.py - train - 68 - 【train】 epoch:3 1926/2980 loss:7.4547 2022-11-09 19:45:29,776 - INFO - main.py - train - 68 - 【train】 epoch:3 1927/2980 loss:11.7595 2022-11-09 19:45:31,026 - INFO - main.py - train - 68 - 【train】 epoch:3 1928/2980 loss:11.8228 2022-11-09 19:45:32,322 - INFO - main.py - train - 68 - 【train】 epoch:3 1929/2980 loss:24.8392 2022-11-09 19:45:33,666 - INFO - main.py - train - 68 - 【train】 epoch:3 1930/2980 loss:1.2980 2022-11-09 19:45:34,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1931/2980 loss:11.6046 2022-11-09 19:45:36,196 - INFO - main.py - train - 68 - 【train】 epoch:3 1932/2980 loss:16.0000 2022-11-09 19:45:37,477 - INFO - main.py - train - 68 - 【train】 epoch:3 1933/2980 loss:4.0776 2022-11-09 19:45:38,883 - INFO - main.py - train - 68 - 【train】 epoch:3 1934/2980 loss:3.2904 2022-11-09 19:45:40,133 - INFO - main.py - train - 68 - 【train】 epoch:3 1935/2980 loss:9.8337 2022-11-09 19:45:41,398 - INFO - main.py - train - 68 - 【train】 epoch:3 1936/2980 loss:5.9869 2022-11-09 19:45:42,632 - INFO - main.py - train - 68 - 【train】 epoch:3 1937/2980 loss:0.4306 2022-11-09 19:45:43,960 - INFO - main.py - train - 68 - 【train】 epoch:3 1938/2980 loss:18.1725 2022-11-09 19:45:45,241 - INFO - main.py - train - 68 - 【train】 epoch:3 1939/2980 loss:2.7740 2022-11-09 19:45:46,459 - INFO - main.py - train - 68 - 【train】 epoch:3 1940/2980 loss:3.5603 2022-11-09 19:45:47,678 - INFO - main.py - train - 68 - 【train】 epoch:3 1941/2980 loss:5.5209 2022-11-09 19:45:48,881 - INFO - main.py - train - 68 - 【train】 epoch:3 1942/2980 loss:7.2224 2022-11-09 19:45:50,209 - INFO - main.py - train - 68 - 【train】 epoch:3 1943/2980 loss:12.6728 2022-11-09 19:45:51,474 - INFO - main.py - train - 68 - 【train】 epoch:3 1944/2980 loss:9.2621 2022-11-09 19:45:52,661 - INFO - main.py - train - 68 - 【train】 epoch:3 1945/2980 loss:7.0825 2022-11-09 19:45:54,036 - INFO - main.py - train - 68 - 【train】 epoch:3 1946/2980 loss:4.7226 2022-11-09 19:45:55,395 - INFO - main.py - train - 68 - 【train】 epoch:3 1947/2980 loss:4.5126 2022-11-09 19:45:56,645 - INFO - main.py - train - 68 - 【train】 epoch:3 1948/2980 loss:4.0967 2022-11-09 19:45:58,004 - INFO - main.py - train - 68 - 【train】 epoch:3 1949/2980 loss:9.3058 2022-11-09 19:45:59,316 - INFO - main.py - train - 68 - 【train】 epoch:3 1950/2980 loss:17.9866 2022-11-09 19:46:00,628 - INFO - main.py - train - 68 - 【train】 epoch:3 1951/2980 loss:18.6246 2022-11-09 19:46:01,831 - INFO - main.py - train - 68 - 【train】 epoch:3 1952/2980 loss:7.5396 2022-11-09 19:46:03,159 - INFO - main.py - train - 68 - 【train】 epoch:3 1953/2980 loss:17.3530 2022-11-09 19:46:04,408 - INFO - main.py - train - 68 - 【train】 epoch:3 1954/2980 loss:11.3328 2022-11-09 19:46:05,596 - INFO - main.py - train - 68 - 【train】 epoch:3 1955/2980 loss:2.1486 2022-11-09 19:46:06,830 - INFO - main.py - train - 68 - 【train】 epoch:3 1956/2980 loss:4.1667 2022-11-09 19:46:08,079 - INFO - main.py - train - 68 - 【train】 epoch:3 1957/2980 loss:17.4102 2022-11-09 19:46:09,470 - INFO - main.py - train - 68 - 【train】 epoch:3 1958/2980 loss:8.3530 2022-11-09 19:46:10,704 - INFO - main.py - train - 68 - 【train】 epoch:3 1959/2980 loss:1.2704 2022-11-09 19:46:11,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1960/2980 loss:3.7153 2022-11-09 19:46:13,250 - INFO - main.py - train - 68 - 【train】 epoch:3 1961/2980 loss:4.4735 2022-11-09 19:46:14,453 - INFO - main.py - train - 68 - 【train】 epoch:3 1962/2980 loss:4.0548 2022-11-09 19:46:15,671 - INFO - main.py - train - 68 - 【train】 epoch:3 1963/2980 loss:6.8521 2022-11-09 19:46:17,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1964/2980 loss:3.7319 2022-11-09 19:46:18,327 - INFO - main.py - train - 68 - 【train】 epoch:3 1965/2980 loss:8.0778 2022-11-09 19:46:19,608 - INFO - main.py - train - 68 - 【train】 epoch:3 1966/2980 loss:10.3978 2022-11-09 19:46:20,858 - INFO - main.py - train - 68 - 【train】 epoch:3 1967/2980 loss:2.5187 2022-11-09 19:46:22,061 - INFO - main.py - train - 68 - 【train】 epoch:3 1968/2980 loss:1.8932 2022-11-09 19:46:23,341 - INFO - main.py - train - 68 - 【train】 epoch:3 1969/2980 loss:2.8519 2022-11-09 19:46:24,560 - INFO - main.py - train - 68 - 【train】 epoch:3 1970/2980 loss:2.4372 2022-11-09 19:46:25,888 - INFO - main.py - train - 68 - 【train】 epoch:3 1971/2980 loss:11.6587 2022-11-09 19:46:27,091 - INFO - main.py - train - 68 - 【train】 epoch:3 1972/2980 loss:3.6907 2022-11-09 19:46:28,372 - INFO - main.py - train - 68 - 【train】 epoch:3 1973/2980 loss:5.7926 2022-11-09 19:46:29,777 - INFO - main.py - train - 68 - 【train】 epoch:3 1974/2980 loss:1.9065 2022-11-09 19:46:31,043 - INFO - main.py - train - 68 - 【train】 epoch:3 1975/2980 loss:10.9802 2022-11-09 19:46:32,339 - INFO - main.py - train - 68 - 【train】 epoch:3 1976/2980 loss:6.7161 2022-11-09 19:46:33,698 - INFO - main.py - train - 68 - 【train】 epoch:3 1977/2980 loss:12.4055 2022-11-09 19:46:34,995 - INFO - main.py - train - 68 - 【train】 epoch:3 1978/2980 loss:7.1598 2022-11-09 19:46:36,276 - INFO - main.py - train - 68 - 【train】 epoch:3 1979/2980 loss:8.1160 2022-11-09 19:46:37,744 - INFO - main.py - train - 68 - 【train】 epoch:3 1980/2980 loss:3.6253 2022-11-09 19:46:38,947 - INFO - main.py - train - 68 - 【train】 epoch:3 1981/2980 loss:2.4322 2022-11-09 19:46:40,181 - INFO - main.py - train - 68 - 【train】 epoch:3 1982/2980 loss:1.0009 2022-11-09 19:46:41,509 - INFO - main.py - train - 68 - 【train】 epoch:3 1983/2980 loss:12.0832 2022-11-09 19:46:42,727 - INFO - main.py - train - 68 - 【train】 epoch:3 1984/2980 loss:10.5155 2022-11-09 19:46:43,946 - INFO - main.py - train - 68 - 【train】 epoch:3 1985/2980 loss:0.3303 2022-11-09 19:46:45,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1986/2980 loss:3.6867 2022-11-09 19:46:46,695 - INFO - main.py - train - 68 - 【train】 epoch:3 1987/2980 loss:10.5174 2022-11-09 19:46:47,945 - INFO - main.py - train - 68 - 【train】 epoch:3 1988/2980 loss:2.8098 2022-11-09 19:46:49,195 - INFO - main.py - train - 68 - 【train】 epoch:3 1989/2980 loss:5.6648 2022-11-09 19:46:50,616 - INFO - main.py - train - 68 - 【train】 epoch:3 1990/2980 loss:3.9913 2022-11-09 19:46:51,882 - INFO - main.py - train - 68 - 【train】 epoch:3 1991/2980 loss:10.6140 2022-11-09 19:46:53,116 - INFO - main.py - train - 68 - 【train】 epoch:3 1992/2980 loss:14.0792 2022-11-09 19:46:54,553 - INFO - main.py - train - 68 - 【train】 epoch:3 1993/2980 loss:4.2274 2022-11-09 19:46:55,834 - INFO - main.py - train - 68 - 【train】 epoch:3 1994/2980 loss:20.0582 2022-11-09 19:46:57,037 - INFO - main.py - train - 68 - 【train】 epoch:3 1995/2980 loss:2.0205 2022-11-09 19:46:58,286 - INFO - main.py - train - 68 - 【train】 epoch:3 1996/2980 loss:3.6085 2022-11-09 19:46:59,802 - INFO - main.py - train - 68 - 【train】 epoch:3 1997/2980 loss:3.6177 2022-11-09 19:47:01,036 - INFO - main.py - train - 68 - 【train】 epoch:3 1998/2980 loss:7.8017 2022-11-09 19:47:02,317 - INFO - main.py - train - 68 - 【train】 epoch:3 1999/2980 loss:2.9125 2022-11-09 19:47:03,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2000/2980 loss:16.1003 2022-11-09 19:47:04,816 - INFO - main.py - train - 68 - 【train】 epoch:3 2001/2980 loss:11.5063 2022-11-09 19:47:06,066 - INFO - main.py - train - 68 - 【train】 epoch:3 2002/2980 loss:7.0009 2022-11-09 19:47:07,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2003/2980 loss:4.5406 2022-11-09 19:47:08,628 - INFO - main.py - train - 68 - 【train】 epoch:3 2004/2980 loss:5.1064 2022-11-09 19:47:09,877 - INFO - main.py - train - 68 - 【train】 epoch:3 2005/2980 loss:11.8655 2022-11-09 19:47:11,111 - INFO - main.py - train - 68 - 【train】 epoch:3 2006/2980 loss:15.6202 2022-11-09 19:47:12,720 - INFO - main.py - train - 68 - 【train】 epoch:3 2007/2980 loss:11.0555 2022-11-09 19:47:13,908 - INFO - main.py - train - 68 - 【train】 epoch:3 2008/2980 loss:1.7271 2022-11-09 19:47:15,642 - INFO - main.py - train - 68 - 【train】 epoch:3 2009/2980 loss:3.7263 2022-11-09 19:47:16,907 - INFO - main.py - train - 68 - 【train】 epoch:3 2010/2980 loss:0.3438 2022-11-09 19:47:18,141 - INFO - main.py - train - 68 - 【train】 epoch:3 2011/2980 loss:3.1452 2022-11-09 19:47:19,469 - INFO - main.py - train - 68 - 【train】 epoch:3 2012/2980 loss:8.8084 2022-11-09 19:47:20,828 - INFO - main.py - train - 68 - 【train】 epoch:3 2013/2980 loss:9.3441 2022-11-09 19:47:22,140 - INFO - main.py - train - 68 - 【train】 epoch:3 2014/2980 loss:20.1783 2022-11-09 19:47:23,359 - INFO - main.py - train - 68 - 【train】 epoch:3 2015/2980 loss:4.1473 2022-11-09 19:47:24,577 - INFO - main.py - train - 68 - 【train】 epoch:3 2016/2980 loss:4.0500 2022-11-09 19:47:26,170 - INFO - main.py - train - 68 - 【train】 epoch:3 2017/2980 loss:3.8575 2022-11-09 19:47:27,779 - INFO - main.py - train - 68 - 【train】 epoch:3 2018/2980 loss:0.7290 2022-11-09 19:47:29,607 - INFO - main.py - train - 68 - 【train】 epoch:3 2019/2980 loss:16.8239 2022-11-09 19:47:30,826 - INFO - main.py - train - 68 - 【train】 epoch:3 2020/2980 loss:3.3804 2022-11-09 19:47:32,325 - INFO - main.py - train - 68 - 【train】 epoch:3 2021/2980 loss:2.9446 2022-11-09 19:47:33,622 - INFO - main.py - train - 68 - 【train】 epoch:3 2022/2980 loss:14.6228 2022-11-09 19:47:35,059 - INFO - main.py - train - 68 - 【train】 epoch:3 2023/2980 loss:8.2343 2022-11-09 19:47:36,309 - INFO - main.py - train - 68 - 【train】 epoch:3 2024/2980 loss:5.8330 2022-11-09 19:47:37,543 - INFO - main.py - train - 68 - 【train】 epoch:3 2025/2980 loss:1.9732 2022-11-09 19:47:38,824 - INFO - main.py - train - 68 - 【train】 epoch:3 2026/2980 loss:2.3754 2022-11-09 19:47:40,651 - INFO - main.py - train - 68 - 【train】 epoch:3 2027/2980 loss:4.9650 2022-11-09 19:47:41,870 - INFO - main.py - train - 68 - 【train】 epoch:3 2028/2980 loss:6.9541 2022-11-09 19:47:43,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2029/2980 loss:3.9706 2022-11-09 19:47:44,401 - INFO - main.py - train - 68 - 【train】 epoch:3 2030/2980 loss:3.4107 2022-11-09 19:47:45,728 - INFO - main.py - train - 68 - 【train】 epoch:3 2031/2980 loss:1.1006 2022-11-09 19:47:46,994 - INFO - main.py - train - 68 - 【train】 epoch:3 2032/2980 loss:8.5320 2022-11-09 19:47:48,384 - INFO - main.py - train - 68 - 【train】 epoch:3 2033/2980 loss:18.9435 2022-11-09 19:47:49,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2034/2980 loss:0.5091 2022-11-09 19:47:51,071 - INFO - main.py - train - 68 - 【train】 epoch:3 2035/2980 loss:3.6944 2022-11-09 19:47:52,336 - INFO - main.py - train - 68 - 【train】 epoch:3 2036/2980 loss:4.7474 2022-11-09 19:47:53,586 - INFO - main.py - train - 68 - 【train】 epoch:3 2037/2980 loss:2.4968 2022-11-09 19:47:54,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2038/2980 loss:1.0380 2022-11-09 19:47:56,070 - INFO - main.py - train - 68 - 【train】 epoch:3 2039/2980 loss:11.1354 2022-11-09 19:47:57,460 - INFO - main.py - train - 68 - 【train】 epoch:3 2040/2980 loss:2.1013 2022-11-09 19:47:58,725 - INFO - main.py - train - 68 - 【train】 epoch:3 2041/2980 loss:2.2644 2022-11-09 19:48:00,334 - INFO - main.py - train - 68 - 【train】 epoch:3 2042/2980 loss:3.7950 2022-11-09 19:48:01,553 - INFO - main.py - train - 68 - 【train】 epoch:3 2043/2980 loss:5.2269 2022-11-09 19:48:02,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2044/2980 loss:14.1601 2022-11-09 19:48:04,115 - INFO - main.py - train - 68 - 【train】 epoch:3 2045/2980 loss:7.9504 2022-11-09 19:48:05,442 - INFO - main.py - train - 68 - 【train】 epoch:3 2046/2980 loss:3.5642 2022-11-09 19:48:06,786 - INFO - main.py - train - 68 - 【train】 epoch:3 2047/2980 loss:12.9079 2022-11-09 19:48:08,129 - INFO - main.py - train - 68 - 【train】 epoch:3 2048/2980 loss:10.6756 2022-11-09 19:48:09,426 - INFO - main.py - train - 68 - 【train】 epoch:3 2049/2980 loss:6.8918 2022-11-09 19:48:10,660 - INFO - main.py - train - 68 - 【train】 epoch:3 2050/2980 loss:2.7617 2022-11-09 19:48:11,925 - INFO - main.py - train - 68 - 【train】 epoch:3 2051/2980 loss:9.5151 2022-11-09 19:48:13,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2052/2980 loss:2.2708 2022-11-09 19:48:14,472 - INFO - main.py - train - 68 - 【train】 epoch:3 2053/2980 loss:3.8032 2022-11-09 19:48:15,721 - INFO - main.py - train - 68 - 【train】 epoch:3 2054/2980 loss:1.3917 2022-11-09 19:48:16,955 - INFO - main.py - train - 68 - 【train】 epoch:3 2055/2980 loss:4.2505 2022-11-09 19:48:18,393 - INFO - main.py - train - 68 - 【train】 epoch:3 2056/2980 loss:6.3719 2022-11-09 19:48:19,642 - INFO - main.py - train - 68 - 【train】 epoch:3 2057/2980 loss:0.8375 2022-11-09 19:48:21,079 - INFO - main.py - train - 68 - 【train】 epoch:3 2058/2980 loss:0.9376 2022-11-09 19:48:22,282 - INFO - main.py - train - 68 - 【train】 epoch:3 2059/2980 loss:2.5583 2022-11-09 19:48:23,688 - INFO - main.py - train - 68 - 【train】 epoch:3 2060/2980 loss:3.8150 2022-11-09 19:48:25,078 - INFO - main.py - train - 68 - 【train】 epoch:3 2061/2980 loss:2.0839 2022-11-09 19:48:26,766 - INFO - main.py - train - 68 - 【train】 epoch:3 2062/2980 loss:11.2789 2022-11-09 19:48:28,281 - INFO - main.py - train - 68 - 【train】 epoch:3 2063/2980 loss:13.0807 2022-11-09 19:48:29,468 - INFO - main.py - train - 68 - 【train】 epoch:3 2064/2980 loss:0.6458 2022-11-09 19:48:31,030 - INFO - main.py - train - 68 - 【train】 epoch:3 2065/2980 loss:8.0586 2022-11-09 19:48:32,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2066/2980 loss:3.1660 2022-11-09 19:48:33,717 - INFO - main.py - train - 68 - 【train】 epoch:3 2067/2980 loss:20.3114 2022-11-09 19:48:34,904 - INFO - main.py - train - 68 - 【train】 epoch:3 2068/2980 loss:1.3171 2022-11-09 19:48:36,123 - INFO - main.py - train - 68 - 【train】 epoch:3 2069/2980 loss:1.0410 2022-11-09 19:48:37,716 - INFO - main.py - train - 68 - 【train】 epoch:3 2070/2980 loss:7.4923 2022-11-09 19:48:39,091 - INFO - main.py - train - 68 - 【train】 epoch:3 2071/2980 loss:5.4067 2022-11-09 19:48:40,325 - INFO - main.py - train - 68 - 【train】 epoch:3 2072/2980 loss:11.3072 2022-11-09 19:48:41,637 - INFO - main.py - train - 68 - 【train】 epoch:3 2073/2980 loss:2.2722 2022-11-09 19:48:43,106 - INFO - main.py - train - 68 - 【train】 epoch:3 2074/2980 loss:4.0102 2022-11-09 19:48:44,340 - INFO - main.py - train - 68 - 【train】 epoch:3 2075/2980 loss:1.7231 2022-11-09 19:48:45,667 - INFO - main.py - train - 68 - 【train】 epoch:3 2076/2980 loss:18.5446 2022-11-09 19:48:46,886 - INFO - main.py - train - 68 - 【train】 epoch:3 2077/2980 loss:21.8038 2022-11-09 19:48:48,261 - INFO - main.py - train - 68 - 【train】 epoch:3 2078/2980 loss:16.2213 2022-11-09 19:48:49,463 - INFO - main.py - train - 68 - 【train】 epoch:3 2079/2980 loss:6.9021 2022-11-09 19:48:50,822 - INFO - main.py - train - 68 - 【train】 epoch:3 2080/2980 loss:7.6190 2022-11-09 19:48:52,072 - INFO - main.py - train - 68 - 【train】 epoch:3 2081/2980 loss:5.3630 2022-11-09 19:48:53,369 - INFO - main.py - train - 68 - 【train】 epoch:3 2082/2980 loss:6.0875 2022-11-09 19:48:54,790 - INFO - main.py - train - 68 - 【train】 epoch:3 2083/2980 loss:8.1909 2022-11-09 19:48:56,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2084/2980 loss:4.0717 2022-11-09 19:48:57,321 - INFO - main.py - train - 68 - 【train】 epoch:3 2085/2980 loss:6.5421 2022-11-09 19:48:58,539 - INFO - main.py - train - 68 - 【train】 epoch:3 2086/2980 loss:4.9222 2022-11-09 19:48:59,773 - INFO - main.py - train - 68 - 【train】 epoch:3 2087/2980 loss:2.2720 2022-11-09 19:49:01,008 - INFO - main.py - train - 68 - 【train】 epoch:3 2088/2980 loss:1.4419 2022-11-09 19:49:02,226 - INFO - main.py - train - 68 - 【train】 epoch:3 2089/2980 loss:5.8061 2022-11-09 19:49:03,429 - INFO - main.py - train - 68 - 【train】 epoch:3 2090/2980 loss:6.0647 2022-11-09 19:49:04,741 - INFO - main.py - train - 68 - 【train】 epoch:3 2091/2980 loss:7.5967 2022-11-09 19:49:06,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2092/2980 loss:25.5720 2022-11-09 19:49:07,647 - INFO - main.py - train - 68 - 【train】 epoch:3 2093/2980 loss:1.7670 2022-11-09 19:49:08,959 - INFO - main.py - train - 68 - 【train】 epoch:3 2094/2980 loss:5.0329 2022-11-09 19:49:10,287 - INFO - main.py - train - 68 - 【train】 epoch:3 2095/2980 loss:7.9591 2022-11-09 19:49:11,833 - INFO - main.py - train - 68 - 【train】 epoch:3 2096/2980 loss:9.7501 2022-11-09 19:49:13,130 - INFO - main.py - train - 68 - 【train】 epoch:3 2097/2980 loss:17.8601 2022-11-09 19:49:14,426 - INFO - main.py - train - 68 - 【train】 epoch:3 2098/2980 loss:7.7309 2022-11-09 19:49:15,660 - INFO - main.py - train - 68 - 【train】 epoch:3 2099/2980 loss:4.7088 2022-11-09 19:49:17,051 - INFO - main.py - train - 68 - 【train】 epoch:3 2100/2980 loss:0.7218 2022-11-09 19:49:18,300 - INFO - main.py - train - 68 - 【train】 epoch:3 2101/2980 loss:10.2667 2022-11-09 19:49:19,597 - INFO - main.py - train - 68 - 【train】 epoch:3 2102/2980 loss:6.5866 2022-11-09 19:49:20,925 - INFO - main.py - train - 68 - 【train】 epoch:3 2103/2980 loss:21.9789 2022-11-09 19:49:22,393 - INFO - main.py - train - 68 - 【train】 epoch:3 2104/2980 loss:5.0218 2022-11-09 19:49:23,971 - INFO - main.py - train - 68 - 【train】 epoch:3 2105/2980 loss:9.8247 2022-11-09 19:49:25,267 - INFO - main.py - train - 68 - 【train】 epoch:3 2106/2980 loss:18.3211 2022-11-09 19:49:26,486 - INFO - main.py - train - 68 - 【train】 epoch:3 2107/2980 loss:0.2022 2022-11-09 19:49:27,767 - INFO - main.py - train - 68 - 【train】 epoch:3 2108/2980 loss:3.0464 2022-11-09 19:49:28,954 - INFO - main.py - train - 68 - 【train】 epoch:3 2109/2980 loss:3.7475 2022-11-09 19:49:30,173 - INFO - main.py - train - 68 - 【train】 epoch:3 2110/2980 loss:2.1023 2022-11-09 19:49:31,438 - INFO - main.py - train - 68 - 【train】 epoch:3 2111/2980 loss:2.3742 2022-11-09 19:49:32,875 - INFO - main.py - train - 68 - 【train】 epoch:3 2112/2980 loss:12.8924 2022-11-09 19:49:34,390 - INFO - main.py - train - 68 - 【train】 epoch:3 2113/2980 loss:4.6226 2022-11-09 19:49:35,703 - INFO - main.py - train - 68 - 【train】 epoch:3 2114/2980 loss:5.1766 2022-11-09 19:49:37,077 - INFO - main.py - train - 68 - 【train】 epoch:3 2115/2980 loss:1.3812 2022-11-09 19:49:38,327 - INFO - main.py - train - 68 - 【train】 epoch:3 2116/2980 loss:10.4995 2022-11-09 19:49:39,561 - INFO - main.py - train - 68 - 【train】 epoch:3 2117/2980 loss:7.4422 2022-11-09 19:49:40,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2118/2980 loss:9.6164 2022-11-09 19:49:41,998 - INFO - main.py - train - 68 - 【train】 epoch:3 2119/2980 loss:3.2383 2022-11-09 19:49:43,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2120/2980 loss:5.0896 2022-11-09 19:49:44,435 - INFO - main.py - train - 68 - 【train】 epoch:3 2121/2980 loss:0.5453 2022-11-09 19:49:45,653 - INFO - main.py - train - 68 - 【train】 epoch:3 2122/2980 loss:8.7867 2022-11-09 19:49:46,997 - INFO - main.py - train - 68 - 【train】 epoch:3 2123/2980 loss:0.5323 2022-11-09 19:49:48,231 - INFO - main.py - train - 68 - 【train】 epoch:3 2124/2980 loss:2.2158 2022-11-09 19:49:49,918 - INFO - main.py - train - 68 - 【train】 epoch:3 2125/2980 loss:6.2427 2022-11-09 19:49:51,105 - INFO - main.py - train - 68 - 【train】 epoch:3 2126/2980 loss:12.0571 2022-11-09 19:49:52,433 - INFO - main.py - train - 68 - 【train】 epoch:3 2127/2980 loss:7.4113 2022-11-09 19:49:54,198 - INFO - main.py - train - 68 - 【train】 epoch:3 2128/2980 loss:2.9547 2022-11-09 19:49:55,464 - INFO - main.py - train - 68 - 【train】 epoch:3 2129/2980 loss:3.9866 2022-11-09 19:49:57,073 - INFO - main.py - train - 68 - 【train】 epoch:3 2130/2980 loss:0.6089 2022-11-09 19:49:58,291 - INFO - main.py - train - 68 - 【train】 epoch:3 2131/2980 loss:4.8096 2022-11-09 19:49:59,822 - INFO - main.py - train - 68 - 【train】 epoch:3 2132/2980 loss:7.0691 2022-11-09 19:50:01,009 - INFO - main.py - train - 68 - 【train】 epoch:3 2133/2980 loss:0.2389 2022-11-09 19:50:02,228 - INFO - main.py - train - 68 - 【train】 epoch:3 2134/2980 loss:5.2220 2022-11-09 19:50:03,712 - INFO - main.py - train - 68 - 【train】 epoch:3 2135/2980 loss:5.6188 2022-11-09 19:50:04,914 - INFO - main.py - train - 68 - 【train】 epoch:3 2136/2980 loss:3.6102 2022-11-09 19:50:06,492 - INFO - main.py - train - 68 - 【train】 epoch:3 2137/2980 loss:11.6484 2022-11-09 19:50:07,711 - INFO - main.py - train - 68 - 【train】 epoch:3 2138/2980 loss:9.5794 2022-11-09 19:50:09,038 - INFO - main.py - train - 68 - 【train】 epoch:3 2139/2980 loss:1.6046 2022-11-09 19:50:10,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2140/2980 loss:1.3748 2022-11-09 19:50:11,694 - INFO - main.py - train - 68 - 【train】 epoch:3 2141/2980 loss:4.7358 2022-11-09 19:50:12,944 - INFO - main.py - train - 68 - 【train】 epoch:3 2142/2980 loss:2.4469 2022-11-09 19:50:14,209 - INFO - main.py - train - 68 - 【train】 epoch:3 2143/2980 loss:13.2550 2022-11-09 19:50:15,756 - INFO - main.py - train - 68 - 【train】 epoch:3 2144/2980 loss:4.9117 2022-11-09 19:50:17,099 - INFO - main.py - train - 68 - 【train】 epoch:3 2145/2980 loss:2.1657 2022-11-09 19:50:18,286 - INFO - main.py - train - 68 - 【train】 epoch:3 2146/2980 loss:8.6464 2022-11-09 19:50:19,520 - INFO - main.py - train - 68 - 【train】 epoch:3 2147/2980 loss:0.6729 2022-11-09 19:50:20,911 - INFO - main.py - train - 68 - 【train】 epoch:3 2148/2980 loss:9.7602 2022-11-09 19:50:22,379 - INFO - main.py - train - 68 - 【train】 epoch:3 2149/2980 loss:7.9134 2022-11-09 19:50:23,629 - INFO - main.py - train - 68 - 【train】 epoch:3 2150/2980 loss:11.6418 2022-11-09 19:50:25,035 - INFO - main.py - train - 68 - 【train】 epoch:3 2151/2980 loss:8.8093 2022-11-09 19:50:26,238 - INFO - main.py - train - 68 - 【train】 epoch:3 2152/2980 loss:0.8717 2022-11-09 19:50:27,612 - INFO - main.py - train - 68 - 【train】 epoch:3 2153/2980 loss:25.8363 2022-11-09 19:50:28,956 - INFO - main.py - train - 68 - 【train】 epoch:3 2154/2980 loss:11.4902 2022-11-09 19:50:30,237 - INFO - main.py - train - 68 - 【train】 epoch:3 2155/2980 loss:10.2475 2022-11-09 19:50:31,596 - INFO - main.py - train - 68 - 【train】 epoch:3 2156/2980 loss:12.1616 2022-11-09 19:50:32,814 - INFO - main.py - train - 68 - 【train】 epoch:3 2157/2980 loss:3.1629 2022-11-09 19:50:34,111 - INFO - main.py - train - 68 - 【train】 epoch:3 2158/2980 loss:1.0681 2022-11-09 19:50:35,314 - INFO - main.py - train - 68 - 【train】 epoch:3 2159/2980 loss:4.8904 2022-11-09 19:50:36,829 - INFO - main.py - train - 68 - 【train】 epoch:3 2160/2980 loss:17.5399 2022-11-09 19:50:38,172 - INFO - main.py - train - 68 - 【train】 epoch:3 2161/2980 loss:5.6569 2022-11-09 19:50:39,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2162/2980 loss:9.6133 2022-11-09 19:50:41,093 - INFO - main.py - train - 68 - 【train】 epoch:3 2163/2980 loss:2.0093 2022-11-09 19:50:42,671 - INFO - main.py - train - 68 - 【train】 epoch:3 2164/2980 loss:7.2378 2022-11-09 19:50:43,921 - INFO - main.py - train - 68 - 【train】 epoch:3 2165/2980 loss:2.6092 2022-11-09 19:50:45,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2166/2980 loss:19.3116 2022-11-09 19:50:46,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2167/2980 loss:3.2693 2022-11-09 19:50:48,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2168/2980 loss:6.7831 2022-11-09 19:50:49,576 - INFO - main.py - train - 68 - 【train】 epoch:3 2169/2980 loss:6.7434 2022-11-09 19:50:50,810 - INFO - main.py - train - 68 - 【train】 epoch:3 2170/2980 loss:2.7351 2022-11-09 19:50:52,247 - INFO - main.py - train - 68 - 【train】 epoch:3 2171/2980 loss:2.7241 2022-11-09 19:50:53,637 - INFO - main.py - train - 68 - 【train】 epoch:3 2172/2980 loss:2.1062 2022-11-09 19:50:54,950 - INFO - main.py - train - 68 - 【train】 epoch:3 2173/2980 loss:42.2830 2022-11-09 19:50:56,199 - INFO - main.py - train - 68 - 【train】 epoch:3 2174/2980 loss:1.0498 2022-11-09 19:50:57,699 - INFO - main.py - train - 68 - 【train】 epoch:3 2175/2980 loss:16.8513 2022-11-09 19:50:58,902 - INFO - main.py - train - 68 - 【train】 epoch:3 2176/2980 loss:6.2720 2022-11-09 19:51:00,714 - INFO - main.py - train - 68 - 【train】 epoch:3 2177/2980 loss:3.9154 2022-11-09 19:51:02,135 - INFO - main.py - train - 68 - 【train】 epoch:3 2178/2980 loss:5.1758 2022-11-09 19:51:03,354 - INFO - main.py - train - 68 - 【train】 epoch:3 2179/2980 loss:4.7701 2022-11-09 19:51:04,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2180/2980 loss:7.2143 2022-11-09 19:51:06,384 - INFO - main.py - train - 68 - 【train】 epoch:3 2181/2980 loss:3.0357 2022-11-09 19:51:07,618 - INFO - main.py - train - 68 - 【train】 epoch:3 2182/2980 loss:4.8052 2022-11-09 19:51:09,040 - INFO - main.py - train - 68 - 【train】 epoch:3 2183/2980 loss:6.2293 2022-11-09 19:51:10,446 - INFO - main.py - train - 68 - 【train】 epoch:3 2184/2980 loss:11.7100 2022-11-09 19:51:11,774 - INFO - main.py - train - 68 - 【train】 epoch:3 2185/2980 loss:4.3012 2022-11-09 19:51:12,961 - INFO - main.py - train - 68 - 【train】 epoch:3 2186/2980 loss:2.4658 2022-11-09 19:51:14,383 - INFO - main.py - train - 68 - 【train】 epoch:3 2187/2980 loss:8.0152 2022-11-09 19:51:15,663 - INFO - main.py - train - 68 - 【train】 epoch:3 2188/2980 loss:5.6437 2022-11-09 19:51:16,991 - INFO - main.py - train - 68 - 【train】 epoch:3 2189/2980 loss:2.3225 2022-11-09 19:51:18,210 - INFO - main.py - train - 68 - 【train】 epoch:3 2190/2980 loss:12.1779 2022-11-09 19:51:19,444 - INFO - main.py - train - 68 - 【train】 epoch:3 2191/2980 loss:3.9022 2022-11-09 19:51:20,926 - INFO - main.py - train - 68 - 【train】 epoch:3 2192/2980 loss:21.3759 2022-11-09 19:51:22,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2193/2980 loss:2.1009 2022-11-09 19:51:23,394 - INFO - main.py - train - 68 - 【train】 epoch:3 2194/2980 loss:3.3490 2022-11-09 19:51:24,628 - INFO - main.py - train - 68 - 【train】 epoch:3 2195/2980 loss:1.7332 2022-11-09 19:51:26,034 - INFO - main.py - train - 68 - 【train】 epoch:3 2196/2980 loss:1.5150 2022-11-09 19:51:27,284 - INFO - main.py - train - 68 - 【train】 epoch:3 2197/2980 loss:5.5514 2022-11-09 19:51:28,705 - INFO - main.py - train - 68 - 【train】 epoch:3 2198/2980 loss:13.7067 2022-11-09 19:51:30,252 - INFO - main.py - train - 68 - 【train】 epoch:3 2199/2980 loss:1.0528 2022-11-09 19:51:31,673 - INFO - main.py - train - 68 - 【train】 epoch:3 2200/2980 loss:2.5015 2022-11-09 19:51:33,142 - INFO - main.py - train - 68 - 【train】 epoch:3 2201/2980 loss:12.5353 2022-11-09 19:51:34,329 - INFO - main.py - train - 68 - 【train】 epoch:3 2202/2980 loss:4.2087 2022-11-09 19:51:35,594 - INFO - main.py - train - 68 - 【train】 epoch:3 2203/2980 loss:5.3747 2022-11-09 19:51:36,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2204/2980 loss:12.2793 2022-11-09 19:51:38,234 - INFO - main.py - train - 68 - 【train】 epoch:3 2205/2980 loss:2.5568 2022-11-09 19:51:39,625 - INFO - main.py - train - 68 - 【train】 epoch:3 2206/2980 loss:5.3995 2022-11-09 19:51:40,812 - INFO - main.py - train - 68 - 【train】 epoch:3 2207/2980 loss:8.6595 2022-11-09 19:51:42,062 - INFO - main.py - train - 68 - 【train】 epoch:3 2208/2980 loss:11.4490 2022-11-09 19:51:43,281 - INFO - main.py - train - 68 - 【train】 epoch:3 2209/2980 loss:4.7169 2022-11-09 19:51:44,515 - INFO - main.py - train - 68 - 【train】 epoch:3 2210/2980 loss:2.7101 2022-11-09 19:51:45,780 - INFO - main.py - train - 68 - 【train】 epoch:3 2211/2980 loss:4.1674 2022-11-09 19:51:47,045 - INFO - main.py - train - 68 - 【train】 epoch:3 2212/2980 loss:3.1985 2022-11-09 19:51:48,326 - INFO - main.py - train - 68 - 【train】 epoch:3 2213/2980 loss:0.5032 2022-11-09 19:51:49,545 - INFO - main.py - train - 68 - 【train】 epoch:3 2214/2980 loss:1.9861 2022-11-09 19:51:51,247 - INFO - main.py - train - 68 - 【train】 epoch:3 2215/2980 loss:4.2156 2022-11-09 19:51:52,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2216/2980 loss:13.4684 2022-11-09 19:51:54,012 - INFO - main.py - train - 68 - 【train】 epoch:3 2217/2980 loss:1.5764 2022-11-09 19:51:55,465 - INFO - main.py - train - 68 - 【train】 epoch:3 2218/2980 loss:1.2236 2022-11-09 19:51:56,855 - INFO - main.py - train - 68 - 【train】 epoch:3 2219/2980 loss:3.5649 2022-11-09 19:51:58,105 - INFO - main.py - train - 68 - 【train】 epoch:3 2220/2980 loss:0.5041 2022-11-09 19:51:59,449 - INFO - main.py - train - 68 - 【train】 epoch:3 2221/2980 loss:3.7301 2022-11-09 19:52:00,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2222/2980 loss:18.9754 2022-11-09 19:52:02,204 - INFO - main.py - train - 68 - 【train】 epoch:3 2223/2980 loss:10.1807 2022-11-09 19:52:03,469 - INFO - main.py - train - 68 - 【train】 epoch:3 2224/2980 loss:9.1481 2022-11-09 19:52:04,734 - INFO - main.py - train - 68 - 【train】 epoch:3 2225/2980 loss:13.5632 2022-11-09 19:52:05,968 - INFO - main.py - train - 68 - 【train】 epoch:3 2226/2980 loss:6.7190 2022-11-09 19:52:07,452 - INFO - main.py - train - 68 - 【train】 epoch:3 2227/2980 loss:7.3532 2022-11-09 19:52:08,733 - INFO - main.py - train - 68 - 【train】 epoch:3 2228/2980 loss:0.2893 2022-11-09 19:52:09,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2229/2980 loss:5.6450 2022-11-09 19:52:11,202 - INFO - main.py - train - 68 - 【train】 epoch:3 2230/2980 loss:4.6140 2022-11-09 19:52:12,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2231/2980 loss:5.4428 2022-11-09 19:52:14,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2232/2980 loss:3.2289 2022-11-09 19:52:15,451 - INFO - main.py - train - 68 - 【train】 epoch:3 2233/2980 loss:3.6411 2022-11-09 19:52:16,732 - INFO - main.py - train - 68 - 【train】 epoch:3 2234/2980 loss:1.5584 2022-11-09 19:52:18,356 - INFO - main.py - train - 68 - 【train】 epoch:3 2235/2980 loss:4.4238 2022-11-09 19:52:19,559 - INFO - main.py - train - 68 - 【train】 epoch:3 2236/2980 loss:2.2649 2022-11-09 19:52:20,793 - INFO - main.py - train - 68 - 【train】 epoch:3 2237/2980 loss:3.0556 2022-11-09 19:52:22,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2238/2980 loss:15.8525 2022-11-09 19:52:23,902 - INFO - main.py - train - 68 - 【train】 epoch:3 2239/2980 loss:7.1069 2022-11-09 19:52:25,120 - INFO - main.py - train - 68 - 【train】 epoch:3 2240/2980 loss:9.0912 2022-11-09 19:52:26,714 - INFO - main.py - train - 68 - 【train】 epoch:3 2241/2980 loss:4.0451 2022-11-09 19:52:28,104 - INFO - main.py - train - 68 - 【train】 epoch:3 2242/2980 loss:3.3715 2022-11-09 19:52:29,557 - INFO - main.py - train - 68 - 【train】 epoch:3 2243/2980 loss:0.4381 2022-11-09 19:52:30,775 - INFO - main.py - train - 68 - 【train】 epoch:3 2244/2980 loss:6.4567 2022-11-09 19:52:32,618 - INFO - main.py - train - 68 - 【train】 epoch:3 2245/2980 loss:13.5628 2022-11-09 19:52:33,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2246/2980 loss:1.3568 2022-11-09 19:52:35,305 - INFO - main.py - train - 68 - 【train】 epoch:3 2247/2980 loss:5.2943 2022-11-09 19:52:36,664 - INFO - main.py - train - 68 - 【train】 epoch:3 2248/2980 loss:9.8672 2022-11-09 19:52:37,961 - INFO - main.py - train - 68 - 【train】 epoch:3 2249/2980 loss:1.9929 2022-11-09 19:52:39,695 - INFO - main.py - train - 68 - 【train】 epoch:3 2250/2980 loss:6.4600 2022-11-09 19:52:40,960 - INFO - main.py - train - 68 - 【train】 epoch:3 2251/2980 loss:2.7783 2022-11-09 19:52:42,366 - INFO - main.py - train - 68 - 【train】 epoch:3 2252/2980 loss:5.3969 2022-11-09 19:52:43,928 - INFO - main.py - train - 68 - 【train】 epoch:3 2253/2980 loss:1.9150 2022-11-09 19:52:45,303 - INFO - main.py - train - 68 - 【train】 epoch:3 2254/2980 loss:13.8240 2022-11-09 19:52:46,537 - INFO - main.py - train - 68 - 【train】 epoch:3 2255/2980 loss:7.0933 2022-11-09 19:52:47,849 - INFO - main.py - train - 68 - 【train】 epoch:3 2256/2980 loss:19.2435 2022-11-09 19:52:49,240 - INFO - main.py - train - 68 - 【train】 epoch:3 2257/2980 loss:9.3527 2022-11-09 19:52:50,786 - INFO - main.py - train - 68 - 【train】 epoch:3 2258/2980 loss:31.7597 2022-11-09 19:52:52,239 - INFO - main.py - train - 68 - 【train】 epoch:3 2259/2980 loss:15.8173 2022-11-09 19:52:53,817 - INFO - main.py - train - 68 - 【train】 epoch:3 2260/2980 loss:12.5182 2022-11-09 19:52:55,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2261/2980 loss:2.2170 2022-11-09 19:52:56,457 - INFO - main.py - train - 68 - 【train】 epoch:3 2262/2980 loss:8.3495 2022-11-09 19:52:58,019 - INFO - main.py - train - 68 - 【train】 epoch:3 2263/2980 loss:3.6254 2022-11-09 19:52:59,222 - INFO - main.py - train - 68 - 【train】 epoch:3 2264/2980 loss:2.8446 2022-11-09 19:53:00,971 - INFO - main.py - train - 68 - 【train】 epoch:3 2265/2980 loss:13.6656 2022-11-09 19:53:02,268 - INFO - main.py - train - 68 - 【train】 epoch:3 2266/2980 loss:7.6583 2022-11-09 19:53:03,471 - INFO - main.py - train - 68 - 【train】 epoch:3 2267/2980 loss:6.5797 2022-11-09 19:53:04,752 - INFO - main.py - train - 68 - 【train】 epoch:3 2268/2980 loss:1.9663 2022-11-09 19:53:06,376 - INFO - main.py - train - 68 - 【train】 epoch:3 2269/2980 loss:11.5551 2022-11-09 19:53:07,673 - INFO - main.py - train - 68 - 【train】 epoch:3 2270/2980 loss:8.6917 2022-11-09 19:53:08,907 - INFO - main.py - train - 68 - 【train】 epoch:3 2271/2980 loss:3.8742 2022-11-09 19:53:10,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2272/2980 loss:5.1100 2022-11-09 19:53:11,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2273/2980 loss:0.1214 2022-11-09 19:53:13,203 - INFO - main.py - train - 68 - 【train】 epoch:3 2274/2980 loss:18.2596 2022-11-09 19:53:14,531 - INFO - main.py - train - 68 - 【train】 epoch:3 2275/2980 loss:7.4577 2022-11-09 19:53:15,749 - INFO - main.py - train - 68 - 【train】 epoch:3 2276/2980 loss:5.5038 2022-11-09 19:53:16,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2277/2980 loss:9.9385 2022-11-09 19:53:18,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2278/2980 loss:3.1031 2022-11-09 19:53:19,826 - INFO - main.py - train - 68 - 【train】 epoch:3 2279/2980 loss:3.5171 2022-11-09 19:53:21,045 - INFO - main.py - train - 68 - 【train】 epoch:3 2280/2980 loss:3.9216 2022-11-09 19:53:22,294 - INFO - main.py - train - 68 - 【train】 epoch:3 2281/2980 loss:5.0778 2022-11-09 19:53:23,872 - INFO - main.py - train - 68 - 【train】 epoch:3 2282/2980 loss:10.9088 2022-11-09 19:53:25,091 - INFO - main.py - train - 68 - 【train】 epoch:3 2283/2980 loss:7.0077 2022-11-09 19:53:26,700 - INFO - main.py - train - 68 - 【train】 epoch:3 2284/2980 loss:1.8758 2022-11-09 19:53:28,152 - INFO - main.py - train - 68 - 【train】 epoch:3 2285/2980 loss:2.8881 2022-11-09 19:53:29,558 - INFO - main.py - train - 68 - 【train】 epoch:3 2286/2980 loss:9.8184 2022-11-09 19:53:30,808 - INFO - main.py - train - 68 - 【train】 epoch:3 2287/2980 loss:0.1926 2022-11-09 19:53:32,089 - INFO - main.py - train - 68 - 【train】 epoch:3 2288/2980 loss:0.6237 2022-11-09 19:53:33,604 - INFO - main.py - train - 68 - 【train】 epoch:3 2289/2980 loss:13.1553 2022-11-09 19:53:35,010 - INFO - main.py - train - 68 - 【train】 epoch:3 2290/2980 loss:8.6239 2022-11-09 19:53:36,354 - INFO - main.py - train - 68 - 【train】 epoch:3 2291/2980 loss:8.4019 2022-11-09 19:53:37,634 - INFO - main.py - train - 68 - 【train】 epoch:3 2292/2980 loss:9.2975 2022-11-09 19:53:38,915 - INFO - main.py - train - 68 - 【train】 epoch:3 2293/2980 loss:14.2161 2022-11-09 19:53:40,399 - INFO - main.py - train - 68 - 【train】 epoch:3 2294/2980 loss:7.3832 2022-11-09 19:53:41,868 - INFO - main.py - train - 68 - 【train】 epoch:3 2295/2980 loss:13.3958 2022-11-09 19:53:43,102 - INFO - main.py - train - 68 - 【train】 epoch:3 2296/2980 loss:8.3029 2022-11-09 19:53:44,367 - INFO - main.py - train - 68 - 【train】 epoch:3 2297/2980 loss:11.8345 2022-11-09 19:53:45,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2298/2980 loss:4.9408 2022-11-09 19:53:47,007 - INFO - main.py - train - 68 - 【train】 epoch:3 2299/2980 loss:2.1335 2022-11-09 19:53:48,335 - INFO - main.py - train - 68 - 【train】 epoch:3 2300/2980 loss:1.8978 2022-11-09 19:53:49,538 - INFO - main.py - train - 68 - 【train】 epoch:3 2301/2980 loss:2.6161 2022-11-09 19:53:50,835 - INFO - main.py - train - 68 - 【train】 epoch:3 2302/2980 loss:2.5020 2022-11-09 19:53:52,053 - INFO - main.py - train - 68 - 【train】 epoch:3 2303/2980 loss:8.7832 2022-11-09 19:53:53,318 - INFO - main.py - train - 68 - 【train】 epoch:3 2304/2980 loss:3.7826 2022-11-09 19:53:54,568 - INFO - main.py - train - 68 - 【train】 epoch:3 2305/2980 loss:0.9566 2022-11-09 19:53:55,818 - INFO - main.py - train - 68 - 【train】 epoch:3 2306/2980 loss:3.7819 2022-11-09 19:53:57,052 - INFO - main.py - train - 68 - 【train】 epoch:3 2307/2980 loss:8.0935 2022-11-09 19:53:58,395 - INFO - main.py - train - 68 - 【train】 epoch:3 2308/2980 loss:14.8044 2022-11-09 19:53:59,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2309/2980 loss:5.7758 2022-11-09 19:54:01,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2310/2980 loss:5.1082 2022-11-09 19:54:02,754 - INFO - main.py - train - 68 - 【train】 epoch:3 2311/2980 loss:4.2500 2022-11-09 19:54:04,144 - INFO - main.py - train - 68 - 【train】 epoch:3 2312/2980 loss:19.7127 2022-11-09 19:54:05,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2313/2980 loss:0.9058 2022-11-09 19:54:06,799 - INFO - main.py - train - 68 - 【train】 epoch:3 2314/2980 loss:11.5810 2022-11-09 19:54:08,221 - INFO - main.py - train - 68 - 【train】 epoch:3 2315/2980 loss:2.0547 2022-11-09 19:54:09,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2316/2980 loss:3.8885 2022-11-09 19:54:10,674 - INFO - main.py - train - 68 - 【train】 epoch:3 2317/2980 loss:6.0497 2022-11-09 19:54:12,189 - INFO - main.py - train - 68 - 【train】 epoch:3 2318/2980 loss:0.7940 2022-11-09 19:54:13,454 - INFO - main.py - train - 68 - 【train】 epoch:3 2319/2980 loss:5.4294 2022-11-09 19:54:14,657 - INFO - main.py - train - 68 - 【train】 epoch:3 2320/2980 loss:5.2796 2022-11-09 19:54:15,875 - INFO - main.py - train - 68 - 【train】 epoch:3 2321/2980 loss:3.0406 2022-11-09 19:54:17,141 - INFO - main.py - train - 68 - 【train】 epoch:3 2322/2980 loss:7.6979 2022-11-09 19:54:18,609 - INFO - main.py - train - 68 - 【train】 epoch:3 2323/2980 loss:1.5312 2022-11-09 19:54:20,156 - INFO - main.py - train - 68 - 【train】 epoch:3 2324/2980 loss:6.7931 2022-11-09 19:54:21,452 - INFO - main.py - train - 68 - 【train】 epoch:3 2325/2980 loss:9.8993 2022-11-09 19:54:22,718 - INFO - main.py - train - 68 - 【train】 epoch:3 2326/2980 loss:3.1509 2022-11-09 19:54:24,295 - INFO - main.py - train - 68 - 【train】 epoch:3 2327/2980 loss:8.2474 2022-11-09 19:54:25,514 - INFO - main.py - train - 68 - 【train】 epoch:3 2328/2980 loss:4.7344 2022-11-09 19:54:26,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2329/2980 loss:7.5824 2022-11-09 19:54:28,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2330/2980 loss:3.4036 2022-11-09 19:54:29,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2331/2980 loss:4.3293 2022-11-09 19:54:31,184 - INFO - main.py - train - 68 - 【train】 epoch:3 2332/2980 loss:4.4724 2022-11-09 19:54:32,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2333/2980 loss:14.7370 2022-11-09 19:54:34,012 - INFO - main.py - train - 68 - 【train】 epoch:3 2334/2980 loss:12.4971 2022-11-09 19:54:35,340 - INFO - main.py - train - 68 - 【train】 epoch:3 2335/2980 loss:15.6389 2022-11-09 19:54:36,542 - INFO - main.py - train - 68 - 【train】 epoch:3 2336/2980 loss:7.4467 2022-11-09 19:54:38,027 - INFO - main.py - train - 68 - 【train】 epoch:3 2337/2980 loss:10.2014 2022-11-09 19:54:39,526 - INFO - main.py - train - 68 - 【train】 epoch:3 2338/2980 loss:2.3598 2022-11-09 19:54:40,807 - INFO - main.py - train - 68 - 【train】 epoch:3 2339/2980 loss:3.7181 2022-11-09 19:54:42,026 - INFO - main.py - train - 68 - 【train】 epoch:3 2340/2980 loss:8.8021 2022-11-09 19:54:43,338 - INFO - main.py - train - 68 - 【train】 epoch:3 2341/2980 loss:27.1214 2022-11-09 19:54:44,603 - INFO - main.py - train - 68 - 【train】 epoch:3 2342/2980 loss:2.9668 2022-11-09 19:54:45,931 - INFO - main.py - train - 68 - 【train】 epoch:3 2343/2980 loss:17.8089 2022-11-09 19:54:47,221 - INFO - main.py - train - 68 - 【train】 epoch:3 2344/2980 loss:4.7201 2022-11-09 19:54:48,564 - INFO - main.py - train - 68 - 【train】 epoch:3 2345/2980 loss:0.8969 2022-11-09 19:54:49,877 - INFO - main.py - train - 68 - 【train】 epoch:3 2346/2980 loss:3.7045 2022-11-09 19:54:51,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2347/2980 loss:11.8206 2022-11-09 19:54:52,626 - INFO - main.py - train - 68 - 【train】 epoch:3 2348/2980 loss:2.8284 2022-11-09 19:54:53,954 - INFO - main.py - train - 68 - 【train】 epoch:3 2349/2980 loss:0.8567 2022-11-09 19:54:55,172 - INFO - main.py - train - 68 - 【train】 epoch:3 2350/2980 loss:14.1895 2022-11-09 19:54:56,500 - INFO - main.py - train - 68 - 【train】 epoch:3 2351/2980 loss:5.9040 2022-11-09 19:54:57,812 - INFO - main.py - train - 68 - 【train】 epoch:3 2352/2980 loss:3.3210 2022-11-09 19:54:59,249 - INFO - main.py - train - 68 - 【train】 epoch:3 2353/2980 loss:0.9613 2022-11-09 19:55:00,468 - INFO - main.py - train - 68 - 【train】 epoch:3 2354/2980 loss:2.7257 2022-11-09 19:55:01,811 - INFO - main.py - train - 68 - 【train】 epoch:3 2355/2980 loss:1.4808 2022-11-09 19:55:03,030 - INFO - main.py - train - 68 - 【train】 epoch:3 2356/2980 loss:8.2953 2022-11-09 19:55:04,217 - INFO - main.py - train - 68 - 【train】 epoch:3 2357/2980 loss:0.4998 2022-11-09 19:55:05,420 - INFO - main.py - train - 68 - 【train】 epoch:3 2358/2980 loss:3.1977 2022-11-09 19:55:06,654 - INFO - main.py - train - 68 - 【train】 epoch:3 2359/2980 loss:10.6449 2022-11-09 19:55:08,185 - INFO - main.py - train - 68 - 【train】 epoch:3 2360/2980 loss:3.8910 2022-11-09 19:55:09,419 - INFO - main.py - train - 68 - 【train】 epoch:3 2361/2980 loss:6.3086 2022-11-09 19:55:10,794 - INFO - main.py - train - 68 - 【train】 epoch:3 2362/2980 loss:6.7596 2022-11-09 19:55:12,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2363/2980 loss:17.1606 2022-11-09 19:55:13,668 - INFO - main.py - train - 68 - 【train】 epoch:3 2364/2980 loss:7.4674 2022-11-09 19:55:14,871 - INFO - main.py - train - 68 - 【train】 epoch:3 2365/2980 loss:6.7409 2022-11-09 19:55:16,089 - INFO - main.py - train - 68 - 【train】 epoch:3 2366/2980 loss:4.5915 2022-11-09 19:55:17,401 - INFO - main.py - train - 68 - 【train】 epoch:3 2367/2980 loss:6.7920 2022-11-09 19:55:18,698 - INFO - main.py - train - 68 - 【train】 epoch:3 2368/2980 loss:6.5300 2022-11-09 19:55:20,244 - INFO - main.py - train - 68 - 【train】 epoch:3 2369/2980 loss:7.1821 2022-11-09 19:55:21,900 - INFO - main.py - train - 68 - 【train】 epoch:3 2370/2980 loss:4.8888 2022-11-09 19:55:23,134 - INFO - main.py - train - 68 - 【train】 epoch:3 2371/2980 loss:10.2645 2022-11-09 19:55:24,572 - INFO - main.py - train - 68 - 【train】 epoch:3 2372/2980 loss:2.5036 2022-11-09 19:55:25,962 - INFO - main.py - train - 68 - 【train】 epoch:3 2373/2980 loss:18.1987 2022-11-09 19:55:27,180 - INFO - main.py - train - 68 - 【train】 epoch:3 2374/2980 loss:2.2081 2022-11-09 19:55:28,555 - INFO - main.py - train - 68 - 【train】 epoch:3 2375/2980 loss:11.5233 2022-11-09 19:55:29,836 - INFO - main.py - train - 68 - 【train】 epoch:3 2376/2980 loss:0.7339 2022-11-09 19:55:31,586 - INFO - main.py - train - 68 - 【train】 epoch:3 2377/2980 loss:21.6278 2022-11-09 19:55:32,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2378/2980 loss:2.8937 2022-11-09 19:55:34,429 - INFO - main.py - train - 68 - 【train】 epoch:3 2379/2980 loss:9.0080 2022-11-09 19:55:35,647 - INFO - main.py - train - 68 - 【train】 epoch:3 2380/2980 loss:7.8122 2022-11-09 19:55:36,881 - INFO - main.py - train - 68 - 【train】 epoch:3 2381/2980 loss:1.8185 2022-11-09 19:55:38,381 - INFO - main.py - train - 68 - 【train】 epoch:3 2382/2980 loss:10.5323 2022-11-09 19:55:40,209 - INFO - main.py - train - 68 - 【train】 epoch:3 2383/2980 loss:6.1839 2022-11-09 19:55:44,817 - INFO - main.py - train - 68 - 【train】 epoch:4 2384/2980 loss:8.6628 2022-11-09 19:55:46,020 - INFO - main.py - train - 68 - 【train】 epoch:4 2385/2980 loss:0.1823 2022-11-09 19:55:47,316 - INFO - main.py - train - 68 - 【train】 epoch:4 2386/2980 loss:11.8514 2022-11-09 19:55:48,597 - INFO - main.py - train - 68 - 【train】 epoch:4 2387/2980 loss:10.3778 2022-11-09 19:55:49,800 - INFO - main.py - train - 68 - 【train】 epoch:4 2388/2980 loss:4.0404 2022-11-09 19:55:51,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2389/2980 loss:2.7796 2022-11-09 19:55:52,268 - INFO - main.py - train - 68 - 【train】 epoch:4 2390/2980 loss:9.0120 2022-11-09 19:55:53,627 - INFO - main.py - train - 68 - 【train】 epoch:4 2391/2980 loss:8.8406 2022-11-09 19:55:54,861 - INFO - main.py - train - 68 - 【train】 epoch:4 2392/2980 loss:6.3922 2022-11-09 19:55:56,049 - INFO - main.py - train - 68 - 【train】 epoch:4 2393/2980 loss:1.5914 2022-11-09 19:55:57,314 - INFO - main.py - train - 68 - 【train】 epoch:4 2394/2980 loss:2.3392 2022-11-09 19:55:58,501 - INFO - main.py - train - 68 - 【train】 epoch:4 2395/2980 loss:1.1754 2022-11-09 19:55:59,735 - INFO - main.py - train - 68 - 【train】 epoch:4 2396/2980 loss:4.1820 2022-11-09 19:56:00,938 - INFO - main.py - train - 68 - 【train】 epoch:4 2397/2980 loss:2.9044 2022-11-09 19:56:02,250 - INFO - main.py - train - 68 - 【train】 epoch:4 2398/2980 loss:12.9324 2022-11-09 19:56:03,453 - INFO - main.py - train - 68 - 【train】 epoch:4 2399/2980 loss:8.8895 2022-11-09 19:56:04,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2400/2980 loss:6.1899 2022-11-09 19:56:06,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2401/2980 loss:3.1658 2022-11-09 19:56:07,390 - INFO - main.py - train - 68 - 【train】 epoch:4 2402/2980 loss:2.7747 2022-11-09 19:56:08,639 - INFO - main.py - train - 68 - 【train】 epoch:4 2403/2980 loss:2.1707 2022-11-09 19:56:10,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2404/2980 loss:6.7226 2022-11-09 19:56:11,451 - INFO - main.py - train - 68 - 【train】 epoch:4 2405/2980 loss:1.3819 2022-11-09 19:56:12,701 - INFO - main.py - train - 68 - 【train】 epoch:4 2406/2980 loss:3.1514 2022-11-09 19:56:14,013 - INFO - main.py - train - 68 - 【train】 epoch:4 2407/2980 loss:0.1464 2022-11-09 19:56:15,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2408/2980 loss:6.8075 2022-11-09 19:56:16,497 - INFO - main.py - train - 68 - 【train】 epoch:4 2409/2980 loss:6.0624 2022-11-09 19:56:17,684 - INFO - main.py - train - 68 - 【train】 epoch:4 2410/2980 loss:2.5337 2022-11-09 19:56:18,981 - INFO - main.py - train - 68 - 【train】 epoch:4 2411/2980 loss:1.9075 2022-11-09 19:56:20,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2412/2980 loss:6.9420 2022-11-09 19:56:21,621 - INFO - main.py - train - 68 - 【train】 epoch:4 2413/2980 loss:10.8169 2022-11-09 19:56:22,870 - INFO - main.py - train - 68 - 【train】 epoch:4 2414/2980 loss:0.7860 2022-11-09 19:56:24,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2415/2980 loss:8.5638 2022-11-09 19:56:25,339 - INFO - main.py - train - 68 - 【train】 epoch:4 2416/2980 loss:5.0917 2022-11-09 19:56:26,541 - INFO - main.py - train - 68 - 【train】 epoch:4 2417/2980 loss:2.6264 2022-11-09 19:56:28,088 - INFO - main.py - train - 68 - 【train】 epoch:4 2418/2980 loss:10.7996 2022-11-09 19:56:29,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2419/2980 loss:1.1193 2022-11-09 19:56:30,650 - INFO - main.py - train - 68 - 【train】 epoch:4 2420/2980 loss:7.3170 2022-11-09 19:56:31,837 - INFO - main.py - train - 68 - 【train】 epoch:4 2421/2980 loss:2.1668 2022-11-09 19:56:33,056 - INFO - main.py - train - 68 - 【train】 epoch:4 2422/2980 loss:3.4634 2022-11-09 19:56:34,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2423/2980 loss:0.5068 2022-11-09 19:56:35,539 - INFO - main.py - train - 68 - 【train】 epoch:4 2424/2980 loss:7.1697 2022-11-09 19:56:37,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2425/2980 loss:1.9516 2022-11-09 19:56:38,242 - INFO - main.py - train - 68 - 【train】 epoch:4 2426/2980 loss:3.1500 2022-11-09 19:56:39,554 - INFO - main.py - train - 68 - 【train】 epoch:4 2427/2980 loss:7.1254 2022-11-09 19:56:40,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2428/2980 loss:3.7976 2022-11-09 19:56:42,069 - INFO - main.py - train - 68 - 【train】 epoch:4 2429/2980 loss:2.4295 2022-11-09 19:56:43,334 - INFO - main.py - train - 68 - 【train】 epoch:4 2430/2980 loss:1.5609 2022-11-09 19:56:44,537 - INFO - main.py - train - 68 - 【train】 epoch:4 2431/2980 loss:7.9701 2022-11-09 19:56:45,740 - INFO - main.py - train - 68 - 【train】 epoch:4 2432/2980 loss:6.2512 2022-11-09 19:56:47,115 - INFO - main.py - train - 68 - 【train】 epoch:4 2433/2980 loss:16.3950 2022-11-09 19:56:48,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2434/2980 loss:3.0017 2022-11-09 19:56:49,630 - INFO - main.py - train - 68 - 【train】 epoch:4 2435/2980 loss:1.6653 2022-11-09 19:56:50,848 - INFO - main.py - train - 68 - 【train】 epoch:4 2436/2980 loss:1.8849 2022-11-09 19:56:52,051 - INFO - main.py - train - 68 - 【train】 epoch:4 2437/2980 loss:4.8907 2022-11-09 19:56:53,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2438/2980 loss:6.5102 2022-11-09 19:56:54,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2439/2980 loss:5.8387 2022-11-09 19:56:55,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2440/2980 loss:4.2993 2022-11-09 19:56:57,206 - INFO - main.py - train - 68 - 【train】 epoch:4 2441/2980 loss:2.4820 2022-11-09 19:56:58,487 - INFO - main.py - train - 68 - 【train】 epoch:4 2442/2980 loss:4.6776 2022-11-09 19:56:59,737 - INFO - main.py - train - 68 - 【train】 epoch:4 2443/2980 loss:8.1732 2022-11-09 19:57:00,986 - INFO - main.py - train - 68 - 【train】 epoch:4 2444/2980 loss:1.9311 2022-11-09 19:57:02,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2445/2980 loss:2.7802 2022-11-09 19:57:03,611 - INFO - main.py - train - 68 - 【train】 epoch:4 2446/2980 loss:8.6120 2022-11-09 19:57:05,157 - INFO - main.py - train - 68 - 【train】 epoch:4 2447/2980 loss:1.3957 2022-11-09 19:57:06,376 - INFO - main.py - train - 68 - 【train】 epoch:4 2448/2980 loss:1.2294 2022-11-09 19:57:07,672 - INFO - main.py - train - 68 - 【train】 epoch:4 2449/2980 loss:1.7729 2022-11-09 19:57:08,907 - INFO - main.py - train - 68 - 【train】 epoch:4 2450/2980 loss:5.1130 2022-11-09 19:57:10,187 - INFO - main.py - train - 68 - 【train】 epoch:4 2451/2980 loss:3.0753 2022-11-09 19:57:11,500 - INFO - main.py - train - 68 - 【train】 epoch:4 2452/2980 loss:10.8192 2022-11-09 19:57:12,796 - INFO - main.py - train - 68 - 【train】 epoch:4 2453/2980 loss:13.0640 2022-11-09 19:57:13,999 - INFO - main.py - train - 68 - 【train】 epoch:4 2454/2980 loss:6.8624 2022-11-09 19:57:15,202 - INFO - main.py - train - 68 - 【train】 epoch:4 2455/2980 loss:0.2149 2022-11-09 19:57:16,670 - INFO - main.py - train - 68 - 【train】 epoch:4 2456/2980 loss:2.7374 2022-11-09 19:57:17,889 - INFO - main.py - train - 68 - 【train】 epoch:4 2457/2980 loss:6.4777 2022-11-09 19:57:19,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2458/2980 loss:1.0110 2022-11-09 19:57:20,357 - INFO - main.py - train - 68 - 【train】 epoch:4 2459/2980 loss:0.6893 2022-11-09 19:57:21,716 - INFO - main.py - train - 68 - 【train】 epoch:4 2460/2980 loss:12.1177 2022-11-09 19:57:22,919 - INFO - main.py - train - 68 - 【train】 epoch:4 2461/2980 loss:1.8477 2022-11-09 19:57:24,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2462/2980 loss:2.2995 2022-11-09 19:57:25,387 - INFO - main.py - train - 68 - 【train】 epoch:4 2463/2980 loss:4.5228 2022-11-09 19:57:26,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2464/2980 loss:0.2807 2022-11-09 19:57:27,980 - INFO - main.py - train - 68 - 【train】 epoch:4 2465/2980 loss:6.4620 2022-11-09 19:57:29,402 - INFO - main.py - train - 68 - 【train】 epoch:4 2466/2980 loss:3.2095 2022-11-09 19:57:30,620 - INFO - main.py - train - 68 - 【train】 epoch:4 2467/2980 loss:4.1550 2022-11-09 19:57:31,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2468/2980 loss:4.9112 2022-11-09 19:57:33,416 - INFO - main.py - train - 68 - 【train】 epoch:4 2469/2980 loss:8.2142 2022-11-09 19:57:34,650 - INFO - main.py - train - 68 - 【train】 epoch:4 2470/2980 loss:6.0117 2022-11-09 19:57:36,166 - INFO - main.py - train - 68 - 【train】 epoch:4 2471/2980 loss:0.2751 2022-11-09 19:57:37,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2472/2980 loss:0.2886 2022-11-09 19:57:38,790 - INFO - main.py - train - 68 - 【train】 epoch:4 2473/2980 loss:8.8258 2022-11-09 19:57:40,071 - INFO - main.py - train - 68 - 【train】 epoch:4 2474/2980 loss:3.6424 2022-11-09 19:57:41,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2475/2980 loss:2.1371 2022-11-09 19:57:42,727 - INFO - main.py - train - 68 - 【train】 epoch:4 2476/2980 loss:6.3939 2022-11-09 19:57:43,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2477/2980 loss:7.4282 2022-11-09 19:57:45,179 - INFO - main.py - train - 68 - 【train】 epoch:4 2478/2980 loss:2.7612 2022-11-09 19:57:46,382 - INFO - main.py - train - 68 - 【train】 epoch:4 2479/2980 loss:7.2881 2022-11-09 19:57:47,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2480/2980 loss:3.1484 2022-11-09 19:57:49,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2481/2980 loss:2.0341 2022-11-09 19:57:50,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2482/2980 loss:10.9087 2022-11-09 19:57:51,771 - INFO - main.py - train - 68 - 【train】 epoch:4 2483/2980 loss:7.6537 2022-11-09 19:57:53,318 - INFO - main.py - train - 68 - 【train】 epoch:4 2484/2980 loss:5.4955 2022-11-09 19:57:54,536 - INFO - main.py - train - 68 - 【train】 epoch:4 2485/2980 loss:3.4337 2022-11-09 19:57:55,802 - INFO - main.py - train - 68 - 【train】 epoch:4 2486/2980 loss:7.8631 2022-11-09 19:57:57,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2487/2980 loss:1.6161 2022-11-09 19:57:58,848 - INFO - main.py - train - 68 - 【train】 epoch:4 2488/2980 loss:0.9628 2022-11-09 19:58:00,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2489/2980 loss:3.9391 2022-11-09 19:58:01,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2490/2980 loss:10.3846 2022-11-09 19:58:02,675 - INFO - main.py - train - 68 - 【train】 epoch:4 2491/2980 loss:2.6946 2022-11-09 19:58:04,112 - INFO - main.py - train - 68 - 【train】 epoch:4 2492/2980 loss:3.3416 2022-11-09 19:58:05,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2493/2980 loss:3.1153 2022-11-09 19:58:06,612 - INFO - main.py - train - 68 - 【train】 epoch:4 2494/2980 loss:4.1366 2022-11-09 19:58:08,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2495/2980 loss:7.1436 2022-11-09 19:58:09,345 - INFO - main.py - train - 68 - 【train】 epoch:4 2496/2980 loss:3.8539 2022-11-09 19:58:10,595 - INFO - main.py - train - 68 - 【train】 epoch:4 2497/2980 loss:6.7242 2022-11-09 19:58:11,985 - INFO - main.py - train - 68 - 【train】 epoch:4 2498/2980 loss:3.8360 2022-11-09 19:58:13,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2499/2980 loss:9.3618 2022-11-09 19:58:14,547 - INFO - main.py - train - 68 - 【train】 epoch:4 2500/2980 loss:0.8583 2022-11-09 19:58:15,860 - INFO - main.py - train - 68 - 【train】 epoch:4 2501/2980 loss:7.4613 2022-11-09 19:58:17,094 - INFO - main.py - train - 68 - 【train】 epoch:4 2502/2980 loss:1.2392 2022-11-09 19:58:18,375 - INFO - main.py - train - 68 - 【train】 epoch:4 2503/2980 loss:3.9371 2022-11-09 19:58:19,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2504/2980 loss:8.2050 2022-11-09 19:58:20,890 - INFO - main.py - train - 68 - 【train】 epoch:4 2505/2980 loss:1.3824 2022-11-09 19:58:22,358 - INFO - main.py - train - 68 - 【train】 epoch:4 2506/2980 loss:1.8316 2022-11-09 19:58:23,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2507/2980 loss:2.9265 2022-11-09 19:58:24,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2508/2980 loss:3.4016 2022-11-09 19:58:26,060 - INFO - main.py - train - 68 - 【train】 epoch:4 2509/2980 loss:1.2337 2022-11-09 19:58:27,294 - INFO - main.py - train - 68 - 【train】 epoch:4 2510/2980 loss:7.9797 2022-11-09 19:58:28,528 - INFO - main.py - train - 68 - 【train】 epoch:4 2511/2980 loss:7.5836 2022-11-09 19:58:29,778 - INFO - main.py - train - 68 - 【train】 epoch:4 2512/2980 loss:1.2003 2022-11-09 19:58:31,200 - INFO - main.py - train - 68 - 【train】 epoch:4 2513/2980 loss:6.2888 2022-11-09 19:58:32,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2514/2980 loss:3.6258 2022-11-09 19:58:33,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2515/2980 loss:1.6706 2022-11-09 19:58:34,918 - INFO - main.py - train - 68 - 【train】 epoch:4 2516/2980 loss:1.9696 2022-11-09 19:58:36,167 - INFO - main.py - train - 68 - 【train】 epoch:4 2517/2980 loss:5.6497 2022-11-09 19:58:37,495 - INFO - main.py - train - 68 - 【train】 epoch:4 2518/2980 loss:13.1435 2022-11-09 19:58:38,745 - INFO - main.py - train - 68 - 【train】 epoch:4 2519/2980 loss:14.0555 2022-11-09 19:58:40,166 - INFO - main.py - train - 68 - 【train】 epoch:4 2520/2980 loss:12.8972 2022-11-09 19:58:41,432 - INFO - main.py - train - 68 - 【train】 epoch:4 2521/2980 loss:4.8705 2022-11-09 19:58:42,916 - INFO - main.py - train - 68 - 【train】 epoch:4 2522/2980 loss:6.3843 2022-11-09 19:58:44,134 - INFO - main.py - train - 68 - 【train】 epoch:4 2523/2980 loss:14.6158 2022-11-09 19:58:45,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2524/2980 loss:0.6124 2022-11-09 19:58:46,634 - INFO - main.py - train - 68 - 【train】 epoch:4 2525/2980 loss:6.4716 2022-11-09 19:58:48,102 - INFO - main.py - train - 68 - 【train】 epoch:4 2526/2980 loss:1.6540 2022-11-09 19:58:49,430 - INFO - main.py - train - 68 - 【train】 epoch:4 2527/2980 loss:16.2062 2022-11-09 19:58:50,680 - INFO - main.py - train - 68 - 【train】 epoch:4 2528/2980 loss:8.8126 2022-11-09 19:58:51,914 - INFO - main.py - train - 68 - 【train】 epoch:4 2529/2980 loss:3.9212 2022-11-09 19:58:53,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2530/2980 loss:2.4754 2022-11-09 19:58:54,569 - INFO - main.py - train - 68 - 【train】 epoch:4 2531/2980 loss:7.5874 2022-11-09 19:58:55,756 - INFO - main.py - train - 68 - 【train】 epoch:4 2532/2980 loss:0.6759 2022-11-09 19:58:57,178 - INFO - main.py - train - 68 - 【train】 epoch:4 2533/2980 loss:5.1466 2022-11-09 19:58:58,724 - INFO - main.py - train - 68 - 【train】 epoch:4 2534/2980 loss:0.5672 2022-11-09 19:59:00,099 - INFO - main.py - train - 68 - 【train】 epoch:4 2535/2980 loss:23.3488 2022-11-09 19:59:01,318 - INFO - main.py - train - 68 - 【train】 epoch:4 2536/2980 loss:3.9832 2022-11-09 19:59:02,520 - INFO - main.py - train - 68 - 【train】 epoch:4 2537/2980 loss:10.8963 2022-11-09 19:59:03,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2538/2980 loss:7.7953 2022-11-09 19:59:05,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2539/2980 loss:11.7134 2022-11-09 19:59:06,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2540/2980 loss:7.8076 2022-11-09 19:59:07,629 - INFO - main.py - train - 68 - 【train】 epoch:4 2541/2980 loss:6.0664 2022-11-09 19:59:09,050 - INFO - main.py - train - 68 - 【train】 epoch:4 2542/2980 loss:7.0108 2022-11-09 19:59:10,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2543/2980 loss:6.7948 2022-11-09 19:59:11,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2544/2980 loss:4.1202 2022-11-09 19:59:13,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2545/2980 loss:0.8337 2022-11-09 19:59:14,440 - INFO - main.py - train - 68 - 【train】 epoch:4 2546/2980 loss:1.8822 2022-11-09 19:59:15,736 - INFO - main.py - train - 68 - 【train】 epoch:4 2547/2980 loss:45.5748 2022-11-09 19:59:16,986 - INFO - main.py - train - 68 - 【train】 epoch:4 2548/2980 loss:8.2719 2022-11-09 19:59:18,251 - INFO - main.py - train - 68 - 【train】 epoch:4 2549/2980 loss:9.2381 2022-11-09 19:59:19,548 - INFO - main.py - train - 68 - 【train】 epoch:4 2550/2980 loss:7.2872 2022-11-09 19:59:20,797 - INFO - main.py - train - 68 - 【train】 epoch:4 2551/2980 loss:1.6203 2022-11-09 19:59:22,125 - INFO - main.py - train - 68 - 【train】 epoch:4 2552/2980 loss:5.6328 2022-11-09 19:59:23,328 - INFO - main.py - train - 68 - 【train】 epoch:4 2553/2980 loss:1.6579 2022-11-09 19:59:24,547 - INFO - main.py - train - 68 - 【train】 epoch:4 2554/2980 loss:0.1695 2022-11-09 19:59:25,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2555/2980 loss:5.2280 2022-11-09 19:59:27,077 - INFO - main.py - train - 68 - 【train】 epoch:4 2556/2980 loss:3.4616 2022-11-09 19:59:28,358 - INFO - main.py - train - 68 - 【train】 epoch:4 2557/2980 loss:1.2110 2022-11-09 19:59:29,608 - INFO - main.py - train - 68 - 【train】 epoch:4 2558/2980 loss:1.0149 2022-11-09 19:59:30,920 - INFO - main.py - train - 68 - 【train】 epoch:4 2559/2980 loss:0.2427 2022-11-09 19:59:32,170 - INFO - main.py - train - 68 - 【train】 epoch:4 2560/2980 loss:1.5380 2022-11-09 19:59:33,466 - INFO - main.py - train - 68 - 【train】 epoch:4 2561/2980 loss:12.3594 2022-11-09 19:59:34,669 - INFO - main.py - train - 68 - 【train】 epoch:4 2562/2980 loss:2.5502 2022-11-09 19:59:35,966 - INFO - main.py - train - 68 - 【train】 epoch:4 2563/2980 loss:4.9738 2022-11-09 19:59:37,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2564/2980 loss:7.2377 2022-11-09 19:59:38,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2565/2980 loss:8.0770 2022-11-09 19:59:40,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2566/2980 loss:8.0261 2022-11-09 19:59:41,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2567/2980 loss:6.4290 2022-11-09 19:59:43,011 - INFO - main.py - train - 68 - 【train】 epoch:4 2568/2980 loss:3.4196 2022-11-09 19:59:44,511 - INFO - main.py - train - 68 - 【train】 epoch:4 2569/2980 loss:7.2104 2022-11-09 19:59:45,776 - INFO - main.py - train - 68 - 【train】 epoch:4 2570/2980 loss:5.7126 2022-11-09 19:59:47,010 - INFO - main.py - train - 68 - 【train】 epoch:4 2571/2980 loss:4.3358 2022-11-09 19:59:48,275 - INFO - main.py - train - 68 - 【train】 epoch:4 2572/2980 loss:14.0888 2022-11-09 19:59:49,478 - INFO - main.py - train - 68 - 【train】 epoch:4 2573/2980 loss:5.0968 2022-11-09 19:59:50,728 - INFO - main.py - train - 68 - 【train】 epoch:4 2574/2980 loss:1.0790 2022-11-09 19:59:52,040 - INFO - main.py - train - 68 - 【train】 epoch:4 2575/2980 loss:2.9951 2022-11-09 19:59:53,430 - INFO - main.py - train - 68 - 【train】 epoch:4 2576/2980 loss:5.2751 2022-11-09 19:59:54,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2577/2980 loss:0.3324 2022-11-09 19:59:55,930 - INFO - main.py - train - 68 - 【train】 epoch:4 2578/2980 loss:27.6013 2022-11-09 19:59:57,195 - INFO - main.py - train - 68 - 【train】 epoch:4 2579/2980 loss:1.9199 2022-11-09 19:59:58,445 - INFO - main.py - train - 68 - 【train】 epoch:4 2580/2980 loss:3.0216 2022-11-09 19:59:59,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2581/2980 loss:9.3096 2022-11-09 20:00:01,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2582/2980 loss:11.3707 2022-11-09 20:00:02,381 - INFO - main.py - train - 68 - 【train】 epoch:4 2583/2980 loss:8.9787 2022-11-09 20:00:03,944 - INFO - main.py - train - 68 - 【train】 epoch:4 2584/2980 loss:12.2420 2022-11-09 20:00:05,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2585/2980 loss:4.3955 2022-11-09 20:00:06,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2586/2980 loss:4.1328 2022-11-09 20:00:07,802 - INFO - main.py - train - 68 - 【train】 epoch:4 2587/2980 loss:8.1769 2022-11-09 20:00:09,036 - INFO - main.py - train - 68 - 【train】 epoch:4 2588/2980 loss:16.5086 2022-11-09 20:00:10,301 - INFO - main.py - train - 68 - 【train】 epoch:4 2589/2980 loss:6.7786 2022-11-09 20:00:11,598 - INFO - main.py - train - 68 - 【train】 epoch:4 2590/2980 loss:8.7843 2022-11-09 20:00:12,910 - INFO - main.py - train - 68 - 【train】 epoch:4 2591/2980 loss:2.9186 2022-11-09 20:00:14,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2592/2980 loss:6.9893 2022-11-09 20:00:16,003 - INFO - main.py - train - 68 - 【train】 epoch:4 2593/2980 loss:4.3126 2022-11-09 20:00:17,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2594/2980 loss:13.0590 2022-11-09 20:00:18,456 - INFO - main.py - train - 68 - 【train】 epoch:4 2595/2980 loss:3.3728 2022-11-09 20:00:19,799 - INFO - main.py - train - 68 - 【train】 epoch:4 2596/2980 loss:3.8551 2022-11-09 20:00:21,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2597/2980 loss:5.5317 2022-11-09 20:00:22,580 - INFO - main.py - train - 68 - 【train】 epoch:4 2598/2980 loss:4.8696 2022-11-09 20:00:24,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2599/2980 loss:5.0085 2022-11-09 20:00:25,360 - INFO - main.py - train - 68 - 【train】 epoch:4 2600/2980 loss:2.2028 2022-11-09 20:00:26,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2601/2980 loss:4.6017 2022-11-09 20:00:27,969 - INFO - main.py - train - 68 - 【train】 epoch:4 2602/2980 loss:0.7865 2022-11-09 20:00:29,219 - INFO - main.py - train - 68 - 【train】 epoch:4 2603/2980 loss:8.4654 2022-11-09 20:00:30,469 - INFO - main.py - train - 68 - 【train】 epoch:4 2604/2980 loss:0.8515 2022-11-09 20:00:31,812 - INFO - main.py - train - 68 - 【train】 epoch:4 2605/2980 loss:1.4553 2022-11-09 20:00:33,405 - INFO - main.py - train - 68 - 【train】 epoch:4 2606/2980 loss:10.2379 2022-11-09 20:00:34,639 - INFO - main.py - train - 68 - 【train】 epoch:4 2607/2980 loss:6.5080 2022-11-09 20:00:35,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2608/2980 loss:7.0209 2022-11-09 20:00:37,186 - INFO - main.py - train - 68 - 【train】 epoch:4 2609/2980 loss:10.3965 2022-11-09 20:00:38,685 - INFO - main.py - train - 68 - 【train】 epoch:4 2610/2980 loss:5.3557 2022-11-09 20:00:39,966 - INFO - main.py - train - 68 - 【train】 epoch:4 2611/2980 loss:1.8559 2022-11-09 20:00:41,622 - INFO - main.py - train - 68 - 【train】 epoch:4 2612/2980 loss:4.9701 2022-11-09 20:00:42,872 - INFO - main.py - train - 68 - 【train】 epoch:4 2613/2980 loss:3.6839 2022-11-09 20:00:44,122 - INFO - main.py - train - 68 - 【train】 epoch:4 2614/2980 loss:3.3855 2022-11-09 20:00:45,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2615/2980 loss:1.6688 2022-11-09 20:00:46,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2616/2980 loss:2.7363 2022-11-09 20:00:47,980 - INFO - main.py - train - 68 - 【train】 epoch:4 2617/2980 loss:8.8802 2022-11-09 20:00:49,308 - INFO - main.py - train - 68 - 【train】 epoch:4 2618/2980 loss:5.4904 2022-11-09 20:00:50,667 - INFO - main.py - train - 68 - 【train】 epoch:4 2619/2980 loss:6.0189 2022-11-09 20:00:51,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2620/2980 loss:7.2755 2022-11-09 20:00:53,338 - INFO - main.py - train - 68 - 【train】 epoch:4 2621/2980 loss:6.4143 2022-11-09 20:00:54,760 - INFO - main.py - train - 68 - 【train】 epoch:4 2622/2980 loss:4.4439 2022-11-09 20:00:55,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2623/2980 loss:2.3206 2022-11-09 20:00:57,228 - INFO - main.py - train - 68 - 【train】 epoch:4 2624/2980 loss:6.5507 2022-11-09 20:00:58,509 - INFO - main.py - train - 68 - 【train】 epoch:4 2625/2980 loss:17.6206 2022-11-09 20:00:59,868 - INFO - main.py - train - 68 - 【train】 epoch:4 2626/2980 loss:2.3969 2022-11-09 20:01:01,118 - INFO - main.py - train - 68 - 【train】 epoch:4 2627/2980 loss:13.1877 2022-11-09 20:01:02,508 - INFO - main.py - train - 68 - 【train】 epoch:4 2628/2980 loss:3.9541 2022-11-09 20:01:03,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2629/2980 loss:18.3610 2022-11-09 20:01:05,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2630/2980 loss:0.5892 2022-11-09 20:01:06,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2631/2980 loss:2.4280 2022-11-09 20:01:07,538 - INFO - main.py - train - 68 - 【train】 epoch:4 2632/2980 loss:0.8216 2022-11-09 20:01:08,788 - INFO - main.py - train - 68 - 【train】 epoch:4 2633/2980 loss:1.8502 2022-11-09 20:01:10,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2634/2980 loss:5.7744 2022-11-09 20:01:11,428 - INFO - main.py - train - 68 - 【train】 epoch:4 2635/2980 loss:2.2374 2022-11-09 20:01:12,771 - INFO - main.py - train - 68 - 【train】 epoch:4 2636/2980 loss:9.1371 2022-11-09 20:01:13,974 - INFO - main.py - train - 68 - 【train】 epoch:4 2637/2980 loss:2.4714 2022-11-09 20:01:15,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2638/2980 loss:3.6261 2022-11-09 20:01:16,395 - INFO - main.py - train - 68 - 【train】 epoch:4 2639/2980 loss:4.9638 2022-11-09 20:01:17,879 - INFO - main.py - train - 68 - 【train】 epoch:4 2640/2980 loss:20.0527 2022-11-09 20:01:19,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2641/2980 loss:9.8683 2022-11-09 20:01:20,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2642/2980 loss:11.8611 2022-11-09 20:01:22,220 - INFO - main.py - train - 68 - 【train】 epoch:4 2643/2980 loss:4.3201 2022-11-09 20:01:23,673 - INFO - main.py - train - 68 - 【train】 epoch:4 2644/2980 loss:7.4961 2022-11-09 20:01:25,235 - INFO - main.py - train - 68 - 【train】 epoch:4 2645/2980 loss:4.9501 2022-11-09 20:01:26,469 - INFO - main.py - train - 68 - 【train】 epoch:4 2646/2980 loss:6.3212 2022-11-09 20:01:27,938 - INFO - main.py - train - 68 - 【train】 epoch:4 2647/2980 loss:1.4685 2022-11-09 20:01:29,156 - INFO - main.py - train - 68 - 【train】 epoch:4 2648/2980 loss:3.4501 2022-11-09 20:01:30,562 - INFO - main.py - train - 68 - 【train】 epoch:4 2649/2980 loss:2.4492 2022-11-09 20:01:31,765 - INFO - main.py - train - 68 - 【train】 epoch:4 2650/2980 loss:1.7900 2022-11-09 20:01:32,968 - INFO - main.py - train - 68 - 【train】 epoch:4 2651/2980 loss:5.5005 2022-11-09 20:01:34,577 - INFO - main.py - train - 68 - 【train】 epoch:4 2652/2980 loss:10.1221 2022-11-09 20:01:35,826 - INFO - main.py - train - 68 - 【train】 epoch:4 2653/2980 loss:2.1657 2022-11-09 20:01:37,045 - INFO - main.py - train - 68 - 【train】 epoch:4 2654/2980 loss:0.8633 2022-11-09 20:01:38,263 - INFO - main.py - train - 68 - 【train】 epoch:4 2655/2980 loss:3.1028 2022-11-09 20:01:39,560 - INFO - main.py - train - 68 - 【train】 epoch:4 2656/2980 loss:2.6911 2022-11-09 20:01:40,810 - INFO - main.py - train - 68 - 【train】 epoch:4 2657/2980 loss:10.2641 2022-11-09 20:01:42,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2658/2980 loss:7.5004 2022-11-09 20:01:43,291 - INFO - main.py - train - 68 - 【train】 epoch:4 2659/2980 loss:4.0484 2022-11-09 20:01:44,666 - INFO - main.py - train - 68 - 【train】 epoch:4 2660/2980 loss:16.4339 2022-11-09 20:01:45,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2661/2980 loss:16.5172 2022-11-09 20:01:47,259 - INFO - main.py - train - 68 - 【train】 epoch:4 2662/2980 loss:10.6609 2022-11-09 20:01:48,696 - INFO - main.py - train - 68 - 【train】 epoch:4 2663/2980 loss:2.6240 2022-11-09 20:01:50,102 - INFO - main.py - train - 68 - 【train】 epoch:4 2664/2980 loss:4.3632 2022-11-09 20:01:51,321 - INFO - main.py - train - 68 - 【train】 epoch:4 2665/2980 loss:3.5856 2022-11-09 20:01:52,524 - INFO - main.py - train - 68 - 【train】 epoch:4 2666/2980 loss:1.4007 2022-11-09 20:01:53,742 - INFO - main.py - train - 68 - 【train】 epoch:4 2667/2980 loss:6.9862 2022-11-09 20:01:54,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2668/2980 loss:7.7964 2022-11-09 20:01:56,226 - INFO - main.py - train - 68 - 【train】 epoch:4 2669/2980 loss:5.6201 2022-11-09 20:01:57,585 - INFO - main.py - train - 68 - 【train】 epoch:4 2670/2980 loss:6.0617 2022-11-09 20:01:58,913 - INFO - main.py - train - 68 - 【train】 epoch:4 2671/2980 loss:17.8672 2022-11-09 20:02:00,209 - INFO - main.py - train - 68 - 【train】 epoch:4 2672/2980 loss:11.7439 2022-11-09 20:02:01,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2673/2980 loss:0.8108 2022-11-09 20:02:02,740 - INFO - main.py - train - 68 - 【train】 epoch:4 2674/2980 loss:1.9749 2022-11-09 20:02:04,099 - INFO - main.py - train - 68 - 【train】 epoch:4 2675/2980 loss:7.7711 2022-11-09 20:02:05,317 - INFO - main.py - train - 68 - 【train】 epoch:4 2676/2980 loss:5.9909 2022-11-09 20:02:07,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2677/2980 loss:8.6010 2022-11-09 20:02:08,410 - INFO - main.py - train - 68 - 【train】 epoch:4 2678/2980 loss:13.3741 2022-11-09 20:02:09,629 - INFO - main.py - train - 68 - 【train】 epoch:4 2679/2980 loss:1.4132 2022-11-09 20:02:11,144 - INFO - main.py - train - 68 - 【train】 epoch:4 2680/2980 loss:0.8958 2022-11-09 20:02:12,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2681/2980 loss:4.7981 2022-11-09 20:02:14,097 - INFO - main.py - train - 68 - 【train】 epoch:4 2682/2980 loss:2.1054 2022-11-09 20:02:15,518 - INFO - main.py - train - 68 - 【train】 epoch:4 2683/2980 loss:7.5585 2022-11-09 20:02:16,752 - INFO - main.py - train - 68 - 【train】 epoch:4 2684/2980 loss:2.5580 2022-11-09 20:02:18,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2685/2980 loss:0.0378 2022-11-09 20:02:19,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2686/2980 loss:1.5437 2022-11-09 20:02:20,579 - INFO - main.py - train - 68 - 【train】 epoch:4 2687/2980 loss:1.0966 2022-11-09 20:02:21,845 - INFO - main.py - train - 68 - 【train】 epoch:4 2688/2980 loss:14.4191 2022-11-09 20:02:23,157 - INFO - main.py - train - 68 - 【train】 epoch:4 2689/2980 loss:3.2955 2022-11-09 20:02:24,688 - INFO - main.py - train - 68 - 【train】 epoch:4 2690/2980 loss:11.5328 2022-11-09 20:02:25,906 - INFO - main.py - train - 68 - 【train】 epoch:4 2691/2980 loss:2.3855 2022-11-09 20:02:27,109 - INFO - main.py - train - 68 - 【train】 epoch:4 2692/2980 loss:1.2811 2022-11-09 20:02:28,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2693/2980 loss:1.7025 2022-11-09 20:02:30,187 - INFO - main.py - train - 68 - 【train】 epoch:4 2694/2980 loss:4.3139 2022-11-09 20:02:31,780 - INFO - main.py - train - 68 - 【train】 epoch:4 2695/2980 loss:5.7478 2022-11-09 20:02:33,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2696/2980 loss:6.9128 2022-11-09 20:02:34,607 - INFO - main.py - train - 68 - 【train】 epoch:4 2697/2980 loss:2.6893 2022-11-09 20:02:35,888 - INFO - main.py - train - 68 - 【train】 epoch:4 2698/2980 loss:2.7383 2022-11-09 20:02:37,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2699/2980 loss:4.8907 2022-11-09 20:02:39,013 - INFO - main.py - train - 68 - 【train】 epoch:4 2700/2980 loss:6.6017 2022-11-09 20:02:40,372 - INFO - main.py - train - 68 - 【train】 epoch:4 2701/2980 loss:4.2167 2022-11-09 20:02:41,965 - INFO - main.py - train - 68 - 【train】 epoch:4 2702/2980 loss:2.6083 2022-11-09 20:02:43,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2703/2980 loss:1.0318 2022-11-09 20:02:44,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2704/2980 loss:6.0399 2022-11-09 20:02:45,902 - INFO - main.py - train - 68 - 【train】 epoch:4 2705/2980 loss:14.3815 2022-11-09 20:02:47,261 - INFO - main.py - train - 68 - 【train】 epoch:4 2706/2980 loss:1.2899 2022-11-09 20:02:48,589 - INFO - main.py - train - 68 - 【train】 epoch:4 2707/2980 loss:0.7735 2022-11-09 20:02:49,791 - INFO - main.py - train - 68 - 【train】 epoch:4 2708/2980 loss:0.5960 2022-11-09 20:02:51,291 - INFO - main.py - train - 68 - 【train】 epoch:4 2709/2980 loss:1.5321 2022-11-09 20:02:52,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2710/2980 loss:2.6362 2022-11-09 20:02:53,837 - INFO - main.py - train - 68 - 【train】 epoch:4 2711/2980 loss:0.3887 2022-11-09 20:02:55,274 - INFO - main.py - train - 68 - 【train】 epoch:4 2712/2980 loss:9.9483 2022-11-09 20:02:56,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2713/2980 loss:14.8537 2022-11-09 20:02:58,008 - INFO - main.py - train - 68 - 【train】 epoch:4 2714/2980 loss:6.2283 2022-11-09 20:02:59,211 - INFO - main.py - train - 68 - 【train】 epoch:4 2715/2980 loss:3.2389 2022-11-09 20:03:00,414 - INFO - main.py - train - 68 - 【train】 epoch:4 2716/2980 loss:2.4829 2022-11-09 20:03:01,648 - INFO - main.py - train - 68 - 【train】 epoch:4 2717/2980 loss:8.5190 2022-11-09 20:03:02,866 - INFO - main.py - train - 68 - 【train】 epoch:4 2718/2980 loss:1.5478 2022-11-09 20:03:04,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2719/2980 loss:6.9739 2022-11-09 20:03:05,506 - INFO - main.py - train - 68 - 【train】 epoch:4 2720/2980 loss:3.4377 2022-11-09 20:03:06,741 - INFO - main.py - train - 68 - 【train】 epoch:4 2721/2980 loss:3.5685 2022-11-09 20:03:08,115 - INFO - main.py - train - 68 - 【train】 epoch:4 2722/2980 loss:4.2035 2022-11-09 20:03:09,349 - INFO - main.py - train - 68 - 【train】 epoch:4 2723/2980 loss:3.0739 2022-11-09 20:03:10,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2724/2980 loss:1.3633 2022-11-09 20:03:11,958 - INFO - main.py - train - 68 - 【train】 epoch:4 2725/2980 loss:0.5781 2022-11-09 20:03:13,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2726/2980 loss:0.9611 2022-11-09 20:03:14,457 - INFO - main.py - train - 68 - 【train】 epoch:4 2727/2980 loss:4.1835 2022-11-09 20:03:15,738 - INFO - main.py - train - 68 - 【train】 epoch:4 2728/2980 loss:2.3342 2022-11-09 20:03:17,019 - INFO - main.py - train - 68 - 【train】 epoch:4 2729/2980 loss:0.4986 2022-11-09 20:03:18,566 - INFO - main.py - train - 68 - 【train】 epoch:4 2730/2980 loss:4.1386 2022-11-09 20:03:20,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2731/2980 loss:1.9214 2022-11-09 20:03:21,628 - INFO - main.py - train - 68 - 【train】 epoch:4 2732/2980 loss:1.7750 2022-11-09 20:03:22,846 - INFO - main.py - train - 68 - 【train】 epoch:4 2733/2980 loss:1.1244 2022-11-09 20:03:24,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2734/2980 loss:5.2943 2022-11-09 20:03:25,658 - INFO - main.py - train - 68 - 【train】 epoch:4 2735/2980 loss:15.0046 2022-11-09 20:03:27,001 - INFO - main.py - train - 68 - 【train】 epoch:4 2736/2980 loss:0.5620 2022-11-09 20:03:28,314 - INFO - main.py - train - 68 - 【train】 epoch:4 2737/2980 loss:6.4229 2022-11-09 20:03:29,516 - INFO - main.py - train - 68 - 【train】 epoch:4 2738/2980 loss:3.9344 2022-11-09 20:03:30,875 - INFO - main.py - train - 68 - 【train】 epoch:4 2739/2980 loss:3.1414 2022-11-09 20:03:32,141 - INFO - main.py - train - 68 - 【train】 epoch:4 2740/2980 loss:13.5183 2022-11-09 20:03:33,312 - INFO - main.py - train - 68 - 【train】 epoch:4 2741/2980 loss:5.1460 2022-11-09 20:03:34,515 - INFO - main.py - train - 68 - 【train】 epoch:4 2742/2980 loss:14.9310 2022-11-09 20:03:35,937 - INFO - main.py - train - 68 - 【train】 epoch:4 2743/2980 loss:16.4282 2022-11-09 20:03:37,140 - INFO - main.py - train - 68 - 【train】 epoch:4 2744/2980 loss:4.1074 2022-11-09 20:03:38,405 - INFO - main.py - train - 68 - 【train】 epoch:4 2745/2980 loss:6.1879 2022-11-09 20:03:39,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2746/2980 loss:1.5750 2022-11-09 20:03:41,326 - INFO - main.py - train - 68 - 【train】 epoch:4 2747/2980 loss:8.5627 2022-11-09 20:03:42,716 - INFO - main.py - train - 68 - 【train】 epoch:4 2748/2980 loss:8.1814 2022-11-09 20:03:43,982 - INFO - main.py - train - 68 - 【train】 epoch:4 2749/2980 loss:1.4465 2022-11-09 20:03:45,185 - INFO - main.py - train - 68 - 【train】 epoch:4 2750/2980 loss:1.6409 2022-11-09 20:03:46,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2751/2980 loss:2.2190 2022-11-09 20:03:47,840 - INFO - main.py - train - 68 - 【train】 epoch:4 2752/2980 loss:2.4814 2022-11-09 20:03:49,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2753/2980 loss:9.9001 2022-11-09 20:03:50,777 - INFO - main.py - train - 68 - 【train】 epoch:4 2754/2980 loss:0.1642 2022-11-09 20:03:52,136 - INFO - main.py - train - 68 - 【train】 epoch:4 2755/2980 loss:2.8260 2022-11-09 20:03:53,323 - INFO - main.py - train - 68 - 【train】 epoch:4 2756/2980 loss:1.0637 2022-11-09 20:03:54,870 - INFO - main.py - train - 68 - 【train】 epoch:4 2757/2980 loss:0.0869 2022-11-09 20:03:56,073 - INFO - main.py - train - 68 - 【train】 epoch:4 2758/2980 loss:1.6727 2022-11-09 20:03:57,494 - INFO - main.py - train - 68 - 【train】 epoch:4 2759/2980 loss:5.0726 2022-11-09 20:03:58,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2760/2980 loss:3.1533 2022-11-09 20:04:00,181 - INFO - main.py - train - 68 - 【train】 epoch:4 2761/2980 loss:11.7942 2022-11-09 20:04:01,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2762/2980 loss:2.7900 2022-11-09 20:04:02,930 - INFO - main.py - train - 68 - 【train】 epoch:4 2763/2980 loss:2.0614 2022-11-09 20:04:04,180 - INFO - main.py - train - 68 - 【train】 epoch:4 2764/2980 loss:1.7193 2022-11-09 20:04:05,758 - INFO - main.py - train - 68 - 【train】 epoch:4 2765/2980 loss:13.1118 2022-11-09 20:04:07,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2766/2980 loss:4.7747 2022-11-09 20:04:08,664 - INFO - main.py - train - 68 - 【train】 epoch:4 2767/2980 loss:10.0617 2022-11-09 20:04:09,898 - INFO - main.py - train - 68 - 【train】 epoch:4 2768/2980 loss:0.7231 2022-11-09 20:04:11,382 - INFO - main.py - train - 68 - 【train】 epoch:4 2769/2980 loss:3.6742 2022-11-09 20:04:12,678 - INFO - main.py - train - 68 - 【train】 epoch:4 2770/2980 loss:1.8170 2022-11-09 20:04:14,131 - INFO - main.py - train - 68 - 【train】 epoch:4 2771/2980 loss:3.9560 2022-11-09 20:04:15,334 - INFO - main.py - train - 68 - 【train】 epoch:4 2772/2980 loss:0.2562 2022-11-09 20:04:16,646 - INFO - main.py - train - 68 - 【train】 epoch:4 2773/2980 loss:2.4209 2022-11-09 20:04:18,052 - INFO - main.py - train - 68 - 【train】 epoch:4 2774/2980 loss:3.4398 2022-11-09 20:04:19,255 - INFO - main.py - train - 68 - 【train】 epoch:4 2775/2980 loss:3.5759 2022-11-09 20:04:20,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2776/2980 loss:8.8147 2022-11-09 20:04:22,160 - INFO - main.py - train - 68 - 【train】 epoch:4 2777/2980 loss:2.4561 2022-11-09 20:04:23,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2778/2980 loss:6.8320 2022-11-09 20:04:24,722 - INFO - main.py - train - 68 - 【train】 epoch:4 2779/2980 loss:4.8999 2022-11-09 20:04:25,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2780/2980 loss:1.7397 2022-11-09 20:04:27,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2781/2980 loss:6.5466 2022-11-09 20:04:29,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2782/2980 loss:5.8673 2022-11-09 20:04:30,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2783/2980 loss:0.8484 2022-11-09 20:04:32,158 - INFO - main.py - train - 68 - 【train】 epoch:4 2784/2980 loss:4.6587 2022-11-09 20:04:33,392 - INFO - main.py - train - 68 - 【train】 epoch:4 2785/2980 loss:19.5457 2022-11-09 20:04:34,579 - INFO - main.py - train - 68 - 【train】 epoch:4 2786/2980 loss:0.4501 2022-11-09 20:04:35,798 - INFO - main.py - train - 68 - 【train】 epoch:4 2787/2980 loss:2.3485 2022-11-09 20:04:37,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2788/2980 loss:2.4606 2022-11-09 20:04:38,860 - INFO - main.py - train - 68 - 【train】 epoch:4 2789/2980 loss:4.4672 2022-11-09 20:04:40,125 - INFO - main.py - train - 68 - 【train】 epoch:4 2790/2980 loss:4.3031 2022-11-09 20:04:41,578 - INFO - main.py - train - 68 - 【train】 epoch:4 2791/2980 loss:12.3261 2022-11-09 20:04:43,030 - INFO - main.py - train - 68 - 【train】 epoch:4 2792/2980 loss:5.4207 2022-11-09 20:04:44,280 - INFO - main.py - train - 68 - 【train】 epoch:4 2793/2980 loss:1.5168 2022-11-09 20:04:45,530 - INFO - main.py - train - 68 - 【train】 epoch:4 2794/2980 loss:11.3564 2022-11-09 20:04:46,795 - INFO - main.py - train - 68 - 【train】 epoch:4 2795/2980 loss:5.5018 2022-11-09 20:04:48,014 - INFO - main.py - train - 68 - 【train】 epoch:4 2796/2980 loss:9.9051 2022-11-09 20:04:49,529 - INFO - main.py - train - 68 - 【train】 epoch:4 2797/2980 loss:6.8039 2022-11-09 20:04:50,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2798/2980 loss:9.6922 2022-11-09 20:04:52,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2799/2980 loss:8.5915 2022-11-09 20:04:53,559 - INFO - main.py - train - 68 - 【train】 epoch:4 2800/2980 loss:12.1428 2022-11-09 20:04:54,903 - INFO - main.py - train - 68 - 【train】 epoch:4 2801/2980 loss:3.6181 2022-11-09 20:04:56,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2802/2980 loss:0.8762 2022-11-09 20:04:57,558 - INFO - main.py - train - 68 - 【train】 epoch:4 2803/2980 loss:2.9194 2022-11-09 20:04:58,761 - INFO - main.py - train - 68 - 【train】 epoch:4 2804/2980 loss:1.9627 2022-11-09 20:04:59,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2805/2980 loss:4.1186 2022-11-09 20:05:01,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2806/2980 loss:1.0407 2022-11-09 20:05:02,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2807/2980 loss:9.3726 2022-11-09 20:05:04,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2808/2980 loss:1.8189 2022-11-09 20:05:05,353 - INFO - main.py - train - 68 - 【train】 epoch:4 2809/2980 loss:2.9102 2022-11-09 20:05:06,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2810/2980 loss:9.3115 2022-11-09 20:05:07,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2811/2980 loss:3.7243 2022-11-09 20:05:09,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2812/2980 loss:9.5175 2022-11-09 20:05:10,540 - INFO - main.py - train - 68 - 【train】 epoch:4 2813/2980 loss:9.3498 2022-11-09 20:05:11,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2814/2980 loss:6.7173 2022-11-09 20:05:13,039 - INFO - main.py - train - 68 - 【train】 epoch:4 2815/2980 loss:2.1331 2022-11-09 20:05:14,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2816/2980 loss:3.1644 2022-11-09 20:05:15,773 - INFO - main.py - train - 68 - 【train】 epoch:4 2817/2980 loss:6.2883 2022-11-09 20:05:17,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2818/2980 loss:3.4545 2022-11-09 20:05:18,569 - INFO - main.py - train - 68 - 【train】 epoch:4 2819/2980 loss:4.9737 2022-11-09 20:05:19,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2820/2980 loss:2.7694 2022-11-09 20:05:21,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2821/2980 loss:9.1602 2022-11-09 20:05:22,521 - INFO - main.py - train - 68 - 【train】 epoch:4 2822/2980 loss:3.4860 2022-11-09 20:05:23,880 - INFO - main.py - train - 68 - 【train】 epoch:4 2823/2980 loss:3.6534 2022-11-09 20:05:25,177 - INFO - main.py - train - 68 - 【train】 epoch:4 2824/2980 loss:16.0299 2022-11-09 20:05:26,489 - INFO - main.py - train - 68 - 【train】 epoch:4 2825/2980 loss:3.3742 2022-11-09 20:05:27,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2826/2980 loss:7.1065 2022-11-09 20:05:29,098 - INFO - main.py - train - 68 - 【train】 epoch:4 2827/2980 loss:4.8266 2022-11-09 20:05:30,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2828/2980 loss:3.2273 2022-11-09 20:05:31,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2829/2980 loss:5.1901 2022-11-09 20:05:33,159 - INFO - main.py - train - 68 - 【train】 epoch:4 2830/2980 loss:0.5216 2022-11-09 20:05:34,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2831/2980 loss:3.5427 2022-11-09 20:05:35,940 - INFO - main.py - train - 68 - 【train】 epoch:4 2832/2980 loss:1.1807 2022-11-09 20:05:37,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2833/2980 loss:6.5068 2022-11-09 20:05:38,455 - INFO - main.py - train - 68 - 【train】 epoch:4 2834/2980 loss:5.5958 2022-11-09 20:05:39,658 - INFO - main.py - train - 68 - 【train】 epoch:4 2835/2980 loss:1.4574 2022-11-09 20:05:40,876 - INFO - main.py - train - 68 - 【train】 epoch:4 2836/2980 loss:4.9771 2022-11-09 20:05:42,188 - INFO - main.py - train - 68 - 【train】 epoch:4 2837/2980 loss:1.8395 2022-11-09 20:05:43,657 - INFO - main.py - train - 68 - 【train】 epoch:4 2838/2980 loss:3.8439 2022-11-09 20:05:45,031 - INFO - main.py - train - 68 - 【train】 epoch:4 2839/2980 loss:1.4529 2022-11-09 20:05:46,656 - INFO - main.py - train - 68 - 【train】 epoch:4 2840/2980 loss:0.4442 2022-11-09 20:05:48,265 - INFO - main.py - train - 68 - 【train】 epoch:4 2841/2980 loss:1.6909 2022-11-09 20:05:49,577 - INFO - main.py - train - 68 - 【train】 epoch:4 2842/2980 loss:8.9199 2022-11-09 20:05:50,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2843/2980 loss:2.3126 2022-11-09 20:05:52,295 - INFO - main.py - train - 68 - 【train】 epoch:4 2844/2980 loss:5.5358 2022-11-09 20:05:53,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2845/2980 loss:4.9496 2022-11-09 20:05:54,951 - INFO - main.py - train - 68 - 【train】 epoch:4 2846/2980 loss:5.9971 2022-11-09 20:05:56,341 - INFO - main.py - train - 68 - 【train】 epoch:4 2847/2980 loss:6.1705 2022-11-09 20:05:57,591 - INFO - main.py - train - 68 - 【train】 epoch:4 2848/2980 loss:1.4735 2022-11-09 20:05:58,856 - INFO - main.py - train - 68 - 【train】 epoch:4 2849/2980 loss:5.0363 2022-11-09 20:06:00,122 - INFO - main.py - train - 68 - 【train】 epoch:4 2850/2980 loss:7.9087 2022-11-09 20:06:01,340 - INFO - main.py - train - 68 - 【train】 epoch:4 2851/2980 loss:5.1104 2022-11-09 20:06:02,621 - INFO - main.py - train - 68 - 【train】 epoch:4 2852/2980 loss:21.5291 2022-11-09 20:06:04,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2853/2980 loss:9.0431 2022-11-09 20:06:05,370 - INFO - main.py - train - 68 - 【train】 epoch:4 2854/2980 loss:0.5157 2022-11-09 20:06:06,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2855/2980 loss:7.1201 2022-11-09 20:06:07,807 - INFO - main.py - train - 68 - 【train】 epoch:4 2856/2980 loss:5.2091 2022-11-09 20:06:09,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2857/2980 loss:1.1728 2022-11-09 20:06:10,229 - INFO - main.py - train - 68 - 【train】 epoch:4 2858/2980 loss:1.5170 2022-11-09 20:06:11,728 - INFO - main.py - train - 68 - 【train】 epoch:4 2859/2980 loss:4.2357 2022-11-09 20:06:12,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2860/2980 loss:2.5944 2022-11-09 20:06:14,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2861/2980 loss:7.3436 2022-11-09 20:06:15,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2862/2980 loss:7.2007 2022-11-09 20:06:16,774 - INFO - main.py - train - 68 - 【train】 epoch:4 2863/2980 loss:13.7847 2022-11-09 20:06:18,024 - INFO - main.py - train - 68 - 【train】 epoch:4 2864/2980 loss:5.4764 2022-11-09 20:06:19,289 - INFO - main.py - train - 68 - 【train】 epoch:4 2865/2980 loss:0.9220 2022-11-09 20:06:20,508 - INFO - main.py - train - 68 - 【train】 epoch:4 2866/2980 loss:1.2658 2022-11-09 20:06:21,726 - INFO - main.py - train - 68 - 【train】 epoch:4 2867/2980 loss:8.0016 2022-11-09 20:06:23,241 - INFO - main.py - train - 68 - 【train】 epoch:4 2868/2980 loss:0.2208 2022-11-09 20:06:24,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2869/2980 loss:3.4591 2022-11-09 20:06:25,788 - INFO - main.py - train - 68 - 【train】 epoch:4 2870/2980 loss:0.0688 2022-11-09 20:06:27,006 - INFO - main.py - train - 68 - 【train】 epoch:4 2871/2980 loss:3.3938 2022-11-09 20:06:28,365 - INFO - main.py - train - 68 - 【train】 epoch:4 2872/2980 loss:8.0456 2022-11-09 20:06:29,630 - INFO - main.py - train - 68 - 【train】 epoch:4 2873/2980 loss:9.0713 2022-11-09 20:06:30,849 - INFO - main.py - train - 68 - 【train】 epoch:4 2874/2980 loss:3.1294 2022-11-09 20:06:32,364 - INFO - main.py - train - 68 - 【train】 epoch:4 2875/2980 loss:4.4570 2022-11-09 20:06:33,583 - INFO - main.py - train - 68 - 【train】 epoch:4 2876/2980 loss:8.1954 2022-11-09 20:06:34,832 - INFO - main.py - train - 68 - 【train】 epoch:4 2877/2980 loss:5.1306 2022-11-09 20:06:36,020 - INFO - main.py - train - 68 - 【train】 epoch:4 2878/2980 loss:1.4794 2022-11-09 20:06:37,285 - INFO - main.py - train - 68 - 【train】 epoch:4 2879/2980 loss:4.2028 2022-11-09 20:06:38,706 - INFO - main.py - train - 68 - 【train】 epoch:4 2880/2980 loss:0.7456 2022-11-09 20:06:39,925 - INFO - main.py - train - 68 - 【train】 epoch:4 2881/2980 loss:2.9262 2022-11-09 20:06:41,268 - INFO - main.py - train - 68 - 【train】 epoch:4 2882/2980 loss:6.3665 2022-11-09 20:06:42,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2883/2980 loss:4.1159 2022-11-09 20:06:43,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2884/2980 loss:3.9429 2022-11-09 20:06:45,244 - INFO - main.py - train - 68 - 【train】 epoch:4 2885/2980 loss:4.7758 2022-11-09 20:06:46,478 - INFO - main.py - train - 68 - 【train】 epoch:4 2886/2980 loss:8.3184 2022-11-09 20:06:47,899 - INFO - main.py - train - 68 - 【train】 epoch:4 2887/2980 loss:4.6903 2022-11-09 20:06:49,149 - INFO - main.py - train - 68 - 【train】 epoch:4 2888/2980 loss:3.3314 2022-11-09 20:06:50,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2889/2980 loss:7.3432 2022-11-09 20:06:51,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2890/2980 loss:6.4275 2022-11-09 20:06:53,117 - INFO - main.py - train - 68 - 【train】 epoch:4 2891/2980 loss:8.4065 2022-11-09 20:06:54,538 - INFO - main.py - train - 68 - 【train】 epoch:4 2892/2980 loss:20.3128 2022-11-09 20:06:55,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2893/2980 loss:4.9814 2022-11-09 20:06:57,022 - INFO - main.py - train - 68 - 【train】 epoch:4 2894/2980 loss:2.0190 2022-11-09 20:06:58,272 - INFO - main.py - train - 68 - 【train】 epoch:4 2895/2980 loss:3.6493 2022-11-09 20:06:59,912 - INFO - main.py - train - 68 - 【train】 epoch:4 2896/2980 loss:12.7871 2022-11-09 20:07:01,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2897/2980 loss:0.6251 2022-11-09 20:07:02,490 - INFO - main.py - train - 68 - 【train】 epoch:4 2898/2980 loss:14.7209 2022-11-09 20:07:03,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2899/2980 loss:2.2031 2022-11-09 20:07:05,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2900/2980 loss:2.5351 2022-11-09 20:07:06,317 - INFO - main.py - train - 68 - 【train】 epoch:4 2901/2980 loss:7.4597 2022-11-09 20:07:07,535 - INFO - main.py - train - 68 - 【train】 epoch:4 2902/2980 loss:1.4243 2022-11-09 20:07:08,785 - INFO - main.py - train - 68 - 【train】 epoch:4 2903/2980 loss:2.6511 2022-11-09 20:07:10,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2904/2980 loss:4.8938 2022-11-09 20:07:11,503 - INFO - main.py - train - 68 - 【train】 epoch:4 2905/2980 loss:9.6211 2022-11-09 20:07:12,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2906/2980 loss:5.8431 2022-11-09 20:07:14,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2907/2980 loss:10.3681 2022-11-09 20:07:15,690 - INFO - main.py - train - 68 - 【train】 epoch:4 2908/2980 loss:2.9318 2022-11-09 20:07:16,893 - INFO - main.py - train - 68 - 【train】 epoch:4 2909/2980 loss:2.2026 2022-11-09 20:07:18,252 - INFO - main.py - train - 68 - 【train】 epoch:4 2910/2980 loss:6.4892 2022-11-09 20:07:19,486 - INFO - main.py - train - 68 - 【train】 epoch:4 2911/2980 loss:6.1388 2022-11-09 20:07:20,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2912/2980 loss:3.6376 2022-11-09 20:07:21,985 - INFO - main.py - train - 68 - 【train】 epoch:4 2913/2980 loss:20.1212 2022-11-09 20:07:23,329 - INFO - main.py - train - 68 - 【train】 epoch:4 2914/2980 loss:23.5739 2022-11-09 20:07:24,594 - INFO - main.py - train - 68 - 【train】 epoch:4 2915/2980 loss:9.0045 2022-11-09 20:07:25,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2916/2980 loss:1.2619 2022-11-09 20:07:27,203 - INFO - main.py - train - 68 - 【train】 epoch:4 2917/2980 loss:9.1755 2022-11-09 20:07:29,015 - INFO - main.py - train - 68 - 【train】 epoch:4 2918/2980 loss:6.8419 2022-11-09 20:07:30,218 - INFO - main.py - train - 68 - 【train】 epoch:4 2919/2980 loss:0.2760 2022-11-09 20:07:31,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2920/2980 loss:3.3320 2022-11-09 20:07:33,045 - INFO - main.py - train - 68 - 【train】 epoch:4 2921/2980 loss:6.5739 2022-11-09 20:07:34,545 - INFO - main.py - train - 68 - 【train】 epoch:4 2922/2980 loss:3.5778 2022-11-09 20:07:35,935 - INFO - main.py - train - 68 - 【train】 epoch:4 2923/2980 loss:3.8758 2022-11-09 20:07:37,185 - INFO - main.py - train - 68 - 【train】 epoch:4 2924/2980 loss:1.7090 2022-11-09 20:07:38,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2925/2980 loss:1.9191 2022-11-09 20:07:39,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2926/2980 loss:2.2775 2022-11-09 20:07:40,871 - INFO - main.py - train - 68 - 【train】 epoch:4 2927/2980 loss:11.4487 2022-11-09 20:07:42,215 - INFO - main.py - train - 68 - 【train】 epoch:4 2928/2980 loss:7.3169 2022-11-09 20:07:43,449 - INFO - main.py - train - 68 - 【train】 epoch:4 2929/2980 loss:4.8073 2022-11-09 20:07:44,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2930/2980 loss:9.2985 2022-11-09 20:07:46,370 - INFO - main.py - train - 68 - 【train】 epoch:4 2931/2980 loss:5.0515 2022-11-09 20:07:47,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2932/2980 loss:1.9086 2022-11-09 20:07:49,010 - INFO - main.py - train - 68 - 【train】 epoch:4 2933/2980 loss:6.5544 2022-11-09 20:07:50,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2934/2980 loss:7.0536 2022-11-09 20:07:51,822 - INFO - main.py - train - 68 - 【train】 epoch:4 2935/2980 loss:2.9606 2022-11-09 20:07:53,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2936/2980 loss:2.8525 2022-11-09 20:07:54,977 - INFO - main.py - train - 68 - 【train】 epoch:4 2937/2980 loss:5.3135 2022-11-09 20:07:56,196 - INFO - main.py - train - 68 - 【train】 epoch:4 2938/2980 loss:5.9989 2022-11-09 20:07:58,070 - INFO - main.py - train - 68 - 【train】 epoch:4 2939/2980 loss:4.6328 2022-11-09 20:07:59,445 - INFO - main.py - train - 68 - 【train】 epoch:4 2940/2980 loss:4.6224 2022-11-09 20:08:00,851 - INFO - main.py - train - 68 - 【train】 epoch:4 2941/2980 loss:13.4419 2022-11-09 20:08:02,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2942/2980 loss:0.0881 2022-11-09 20:08:03,647 - INFO - main.py - train - 68 - 【train】 epoch:4 2943/2980 loss:4.5658 2022-11-09 20:08:04,959 - INFO - main.py - train - 68 - 【train】 epoch:4 2944/2980 loss:2.9856 2022-11-09 20:08:06,381 - INFO - main.py - train - 68 - 【train】 epoch:4 2945/2980 loss:6.7960 2022-11-09 20:08:07,849 - INFO - main.py - train - 68 - 【train】 epoch:4 2946/2980 loss:2.1157 2022-11-09 20:08:09,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2947/2980 loss:3.2768 2022-11-09 20:08:10,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2948/2980 loss:7.1061 2022-11-09 20:08:11,989 - INFO - main.py - train - 68 - 【train】 epoch:4 2949/2980 loss:4.0073 2022-11-09 20:08:13,582 - INFO - main.py - train - 68 - 【train】 epoch:4 2950/2980 loss:20.3640 2022-11-09 20:08:14,832 - INFO - main.py - train - 68 - 【train】 epoch:4 2951/2980 loss:0.1124 2022-11-09 20:08:16,051 - INFO - main.py - train - 68 - 【train】 epoch:4 2952/2980 loss:6.8030 2022-11-09 20:08:17,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2953/2980 loss:1.7045 2022-11-09 20:08:18,675 - INFO - main.py - train - 68 - 【train】 epoch:4 2954/2980 loss:0.8841 2022-11-09 20:08:19,909 - INFO - main.py - train - 68 - 【train】 epoch:4 2955/2980 loss:13.3774 2022-11-09 20:08:21,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2956/2980 loss:1.9520 2022-11-09 20:08:22,580 - INFO - main.py - train - 68 - 【train】 epoch:4 2957/2980 loss:8.1010 2022-11-09 20:08:23,814 - INFO - main.py - train - 68 - 【train】 epoch:4 2958/2980 loss:2.7235 2022-11-09 20:08:25,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2959/2980 loss:0.8775 2022-11-09 20:08:26,298 - INFO - main.py - train - 68 - 【train】 epoch:4 2960/2980 loss:4.7177 2022-11-09 20:08:27,688 - INFO - main.py - train - 68 - 【train】 epoch:4 2961/2980 loss:1.2038 2022-11-09 20:08:29,063 - INFO - main.py - train - 68 - 【train】 epoch:4 2962/2980 loss:2.2772 2022-11-09 20:08:30,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2963/2980 loss:2.3886 2022-11-09 20:08:31,609 - INFO - main.py - train - 68 - 【train】 epoch:4 2964/2980 loss:10.8579 2022-11-09 20:08:32,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2965/2980 loss:3.1771 2022-11-09 20:08:34,406 - INFO - main.py - train - 68 - 【train】 epoch:4 2966/2980 loss:2.6416 2022-11-09 20:08:35,749 - INFO - main.py - train - 68 - 【train】 epoch:4 2967/2980 loss:6.1592 2022-11-09 20:08:37,264 - INFO - main.py - train - 68 - 【train】 epoch:4 2968/2980 loss:12.5800 2022-11-09 20:08:38,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2969/2980 loss:1.1993 2022-11-09 20:08:39,920 - INFO - main.py - train - 68 - 【train】 epoch:4 2970/2980 loss:2.6484 2022-11-09 20:08:41,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2971/2980 loss:1.7165 2022-11-09 20:08:42,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2972/2980 loss:11.3746 2022-11-09 20:08:43,778 - INFO - main.py - train - 68 - 【train】 epoch:4 2973/2980 loss:3.9966 2022-11-09 20:08:45,325 - INFO - main.py - train - 68 - 【train】 epoch:4 2974/2980 loss:5.1066 2022-11-09 20:08:46,637 - INFO - main.py - train - 68 - 【train】 epoch:4 2975/2980 loss:4.9227 2022-11-09 20:08:47,840 - INFO - main.py - train - 68 - 【train】 epoch:4 2976/2980 loss:0.8795 2022-11-09 20:08:49,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2977/2980 loss:11.3107 2022-11-09 20:08:50,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2978/2980 loss:2.8808 2022-11-09 20:08:51,948 - INFO - main.py - train - 68 - 【train】 epoch:4 2979/2980 loss:4.7416 2022-11-09 20:08:52,167 - INFO - trainUtils.py - save_model - 70 - Saving model checkpoint to ./checkpoints/bert_crf 2022-11-09 20:08:54,229 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 20:08:54,760 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 21:37:53,600 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 21:37:53,600 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 21:37:57,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 21:37:59,143 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 21:37:59,768 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:37:49,595 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 22:37:49,595 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 22:37:53,581 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:37:55,112 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 22:37:55,693 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:44:05,053 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 22:44:05,054 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 22:44:09,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:44:10,614 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 22:44:11,206 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:45:38,330 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 22:45:38,330 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 22:45:42,299 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:45:43,847 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 22:45:44,393 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:47:02,323 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 22:47:02,323 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 22:47:06,237 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:47:07,696 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 22:47:08,229 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:49:05,456 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 22:49:05,456 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 22:49:09,362 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 22:49:10,878 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 22:49:11,346 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:17:03,674 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:17:03,674 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:17:07,565 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:17:09,097 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:17:09,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:18:40,565 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:18:40,565 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:18:44,455 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:18:45,987 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:18:46,518 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:20:17,022 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:20:17,022 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:20:20,893 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:20:22,409 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:20:22,940 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:21:07,205 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:21:07,205 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:21:11,067 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:21:12,518 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:21:13,046 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:27:41,545 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:27:41,545 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:27:45,405 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:27:46,892 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:27:47,393 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:28:42,829 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:28:42,829 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:28:46,784 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:28:48,315 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:28:48,857 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:29:20,645 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:29:20,645 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:29:24,581 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:29:26,112 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:29:26,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:30:18,268 - INFO - main.py - - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:30:18,268 - INFO - main.py - - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:30:22,170 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:30:23,643 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:30:24,174 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:35:30,357 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:35:30,357 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:35:34,280 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:35:35,819 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:35:36,394 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:36:15,214 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:36:15,214 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:36:19,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:36:20,595 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:36:21,110 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:40:29,200 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:40:29,200 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:40:33,156 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:40:34,687 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:40:35,187 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:45:34,236 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-09 23:45:34,236 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-09 23:45:38,056 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-09 23:45:39,585 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-09 23:45:40,057 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 08:53:56,178 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 08:53:56,178 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 08:54:01,277 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 08:54:02,838 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 08:54:04,448 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:02:56,380 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:02:56,381 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:03:01,165 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:03:02,705 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:03:03,269 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:19:59,929 - INFO - main.py - - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:19:59,929 - INFO - main.py - - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:20:03,933 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:20:05,457 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:20:05,982 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:30:57,117 - INFO - main.py - - 256 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:30:57,117 - INFO - main.py - - 258 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:31:01,047 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:31:02,594 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:31:03,130 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:33:20,901 - INFO - main.py - - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:33:20,902 - INFO - main.py - - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:33:24,827 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:33:26,373 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:33:26,905 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:34:27,530 - INFO - main.py - - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:34:27,530 - INFO - main.py - - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:34:31,426 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:34:32,957 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:34:33,498 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:42:21,670 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:42:21,671 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:42:25,605 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:42:27,143 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:42:27,686 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:45:15,502 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:45:15,502 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:45:19,398 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:45:20,903 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:45:21,430 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:50:21,829 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:50:21,829 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:50:25,735 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:50:27,276 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:50:27,804 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:51:34,635 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:51:34,635 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:51:38,533 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:51:40,079 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:51:40,609 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:52:29,472 - INFO - main.py - - 259 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 09:52:29,472 - INFO - main.py - - 261 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 09:52:33,374 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 09:52:34,898 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 09:52:35,417 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:37:57,114 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 16:37:57,114 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 16:38:01,299 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:38:02,895 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 16:38:03,510 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:39:07,040 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 16:39:07,040 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 16:39:11,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:39:12,666 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 16:39:13,202 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:42:37,278 - INFO - main.py - - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 16:42:37,279 - INFO - main.py - - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 16:42:41,207 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:42:42,744 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 16:42:43,275 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:46:56,985 - INFO - main.py - - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 16:46:56,985 - INFO - main.py - - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 16:47:00,951 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:47:02,523 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 16:47:03,027 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:50:00,285 - INFO - main.py - - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 16:50:00,285 - INFO - main.py - - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 16:50:04,225 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 16:50:05,793 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 16:50:06,315 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:00:50,069 - INFO - main.py - - 260 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:00:50,070 - INFO - main.py - - 262 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:00:54,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:00:55,663 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:00:56,196 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:04:13,463 - INFO - main.py - - 260 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:04:13,463 - INFO - main.py - - 262 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:04:17,395 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:04:18,954 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:04:19,483 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:05:36,614 - INFO - main.py - - 295 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:05:38,144 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:05:38,663 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:12:28,419 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:12:28,419 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:12:32,363 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:12:33,932 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:12:34,457 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:13:49,742 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:13:51,243 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:13:51,757 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:18:45,679 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:18:45,679 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:18:49,568 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:18:51,174 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:18:51,741 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:20:08,393 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:20:09,878 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:20:10,400 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:22:26,782 - INFO - main.py - - 266 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:22:26,782 - INFO - main.py - - 268 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:22:30,712 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:22:32,304 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:22:32,839 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:23:48,238 - INFO - main.py - - 301 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:23:49,732 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:23:50,220 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:27:05,063 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:27:05,063 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:27:08,989 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:27:10,547 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:27:11,062 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:28:26,585 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:28:28,096 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:28:28,570 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:29:19,770 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:29:19,770 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:29:23,625 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:29:25,172 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:29:25,676 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:30:39,837 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:30:41,305 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:30:41,767 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:34:37,153 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:34:37,153 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:34:41,097 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:34:42,637 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:34:43,171 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:35:59,620 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:36:01,118 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:36:01,589 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:43:29,099 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:43:29,099 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:43:33,072 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:43:34,634 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:43:35,164 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:44:53,860 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:44:55,338 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:44:55,847 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:45:18,986 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:45:18,986 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:45:22,928 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:45:24,449 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:45:24,948 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:46:20,522 - INFO - main.py - - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:46:20,522 - INFO - main.py - - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:46:24,406 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:46:25,927 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:46:26,493 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:47:44,235 - INFO - main.py - - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:47:45,681 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:47:46,180 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:55:42,885 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 17:55:42,885 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 17:55:46,791 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:55:48,383 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:55:48,913 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 17:57:05,653 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 17:57:07,150 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 17:57:07,665 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:17:11,930 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:17:11,930 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:17:15,986 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:17:17,550 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:17:18,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:18:32,384 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:18:33,885 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:18:34,405 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:23:13,296 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:23:13,296 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:23:17,229 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:23:18,805 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:23:19,339 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:24:36,791 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:24:38,241 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:24:38,785 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:29:09,874 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:29:09,874 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:29:13,878 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:29:15,406 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:29:15,985 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:30:35,949 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:30:37,469 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:30:38,006 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:31:27,576 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:31:27,576 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:31:31,514 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:31:33,005 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:31:33,557 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:32:49,325 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:32:50,802 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:32:51,316 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:37:30,106 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:37:30,106 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:37:33,997 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:37:35,552 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:37:36,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:38:53,870 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:38:55,371 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:38:55,871 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:40:05,112 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:40:05,112 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:40:08,970 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:40:10,545 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:40:11,064 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:41:28,041 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:41:29,519 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:41:29,951 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:42:27,691 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:42:27,692 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:42:31,621 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:42:33,195 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:42:33,754 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:43:48,161 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:43:49,658 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:43:50,181 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:45:02,275 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:45:02,275 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:45:06,144 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:45:07,673 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:45:08,190 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:46:25,087 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:46:26,594 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:46:27,102 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:54:55,404 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 18:54:55,405 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 18:54:59,321 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:55:00,899 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:55:01,454 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 18:56:15,954 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 18:56:17,430 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 18:56:17,895 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:23:14,893 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 19:23:14,893 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 19:23:18,931 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:23:20,457 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:23:21,012 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:24:35,945 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 19:24:37,432 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:24:37,946 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:26:49,648 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 19:26:49,649 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 19:26:53,503 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:26:55,024 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:26:55,557 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:28:12,016 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 19:28:13,501 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:28:14,011 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:29:08,244 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 19:29:08,244 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 19:29:12,151 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:29:13,648 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:29:14,195 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:30:29,093 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-10 19:30:30,548 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:30:31,010 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:30:31,342 - INFO - main.py - predict - 198 - [('暖风鼓风机', 21, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('2鼓风', 75, 'subject'), ('内有杂', 79, 'object')] 2022-11-10 19:40:03,510 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 19:40:03,511 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 19:40:07,424 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:40:08,988 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:40:09,513 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:46:03,178 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 19:46:03,178 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 19:46:07,445 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 19:46:09,083 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 19:46:09,610 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:03:40,961 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 20:03:40,961 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 20:03:44,954 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:03:46,524 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 20:03:47,074 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:12:12,450 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 20:12:12,451 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 20:12:16,386 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:12:17,963 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 20:12:18,492 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:16:51,884 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 20:16:51,884 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 20:16:55,874 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:16:57,444 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 20:16:57,975 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:20:54,021 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 20:20:54,021 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 20:20:57,964 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:20:59,502 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 20:21:00,047 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:30:07,108 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-10 20:30:07,108 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-10 20:30:10,989 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-10 20:30:12,528 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-10 20:30:13,048 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-11 10:33:12,211 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-11 10:33:12,211 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-11 10:33:16,114 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-11 10:33:17,719 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-11 10:33:18,345 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-20 18:04:14,025 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-20 18:04:14,025 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-20 18:04:19,333 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-20 18:04:20,876 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-20 18:04:21,453 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-21 23:26:20,302 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-21 23:26:20,302 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-21 23:27:17,601 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-21 23:27:17,601 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-21 23:27:22,658 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-21 23:27:24,168 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-21 23:27:24,777 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-21 23:28:41,197 - INFO - main.py - - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2022-11-21 23:28:42,790 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-21 23:28:43,431 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-21 23:28:43,853 - INFO - main.py - predict - 198 - [('暖风鼓风机', 21, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('2鼓风', 75, 'subject'), ('内有杂', 79, 'object')] 2022-11-22 15:34:35,264 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-22 15:34:35,264 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-23 21:12:45,244 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-23 21:18:10,782 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-23 21:18:11,485 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-23 22:21:01,725 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-23 22:21:01,725 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-23 22:21:06,001 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-23 22:21:07,547 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-23 22:21:08,500 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-29 23:24:44,589 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-29 23:24:44,589 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-29 23:34:26,938 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-29 23:34:26,938 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-29 23:36:22,619 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-29 23:36:25,400 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2022-11-29 23:36:26,071 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-30 11:08:47,186 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-30 11:08:47,186 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-30 11:19:31,863 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-30 19:49:08,585 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-30 19:49:08,585 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-30 19:56:23,301 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-30 19:56:23,301 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-30 20:17:20,125 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2022-11-30 20:58:55,203 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2022-11-30 20:58:55,203 - INFO - main.py - - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01) 2022-11-30 20:59:02,055 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2023-03-16 21:05:02,026 - INFO - main.py - - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'} 2023-03-16 21:05:02,026 - INFO - main.py - - 266 - Namespace(output_dir='./checkpoints/', bert_dir='../model_hub/chinese-roberta-wwm-ext/', data_dir='../data/dgre/', log_dir='./logs/', num_tags=5, seed=123, gpu_ids='0', max_seq_len=512, eval_batch_size=2, swa_start=3, train_epochs=5, dropout_prob=0.3, lr=3e-05, other_lr=0.0003, crf_lr=0.03, max_grad_norm=1, warmup_proportion=0.1, weight_decay=0.01, adam_epsilon=1e-08, train_batch_size=2, use_lstm='False', lstm_hidden=128, num_layers=1, dropout=0.3, use_crf='True') 2023-03-16 21:05:07,179 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2023-03-16 21:05:19,512 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:292.0276 2023-03-16 21:05:20,547 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:226.9651 2023-03-16 21:05:21,583 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:96.5961 2023-03-16 21:05:22,773 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:193.5617 2023-03-16 21:05:23,897 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:138.0916 2023-03-16 21:05:25,019 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:69.7198 2023-03-16 21:05:26,093 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:367.6134 2023-03-16 21:05:27,193 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:137.3571 2023-03-16 21:05:28,302 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:418.8170 2023-03-16 21:05:29,372 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:230.4982 2023-03-16 21:05:30,444 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:173.2603 2023-03-16 21:05:31,533 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:180.9781 2023-03-16 21:05:32,627 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:392.8346 2023-03-16 21:05:33,795 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:290.8567 2023-03-16 21:05:34,933 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:57.3965 2023-03-16 21:05:36,066 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:385.7918 2023-03-16 21:05:37,149 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:70.0209 2023-03-16 21:05:38,246 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:127.1326 2023-03-16 21:05:39,333 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:202.2739 2023-03-16 21:05:40,459 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:229.5152 2023-03-16 21:05:41,575 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:364.3724 2023-03-16 21:05:42,691 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:333.0904 2023-03-16 21:05:43,804 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:248.2384 2023-03-16 21:05:44,887 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:118.4113 2023-03-16 21:05:46,058 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:363.6166 2023-03-16 21:05:47,189 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:339.0241 2023-03-16 21:05:48,287 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:45.9091 2023-03-16 21:05:49,374 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:145.5225 2023-03-16 21:05:50,471 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:113.1599 2023-03-16 21:05:51,561 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:113.0434 2023-03-16 21:05:52,657 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:77.8018 2023-03-16 21:05:53,758 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:108.3225 2023-03-16 21:05:54,887 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:396.3494 2023-03-16 21:05:56,017 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:249.8687 2023-03-16 21:05:57,149 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:179.0801 2023-03-16 21:05:58,277 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:148.0742 2023-03-16 21:05:59,493 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:256.1973 2023-03-16 21:06:00,655 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:268.5482 2023-03-16 21:06:01,772 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:48.5073 2023-03-16 21:06:02,906 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:252.2066 2023-03-16 21:06:04,033 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:142.8852 2023-03-16 21:06:05,197 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:117.0852 2023-03-16 21:06:06,344 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:159.1487 2023-03-16 21:06:07,444 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:102.0254 2023-03-16 21:06:08,640 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:140.6444 2023-03-16 21:06:09,763 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:55.1283 2023-03-16 21:06:10,954 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:90.1131 2023-03-16 21:06:12,114 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:25.0661 2023-03-16 21:06:13,223 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:48.0749 2023-03-16 21:06:14,377 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:75.2903 2023-03-16 21:06:15,492 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:72.3573 2023-03-16 21:06:16,621 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:44.0508 2023-03-16 21:06:17,753 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:60.4923 2023-03-16 21:06:18,870 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:76.0212 2023-03-16 21:06:19,979 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:26.8397 2023-03-16 21:06:21,115 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:76.1568 2023-03-16 21:06:22,246 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:52.9070 2023-03-16 21:06:23,382 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:140.7496 2023-03-16 21:06:24,501 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:100.6937 2023-03-16 21:06:25,654 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:254.2648 2023-03-16 21:06:26,811 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:228.7810 2023-03-16 21:06:27,933 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:74.1850 2023-03-16 21:06:29,054 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:135.2756 2023-03-16 21:06:30,178 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:110.4374 2023-03-16 21:06:31,323 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:180.2233 2023-03-16 21:06:32,437 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:90.0186 2023-03-16 21:06:33,569 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:84.2234 2023-03-16 21:06:34,729 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:54.5729 2023-03-16 21:06:35,878 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:189.6768 2023-03-16 21:06:37,006 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:48.4310 2023-03-16 21:06:38,133 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:64.5464 2023-03-16 21:06:39,243 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:21.1862 2023-03-16 21:06:40,380 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:89.8994 2023-03-16 21:06:41,519 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:64.3583 2023-03-16 21:06:42,666 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:201.5892 2023-03-16 21:06:43,836 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:123.1158 2023-03-16 21:06:44,969 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:51.7847 2023-03-16 21:06:46,122 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:96.6935 2023-03-16 21:06:47,317 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:95.5584 2023-03-16 21:06:48,461 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:35.8590 2023-03-16 21:06:49,622 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:92.6067 2023-03-16 21:06:50,888 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:39.3148 2023-03-16 21:06:52,075 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:48.2594 2023-03-16 21:06:53,389 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:139.2910 2023-03-16 21:06:54,523 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:75.2282 2023-03-16 21:06:55,664 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:73.2401 2023-03-16 21:06:56,783 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:30.7443 2023-03-16 21:06:57,954 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:43.3145 2023-03-16 21:06:59,083 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:73.9645 2023-03-16 21:07:00,233 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:243.0572 2023-03-16 21:07:01,382 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:103.8712 2023-03-16 21:07:02,538 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:67.3335 2023-03-16 21:07:03,683 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:73.1260 2023-03-16 21:07:04,880 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:48.7900 2023-03-16 21:07:06,022 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:141.0031 2023-03-16 21:07:07,197 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:40.2439 2023-03-16 21:07:08,372 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:45.7100 2023-03-16 21:07:09,549 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:58.9906 2023-03-16 21:07:10,698 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:110.6669 2023-03-16 21:07:11,877 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:111.6620 2023-03-16 21:07:13,036 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:21.2514 2023-03-16 21:07:14,248 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:95.0912 2023-03-16 21:07:15,362 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:89.0541 2023-03-16 21:07:16,587 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:76.6104 2023-03-16 21:07:17,753 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:26.8604 2023-03-16 21:07:18,923 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:189.4082 2023-03-16 21:07:20,083 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:73.6656 2023-03-16 21:07:21,227 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:24.9248 2023-03-16 21:07:22,395 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.2577 2023-03-16 21:07:23,546 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:54.8539 2023-03-16 21:07:24,696 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:45.1794 2023-03-16 21:07:25,857 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:24.3131 2023-03-16 21:07:27,164 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:20.2168 2023-03-16 21:07:28,417 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:24.4618 2023-03-16 21:07:29,603 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:188.8162 2023-03-16 21:07:30,759 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:97.8015 2023-03-16 21:07:31,915 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:19.5055 2023-03-16 21:07:33,098 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:105.0646 2023-03-16 21:07:34,299 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:50.1252 2023-03-16 21:07:35,646 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:64.1951 2023-03-16 21:07:37,128 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:26.3382 2023-03-16 21:07:38,395 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:75.8050 2023-03-16 21:07:39,638 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:69.6028 2023-03-16 21:07:40,803 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:79.8826 2023-03-16 21:07:42,087 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:98.6152 2023-03-16 21:07:43,311 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:56.4791 2023-03-16 21:07:44,607 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:46.8681 2023-03-16 21:07:45,763 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:33.4132 2023-03-16 21:07:46,980 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:65.5442 2023-03-16 21:07:48,187 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:52.6542 2023-03-16 21:07:49,309 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:31.5141 2023-03-16 21:07:50,462 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:24.1928 2023-03-16 21:07:51,596 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:37.6790 2023-03-16 21:07:52,740 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:50.5162 2023-03-16 21:07:53,894 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:40.2478 2023-03-16 21:07:55,044 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:51.4791 2023-03-16 21:07:56,183 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:32.5272 2023-03-16 21:07:57,320 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:42.4032 2023-03-16 21:07:58,475 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:14.7972 2023-03-16 21:07:59,642 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:33.9670 2023-03-16 21:08:00,898 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:25.2635 2023-03-16 21:08:02,044 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:12.7451 2023-03-16 21:08:03,205 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:64.7080 2023-03-16 21:08:04,371 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:84.6620 2023-03-16 21:08:05,522 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:52.9766 2023-03-16 21:08:06,693 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:33.7152 2023-03-16 21:08:07,823 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:39.0896 2023-03-16 21:08:08,959 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:10.7021 2023-03-16 21:08:10,106 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:76.2070 2023-03-16 21:08:11,253 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:23.0698 2023-03-16 21:08:12,458 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:15.1805 2023-03-16 21:08:13,603 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:99.1099 2023-03-16 21:08:14,749 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:38.9295 2023-03-16 21:08:15,931 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:125.7342 2023-03-16 21:08:17,062 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:21.4354 2023-03-16 21:08:18,173 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:32.6417 2023-03-16 21:08:19,293 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:32.1754 2023-03-16 21:08:20,419 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:32.1315 2023-03-16 21:08:21,539 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:17.8108 2023-03-16 21:08:22,674 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:33.0230 2023-03-16 21:08:23,815 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:49.7464 2023-03-16 21:08:24,955 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:13.0739 2023-03-16 21:08:26,106 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:26.6613 2023-03-16 21:08:27,299 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:37.9839 2023-03-16 21:08:28,563 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:56.5985 2023-03-16 21:08:29,762 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:45.1057 2023-03-16 21:08:31,021 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:74.3719 2023-03-16 21:08:32,323 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:46.9525 2023-03-16 21:08:33,468 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:14.9641 2023-03-16 21:08:34,601 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.2809 2023-03-16 21:08:35,743 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:37.4008 2023-03-16 21:08:36,860 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:35.9144 2023-03-16 21:08:38,179 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.5178 2023-03-16 21:08:39,360 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:35.6137 2023-03-16 21:08:40,623 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:13.9552 2023-03-16 21:08:41,869 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.9754 2023-03-16 21:08:43,161 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:40.4373 2023-03-16 21:08:44,499 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:48.1163 2023-03-16 21:08:46,118 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:31.6856 2023-03-16 21:08:47,542 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:18.7556 2023-03-16 21:08:48,976 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:67.9334 2023-03-16 21:08:50,230 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:33.0944 2023-03-16 21:08:51,369 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:43.5448 2023-03-16 21:08:52,553 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:8.1395 2023-03-16 21:08:53,700 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:9.9035 2023-03-16 21:08:54,856 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:81.2607 2023-03-16 21:08:56,013 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:13.7687 2023-03-16 21:08:57,200 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:41.7355 2023-03-16 21:08:58,356 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:18.9251 2023-03-16 21:08:59,542 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:10.2060 2023-03-16 21:09:00,699 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:34.5080 2023-03-16 21:09:01,855 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:29.0516 2023-03-16 21:09:03,022 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:57.7112 2023-03-16 21:09:04,281 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:14.1531 2023-03-16 21:09:06,047 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:12.5322 2023-03-16 21:09:07,510 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:24.2218 2023-03-16 21:09:08,740 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:38.3831 2023-03-16 21:09:10,116 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:37.1850 2023-03-16 21:09:11,365 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:31.6422 2023-03-16 21:09:12,753 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:67.8255 2023-03-16 21:09:14,153 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:15.9971 2023-03-16 21:09:15,471 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:37.9586 2023-03-16 21:09:16,721 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:72.4750 2023-03-16 21:09:17,973 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:101.6892 2023-03-16 21:09:19,202 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:77.7654 2023-03-16 21:09:20,437 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:35.9848 2023-03-16 21:09:21,692 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:36.1010 2023-03-16 21:09:22,884 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:8.2663 2023-03-16 21:09:24,132 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:31.4579 2023-03-16 21:09:25,321 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:7.3072 2023-03-16 21:09:26,571 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:38.6991 2023-03-16 21:09:27,756 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:20.0006 2023-03-16 21:09:28,961 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.8176 2023-03-16 21:09:30,205 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:25.2830 2023-03-16 21:09:31,419 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:77.1376 2023-03-16 21:09:32,620 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:18.8841 2023-03-16 21:09:33,878 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:58.7222 2023-03-16 21:09:35,067 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:25.8723 2023-03-16 21:09:36,265 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:7.5292 2023-03-16 21:09:37,504 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:16.8791 2023-03-16 21:09:38,703 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:51.7169 2023-03-16 21:09:39,856 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:34.9398 2023-03-16 21:09:40,999 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:9.0985 2023-03-16 21:09:42,171 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:58.8054 2023-03-16 21:09:43,326 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:22.9221 2023-03-16 21:09:44,715 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:26.8199 2023-03-16 21:09:46,090 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:97.8847 2023-03-16 21:09:47,343 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:10.9395 2023-03-16 21:09:48,591 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:56.2990 2023-03-16 21:09:49,765 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:21.8034 2023-03-16 21:09:51,016 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:49.2331 2023-03-16 21:09:52,373 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:21.7202 2023-03-16 21:09:53,553 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:63.5098 2023-03-16 21:09:54,710 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:6.4483 2023-03-16 21:09:55,899 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:28.5372 2023-03-16 21:09:57,226 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:22.0194 2023-03-16 21:09:58,495 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:26.0620 2023-03-16 21:09:59,985 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:43.6152 2023-03-16 21:10:01,309 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:12.5450 2023-03-16 21:10:02,841 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:9.5736 2023-03-16 21:10:04,443 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:48.9775 2023-03-16 21:10:06,276 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:27.1593 2023-03-16 21:10:07,730 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:29.7317 2023-03-16 21:10:09,629 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:22.4911 2023-03-16 21:10:11,550 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:15.5229 2023-03-16 21:10:13,375 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:6.0216 2023-03-16 21:10:15,165 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:34.8837 2023-03-16 21:10:17,072 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:37.1103 2023-03-16 21:10:18,997 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:14.1504 2023-03-16 21:10:20,700 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:6.7566 2023-03-16 21:10:22,017 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:26.2613 2023-03-16 21:10:23,250 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:27.5841 2023-03-16 21:10:24,525 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:15.1011 2023-03-16 21:10:25,865 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:15.0844 2023-03-16 21:10:27,111 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:32.6849 2023-03-16 21:10:28,329 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:27.5293 2023-03-16 21:10:29,780 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:11.3621 2023-03-16 21:10:31,232 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:31.2603 2023-03-16 21:10:32,798 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:23.8830 2023-03-16 21:10:34,009 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:29.6966 2023-03-16 21:10:35,235 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:22.0233 2023-03-16 21:10:36,524 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:20.5501 2023-03-16 21:10:37,760 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:27.0186 2023-03-16 21:10:38,993 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:29.4412 2023-03-16 21:10:40,159 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:11.8931 2023-03-16 21:10:41,356 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:34.9225 2023-03-16 21:10:42,557 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:15.8850 2023-03-16 21:10:43,746 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:9.6454 2023-03-16 21:10:44,941 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:6.7161 2023-03-16 21:10:46,484 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:5.6061 2023-03-16 21:10:47,814 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:8.4371 2023-03-16 21:10:49,007 - INFO - main.py - train - 68 - 【train】 epoch:0 271/2980 loss:17.6188 2023-03-16 21:10:50,258 - INFO - main.py - train - 68 - 【train】 epoch:0 272/2980 loss:25.9728 2023-03-16 21:10:51,917 - INFO - main.py - train - 68 - 【train】 epoch:0 273/2980 loss:46.7719 2023-03-16 21:10:53,396 - INFO - main.py - train - 68 - 【train】 epoch:0 274/2980 loss:39.3674 2023-03-16 21:10:54,819 - INFO - main.py - train - 68 - 【train】 epoch:0 275/2980 loss:15.5076 2023-03-16 21:10:56,361 - INFO - main.py - train - 68 - 【train】 epoch:0 276/2980 loss:22.9901 2023-03-16 21:10:57,913 - INFO - main.py - train - 68 - 【train】 epoch:0 277/2980 loss:44.3916 2023-03-16 21:10:59,103 - INFO - main.py - train - 68 - 【train】 epoch:0 278/2980 loss:9.4307 2023-03-16 21:11:00,264 - INFO - main.py - train - 68 - 【train】 epoch:0 279/2980 loss:21.9690 2023-03-16 21:11:01,482 - INFO - main.py - train - 68 - 【train】 epoch:0 280/2980 loss:27.1572 2023-03-16 21:11:02,689 - INFO - main.py - train - 68 - 【train】 epoch:0 281/2980 loss:24.6827 2023-03-16 21:11:03,920 - INFO - main.py - train - 68 - 【train】 epoch:0 282/2980 loss:94.4164 2023-03-16 21:11:05,151 - INFO - main.py - train - 68 - 【train】 epoch:0 283/2980 loss:41.2047 2023-03-16 21:11:06,320 - INFO - main.py - train - 68 - 【train】 epoch:0 284/2980 loss:10.0818 2023-03-16 21:11:07,537 - INFO - main.py - train - 68 - 【train】 epoch:0 285/2980 loss:23.4411 2023-03-16 21:11:08,695 - INFO - main.py - train - 68 - 【train】 epoch:0 286/2980 loss:13.2021 2023-03-16 21:11:09,867 - INFO - main.py - train - 68 - 【train】 epoch:0 287/2980 loss:24.6790 2023-03-16 21:11:11,042 - INFO - main.py - train - 68 - 【train】 epoch:0 288/2980 loss:15.2184 2023-03-16 21:11:12,251 - INFO - main.py - train - 68 - 【train】 epoch:0 289/2980 loss:15.8734 2023-03-16 21:11:13,497 - INFO - main.py - train - 68 - 【train】 epoch:0 290/2980 loss:11.6561 2023-03-16 21:11:14,736 - INFO - main.py - train - 68 - 【train】 epoch:0 291/2980 loss:5.8440 2023-03-16 21:11:15,960 - INFO - main.py - train - 68 - 【train】 epoch:0 292/2980 loss:21.4630 2023-03-16 21:11:17,187 - INFO - main.py - train - 68 - 【train】 epoch:0 293/2980 loss:51.0180 2023-03-16 21:11:18,399 - INFO - main.py - train - 68 - 【train】 epoch:0 294/2980 loss:3.9437 2023-03-16 21:11:19,665 - INFO - main.py - train - 68 - 【train】 epoch:0 295/2980 loss:33.6633 2023-03-16 21:11:20,965 - INFO - main.py - train - 68 - 【train】 epoch:0 296/2980 loss:32.8328 2023-03-16 21:11:22,171 - INFO - main.py - train - 68 - 【train】 epoch:0 297/2980 loss:18.6636 2023-03-16 21:11:23,446 - INFO - main.py - train - 68 - 【train】 epoch:0 298/2980 loss:20.4097 2023-03-16 21:11:24,767 - INFO - main.py - train - 68 - 【train】 epoch:0 299/2980 loss:19.0116 2023-03-16 21:11:26,017 - INFO - main.py - train - 68 - 【train】 epoch:0 300/2980 loss:26.0302 2023-03-16 21:11:27,220 - INFO - main.py - train - 68 - 【train】 epoch:0 301/2980 loss:16.5713 2023-03-16 21:11:28,396 - INFO - main.py - train - 68 - 【train】 epoch:0 302/2980 loss:3.2978 2023-03-16 21:11:29,591 - INFO - main.py - train - 68 - 【train】 epoch:0 303/2980 loss:28.4707 2023-03-16 21:11:33,605 - INFO - main.py - train - 68 - 【train】 epoch:0 304/2980 loss:23.9452 2023-03-16 21:11:34,886 - INFO - main.py - train - 68 - 【train】 epoch:0 305/2980 loss:15.1998 2023-03-16 21:11:36,212 - INFO - main.py - train - 68 - 【train】 epoch:0 306/2980 loss:18.2498 2023-03-16 21:11:37,524 - INFO - main.py - train - 68 - 【train】 epoch:0 307/2980 loss:20.2935 2023-03-16 21:11:38,751 - INFO - main.py - train - 68 - 【train】 epoch:0 308/2980 loss:4.2876 2023-03-16 21:11:40,065 - INFO - main.py - train - 68 - 【train】 epoch:0 309/2980 loss:35.8935 2023-03-16 21:11:41,319 - INFO - main.py - train - 68 - 【train】 epoch:0 310/2980 loss:19.7453 2023-03-16 21:11:42,479 - INFO - main.py - train - 68 - 【train】 epoch:0 311/2980 loss:4.9743 2023-03-16 21:11:43,737 - INFO - main.py - train - 68 - 【train】 epoch:0 312/2980 loss:11.1914 2023-03-16 21:11:44,995 - INFO - main.py - train - 68 - 【train】 epoch:0 313/2980 loss:15.0580 2023-03-16 21:11:46,204 - INFO - main.py - train - 68 - 【train】 epoch:0 314/2980 loss:8.0342 2023-03-16 21:11:47,440 - INFO - main.py - train - 68 - 【train】 epoch:0 315/2980 loss:58.5555 2023-03-16 21:11:48,675 - INFO - main.py - train - 68 - 【train】 epoch:0 316/2980 loss:11.0803 2023-03-16 21:11:49,874 - INFO - main.py - train - 68 - 【train】 epoch:0 317/2980 loss:6.8163 2023-03-16 21:11:51,062 - INFO - main.py - train - 68 - 【train】 epoch:0 318/2980 loss:9.9293 2023-03-16 21:11:52,281 - INFO - main.py - train - 68 - 【train】 epoch:0 319/2980 loss:32.9687 2023-03-16 21:11:53,499 - INFO - main.py - train - 68 - 【train】 epoch:0 320/2980 loss:10.5663 2023-03-16 21:11:54,716 - INFO - main.py - train - 68 - 【train】 epoch:0 321/2980 loss:7.7108 2023-03-16 21:11:56,036 - INFO - main.py - train - 68 - 【train】 epoch:0 322/2980 loss:17.3898 2023-03-16 21:11:57,303 - INFO - main.py - train - 68 - 【train】 epoch:0 323/2980 loss:37.2442 2023-03-16 21:11:58,482 - INFO - main.py - train - 68 - 【train】 epoch:0 324/2980 loss:10.4463 2023-03-16 21:11:59,658 - INFO - main.py - train - 68 - 【train】 epoch:0 325/2980 loss:24.6306 2023-03-16 21:12:00,860 - INFO - main.py - train - 68 - 【train】 epoch:0 326/2980 loss:10.0705 2023-03-16 21:12:02,078 - INFO - main.py - train - 68 - 【train】 epoch:0 327/2980 loss:3.1745 2023-03-16 21:12:03,299 - INFO - main.py - train - 68 - 【train】 epoch:0 328/2980 loss:10.7752 2023-03-16 21:12:04,534 - INFO - main.py - train - 68 - 【train】 epoch:0 329/2980 loss:12.7406 2023-03-16 21:12:05,819 - INFO - main.py - train - 68 - 【train】 epoch:0 330/2980 loss:5.0985 2023-03-16 21:12:07,041 - INFO - main.py - train - 68 - 【train】 epoch:0 331/2980 loss:15.1281 2023-03-16 21:12:08,493 - INFO - main.py - train - 68 - 【train】 epoch:0 332/2980 loss:21.7177 2023-03-16 21:12:10,278 - INFO - main.py - train - 68 - 【train】 epoch:0 333/2980 loss:34.7830 2023-03-16 21:12:12,124 - INFO - main.py - train - 68 - 【train】 epoch:0 334/2980 loss:26.6950 2023-03-16 21:12:14,844 - INFO - main.py - train - 68 - 【train】 epoch:0 335/2980 loss:14.1981 2023-03-16 21:12:17,453 - INFO - main.py - train - 68 - 【train】 epoch:0 336/2980 loss:3.4254 2023-03-16 21:12:20,018 - INFO - main.py - train - 68 - 【train】 epoch:0 337/2980 loss:7.8911 2023-03-16 21:12:23,216 - INFO - main.py - train - 68 - 【train】 epoch:0 338/2980 loss:7.6225 2023-03-16 21:12:25,703 - INFO - main.py - train - 68 - 【train】 epoch:0 339/2980 loss:8.3907 2023-03-16 21:12:28,285 - INFO - main.py - train - 68 - 【train】 epoch:0 340/2980 loss:24.7343 2023-03-16 21:12:30,344 - INFO - main.py - train - 68 - 【train】 epoch:0 341/2980 loss:45.6343 2023-03-16 21:12:31,981 - INFO - main.py - train - 68 - 【train】 epoch:0 342/2980 loss:18.2606 2023-03-16 21:12:34,216 - INFO - main.py - train - 68 - 【train】 epoch:0 343/2980 loss:12.7815 2023-03-16 21:12:36,714 - INFO - main.py - train - 68 - 【train】 epoch:0 344/2980 loss:2.8630 2023-03-16 21:12:38,436 - INFO - main.py - train - 68 - 【train】 epoch:0 345/2980 loss:9.5653 2023-03-16 21:12:40,583 - INFO - main.py - train - 68 - 【train】 epoch:0 346/2980 loss:4.9169 2023-03-16 21:12:42,236 - INFO - main.py - train - 68 - 【train】 epoch:0 347/2980 loss:3.9596 2023-03-16 21:12:43,724 - INFO - main.py - train - 68 - 【train】 epoch:0 348/2980 loss:6.2192 2023-03-16 21:12:45,321 - INFO - main.py - train - 68 - 【train】 epoch:0 349/2980 loss:28.8384 2023-03-16 21:12:46,796 - INFO - main.py - train - 68 - 【train】 epoch:0 350/2980 loss:37.1711 2023-03-16 21:12:48,234 - INFO - main.py - train - 68 - 【train】 epoch:0 351/2980 loss:35.8574 2023-03-16 21:12:50,146 - INFO - main.py - train - 68 - 【train】 epoch:0 352/2980 loss:27.7167 2023-03-16 21:12:52,048 - INFO - main.py - train - 68 - 【train】 epoch:0 353/2980 loss:9.9819 2023-03-16 21:12:53,560 - INFO - main.py - train - 68 - 【train】 epoch:0 354/2980 loss:21.2560 2023-03-16 21:12:54,976 - INFO - main.py - train - 68 - 【train】 epoch:0 355/2980 loss:6.5895 2023-03-16 21:12:56,693 - INFO - main.py - train - 68 - 【train】 epoch:0 356/2980 loss:6.1434 2023-03-16 21:12:58,261 - INFO - main.py - train - 68 - 【train】 epoch:0 357/2980 loss:4.6459 2023-03-16 21:12:59,668 - INFO - main.py - train - 68 - 【train】 epoch:0 358/2980 loss:3.4529 2023-03-16 21:13:01,061 - INFO - main.py - train - 68 - 【train】 epoch:0 359/2980 loss:25.1291 2023-03-16 21:13:02,433 - INFO - main.py - train - 68 - 【train】 epoch:0 360/2980 loss:7.8235 2023-03-16 21:13:03,863 - INFO - main.py - train - 68 - 【train】 epoch:0 361/2980 loss:25.8075 2023-03-16 21:13:05,376 - INFO - main.py - train - 68 - 【train】 epoch:0 362/2980 loss:9.3540 2023-03-16 21:13:06,691 - INFO - main.py - train - 68 - 【train】 epoch:0 363/2980 loss:6.3975 2023-03-16 21:13:08,136 - INFO - main.py - train - 68 - 【train】 epoch:0 364/2980 loss:21.4671 2023-03-16 21:13:09,560 - INFO - main.py - train - 68 - 【train】 epoch:0 365/2980 loss:6.9095 2023-03-16 21:13:11,005 - INFO - main.py - train - 68 - 【train】 epoch:0 366/2980 loss:17.7087 2023-03-16 21:13:12,360 - INFO - main.py - train - 68 - 【train】 epoch:0 367/2980 loss:15.8662 2023-03-16 21:13:13,686 - INFO - main.py - train - 68 - 【train】 epoch:0 368/2980 loss:24.2845 2023-03-16 21:13:15,048 - INFO - main.py - train - 68 - 【train】 epoch:0 369/2980 loss:28.8256 2023-03-16 21:13:16,509 - INFO - main.py - train - 68 - 【train】 epoch:0 370/2980 loss:30.4101 2023-03-16 21:13:17,929 - INFO - main.py - train - 68 - 【train】 epoch:0 371/2980 loss:22.2500 2023-03-16 21:13:19,330 - INFO - main.py - train - 68 - 【train】 epoch:0 372/2980 loss:8.7104 2023-03-16 21:13:20,762 - INFO - main.py - train - 68 - 【train】 epoch:0 373/2980 loss:12.3322 2023-03-16 21:13:22,054 - INFO - main.py - train - 68 - 【train】 epoch:0 374/2980 loss:25.6094 2023-03-16 21:13:23,391 - INFO - main.py - train - 68 - 【train】 epoch:0 375/2980 loss:10.3744 2023-03-16 21:13:24,780 - INFO - main.py - train - 68 - 【train】 epoch:0 376/2980 loss:129.3895 2023-03-16 21:13:26,123 - INFO - main.py - train - 68 - 【train】 epoch:0 377/2980 loss:3.6734 2023-03-16 21:13:27,509 - INFO - main.py - train - 68 - 【train】 epoch:0 378/2980 loss:15.5641 2023-03-16 21:13:28,793 - INFO - main.py - train - 68 - 【train】 epoch:0 379/2980 loss:2.7084 2023-03-16 21:13:30,223 - INFO - main.py - train - 68 - 【train】 epoch:0 380/2980 loss:17.5508 2023-03-16 21:13:31,521 - INFO - main.py - train - 68 - 【train】 epoch:0 381/2980 loss:17.7952 2023-03-16 21:13:32,869 - INFO - main.py - train - 68 - 【train】 epoch:0 382/2980 loss:18.3512 2023-03-16 21:13:34,041 - INFO - main.py - train - 68 - 【train】 epoch:0 383/2980 loss:22.5999 2023-03-16 21:13:35,253 - INFO - main.py - train - 68 - 【train】 epoch:0 384/2980 loss:20.0758 2023-03-16 21:13:36,433 - INFO - main.py - train - 68 - 【train】 epoch:0 385/2980 loss:8.7233 2023-03-16 21:13:37,644 - INFO - main.py - train - 68 - 【train】 epoch:0 386/2980 loss:34.8253 2023-03-16 21:13:38,820 - INFO - main.py - train - 68 - 【train】 epoch:0 387/2980 loss:35.8328 2023-03-16 21:13:40,057 - INFO - main.py - train - 68 - 【train】 epoch:0 388/2980 loss:15.4004 2023-03-16 21:13:41,308 - INFO - main.py - train - 68 - 【train】 epoch:0 389/2980 loss:17.8654 2023-03-16 21:13:42,574 - INFO - main.py - train - 68 - 【train】 epoch:0 390/2980 loss:23.5963 2023-03-16 21:13:43,870 - INFO - main.py - train - 68 - 【train】 epoch:0 391/2980 loss:14.3533 2023-03-16 21:13:45,164 - INFO - main.py - train - 68 - 【train】 epoch:0 392/2980 loss:22.4962 2023-03-16 21:13:46,445 - INFO - main.py - train - 68 - 【train】 epoch:0 393/2980 loss:5.8102 2023-03-16 21:13:47,739 - INFO - main.py - train - 68 - 【train】 epoch:0 394/2980 loss:57.8046 2023-03-16 21:13:48,946 - INFO - main.py - train - 68 - 【train】 epoch:0 395/2980 loss:16.7366 2023-03-16 21:13:50,238 - INFO - main.py - train - 68 - 【train】 epoch:0 396/2980 loss:11.9630 2023-03-16 21:13:51,482 - INFO - main.py - train - 68 - 【train】 epoch:0 397/2980 loss:16.8727 2023-03-16 21:13:52,772 - INFO - main.py - train - 68 - 【train】 epoch:0 398/2980 loss:20.0305 2023-03-16 21:13:54,090 - INFO - main.py - train - 68 - 【train】 epoch:0 399/2980 loss:7.0684 2023-03-16 21:13:55,306 - INFO - main.py - train - 68 - 【train】 epoch:0 400/2980 loss:16.6100 2023-03-16 21:13:56,538 - INFO - main.py - train - 68 - 【train】 epoch:0 401/2980 loss:5.4217 2023-03-16 21:13:57,763 - INFO - main.py - train - 68 - 【train】 epoch:0 402/2980 loss:7.4266 2023-03-16 21:13:59,007 - INFO - main.py - train - 68 - 【train】 epoch:0 403/2980 loss:50.2379 2023-03-16 21:14:00,205 - INFO - main.py - train - 68 - 【train】 epoch:0 404/2980 loss:8.9319 2023-03-16 21:14:01,411 - INFO - main.py - train - 68 - 【train】 epoch:0 405/2980 loss:15.5982 2023-03-16 21:14:02,627 - INFO - main.py - train - 68 - 【train】 epoch:0 406/2980 loss:28.9161 2023-03-16 21:14:03,843 - INFO - main.py - train - 68 - 【train】 epoch:0 407/2980 loss:9.2144 2023-03-16 21:14:05,088 - INFO - main.py - train - 68 - 【train】 epoch:0 408/2980 loss:8.0829 2023-03-16 21:14:06,304 - INFO - main.py - train - 68 - 【train】 epoch:0 409/2980 loss:15.7258 2023-03-16 21:14:07,505 - INFO - main.py - train - 68 - 【train】 epoch:0 410/2980 loss:7.9500 2023-03-16 21:14:08,680 - INFO - main.py - train - 68 - 【train】 epoch:0 411/2980 loss:13.3663 2023-03-16 21:14:09,918 - INFO - main.py - train - 68 - 【train】 epoch:0 412/2980 loss:10.7224 2023-03-16 21:14:11,134 - INFO - main.py - train - 68 - 【train】 epoch:0 413/2980 loss:15.6231 2023-03-16 21:14:12,316 - INFO - main.py - train - 68 - 【train】 epoch:0 414/2980 loss:7.4302 2023-03-16 21:14:13,575 - INFO - main.py - train - 68 - 【train】 epoch:0 415/2980 loss:12.6105 2023-03-16 21:14:14,880 - INFO - main.py - train - 68 - 【train】 epoch:0 416/2980 loss:27.8839 2023-03-16 21:14:16,183 - INFO - main.py - train - 68 - 【train】 epoch:0 417/2980 loss:5.2524 2023-03-16 21:14:17,478 - INFO - main.py - train - 68 - 【train】 epoch:0 418/2980 loss:33.1300 2023-03-16 21:14:18,755 - INFO - main.py - train - 68 - 【train】 epoch:0 419/2980 loss:32.3089 2023-03-16 21:14:19,910 - INFO - main.py - train - 68 - 【train】 epoch:0 420/2980 loss:1.9897 2023-03-16 21:14:21,095 - INFO - main.py - train - 68 - 【train】 epoch:0 421/2980 loss:27.3998 2023-03-16 21:14:22,327 - INFO - main.py - train - 68 - 【train】 epoch:0 422/2980 loss:20.1606 2023-03-16 21:14:23,591 - INFO - main.py - train - 68 - 【train】 epoch:0 423/2980 loss:10.3827 2023-03-16 21:14:24,823 - INFO - main.py - train - 68 - 【train】 epoch:0 424/2980 loss:7.6737 2023-03-16 21:14:26,152 - INFO - main.py - train - 68 - 【train】 epoch:0 425/2980 loss:4.3646 2023-03-16 21:14:27,375 - INFO - main.py - train - 68 - 【train】 epoch:0 426/2980 loss:14.6461 2023-03-16 21:14:28,611 - INFO - main.py - train - 68 - 【train】 epoch:0 427/2980 loss:45.8182 2023-03-16 21:14:29,806 - INFO - main.py - train - 68 - 【train】 epoch:0 428/2980 loss:35.3837 2023-03-16 21:14:31,113 - INFO - main.py - train - 68 - 【train】 epoch:0 429/2980 loss:22.1009 2023-03-16 21:14:32,512 - INFO - main.py - train - 68 - 【train】 epoch:0 430/2980 loss:34.2501 2023-03-16 21:14:33,835 - INFO - main.py - train - 68 - 【train】 epoch:0 431/2980 loss:15.9290 2023-03-16 21:14:35,012 - INFO - main.py - train - 68 - 【train】 epoch:0 432/2980 loss:17.0621 2023-03-16 21:14:36,167 - INFO - main.py - train - 68 - 【train】 epoch:0 433/2980 loss:15.7952 2023-03-16 21:14:37,304 - INFO - main.py - train - 68 - 【train】 epoch:0 434/2980 loss:2.7181 2023-03-16 21:14:38,471 - INFO - main.py - train - 68 - 【train】 epoch:0 435/2980 loss:13.7342 2023-03-16 21:14:39,628 - INFO - main.py - train - 68 - 【train】 epoch:0 436/2980 loss:8.2733 2023-03-16 21:14:40,790 - INFO - main.py - train - 68 - 【train】 epoch:0 437/2980 loss:18.2025 2023-03-16 21:14:42,011 - INFO - main.py - train - 68 - 【train】 epoch:0 438/2980 loss:1.1177 2023-03-16 21:14:43,313 - INFO - main.py - train - 68 - 【train】 epoch:0 439/2980 loss:17.0279 2023-03-16 21:14:44,584 - INFO - main.py - train - 68 - 【train】 epoch:0 440/2980 loss:27.2239 2023-03-16 21:14:46,723 - INFO - main.py - train - 68 - 【train】 epoch:0 441/2980 loss:16.8283 2023-03-16 21:14:48,453 - INFO - main.py - train - 68 - 【train】 epoch:0 442/2980 loss:13.1418 2023-03-16 21:14:49,877 - INFO - main.py - train - 68 - 【train】 epoch:0 443/2980 loss:11.0105 2023-03-16 21:14:51,128 - INFO - main.py - train - 68 - 【train】 epoch:0 444/2980 loss:9.8930 2023-03-16 21:14:52,423 - INFO - main.py - train - 68 - 【train】 epoch:0 445/2980 loss:13.6503 2023-03-16 21:14:54,015 - INFO - main.py - train - 68 - 【train】 epoch:0 446/2980 loss:19.7696 2023-03-16 21:14:55,387 - INFO - main.py - train - 68 - 【train】 epoch:0 447/2980 loss:22.1109 2023-03-16 21:14:57,481 - INFO - main.py - train - 68 - 【train】 epoch:0 448/2980 loss:17.6512 2023-03-16 21:14:59,327 - INFO - main.py - train - 68 - 【train】 epoch:0 449/2980 loss:6.6566 2023-03-16 21:15:01,091 - INFO - main.py - train - 68 - 【train】 epoch:0 450/2980 loss:15.2295 2023-03-16 21:15:02,717 - INFO - main.py - train - 68 - 【train】 epoch:0 451/2980 loss:13.5148 2023-03-16 21:15:04,335 - INFO - main.py - train - 68 - 【train】 epoch:0 452/2980 loss:33.3444 2023-03-16 21:15:06,273 - INFO - main.py - train - 68 - 【train】 epoch:0 453/2980 loss:8.6862 2023-03-16 21:15:08,102 - INFO - main.py - train - 68 - 【train】 epoch:0 454/2980 loss:8.2007 2023-03-16 21:15:10,026 - INFO - main.py - train - 68 - 【train】 epoch:0 455/2980 loss:25.5242 2023-03-16 21:15:12,074 - INFO - main.py - train - 68 - 【train】 epoch:0 456/2980 loss:23.6701 2023-03-16 21:15:14,259 - INFO - main.py - train - 68 - 【train】 epoch:0 457/2980 loss:5.9129 2023-03-16 21:15:16,197 - INFO - main.py - train - 68 - 【train】 epoch:0 458/2980 loss:8.8857 2023-03-16 21:15:17,421 - INFO - main.py - train - 68 - 【train】 epoch:0 459/2980 loss:9.9320 2023-03-16 21:15:18,638 - INFO - main.py - train - 68 - 【train】 epoch:0 460/2980 loss:5.0586 2023-03-16 21:15:20,080 - INFO - main.py - train - 68 - 【train】 epoch:0 461/2980 loss:11.8359 2023-03-16 21:15:21,585 - INFO - main.py - train - 68 - 【train】 epoch:0 462/2980 loss:12.9242 2023-03-16 21:15:22,930 - INFO - main.py - train - 68 - 【train】 epoch:0 463/2980 loss:12.9328 2023-03-16 21:15:24,247 - INFO - main.py - train - 68 - 【train】 epoch:0 464/2980 loss:4.0427 2023-03-16 21:15:25,503 - INFO - main.py - train - 68 - 【train】 epoch:0 465/2980 loss:11.5799 2023-03-16 21:15:26,835 - INFO - main.py - train - 68 - 【train】 epoch:0 466/2980 loss:26.3456 2023-03-16 21:15:28,234 - INFO - main.py - train - 68 - 【train】 epoch:0 467/2980 loss:47.3622 2023-03-16 21:15:29,678 - INFO - main.py - train - 68 - 【train】 epoch:0 468/2980 loss:8.4193 2023-03-16 21:15:30,998 - INFO - main.py - train - 68 - 【train】 epoch:0 469/2980 loss:14.8643 2023-03-16 21:15:32,341 - INFO - main.py - train - 68 - 【train】 epoch:0 470/2980 loss:13.1186 2023-03-16 21:15:33,736 - INFO - main.py - train - 68 - 【train】 epoch:0 471/2980 loss:14.4389 2023-03-16 21:15:35,153 - INFO - main.py - train - 68 - 【train】 epoch:0 472/2980 loss:16.5281 2023-03-16 21:15:36,564 - INFO - main.py - train - 68 - 【train】 epoch:0 473/2980 loss:19.9313 2023-03-16 21:15:37,891 - INFO - main.py - train - 68 - 【train】 epoch:0 474/2980 loss:19.9587 2023-03-16 21:15:39,353 - INFO - main.py - train - 68 - 【train】 epoch:0 475/2980 loss:9.6036 2023-03-16 21:15:40,780 - INFO - main.py - train - 68 - 【train】 epoch:0 476/2980 loss:12.5775 2023-03-16 21:15:42,124 - INFO - main.py - train - 68 - 【train】 epoch:0 477/2980 loss:2.6016 2023-03-16 21:15:43,446 - INFO - main.py - train - 68 - 【train】 epoch:0 478/2980 loss:29.6433 2023-03-16 21:15:44,821 - INFO - main.py - train - 68 - 【train】 epoch:0 479/2980 loss:18.0396 2023-03-16 21:15:46,283 - INFO - main.py - train - 68 - 【train】 epoch:0 480/2980 loss:7.7002 2023-03-16 21:15:47,720 - INFO - main.py - train - 68 - 【train】 epoch:0 481/2980 loss:6.4536 2023-03-16 21:15:49,181 - INFO - main.py - train - 68 - 【train】 epoch:0 482/2980 loss:8.7648 2023-03-16 21:15:50,793 - INFO - main.py - train - 68 - 【train】 epoch:0 483/2980 loss:15.9649 2023-03-16 21:15:52,229 - INFO - main.py - train - 68 - 【train】 epoch:0 484/2980 loss:10.4297 2023-03-16 21:15:53,519 - INFO - main.py - train - 68 - 【train】 epoch:0 485/2980 loss:18.5172 2023-03-16 21:15:54,797 - INFO - main.py - train - 68 - 【train】 epoch:0 486/2980 loss:11.4213 2023-03-16 21:15:56,127 - INFO - main.py - train - 68 - 【train】 epoch:0 487/2980 loss:4.1065 2023-03-16 21:15:57,414 - INFO - main.py - train - 68 - 【train】 epoch:0 488/2980 loss:3.4598 2023-03-16 21:15:58,664 - INFO - main.py - train - 68 - 【train】 epoch:0 489/2980 loss:17.0290 2023-03-16 21:16:00,006 - INFO - main.py - train - 68 - 【train】 epoch:0 490/2980 loss:14.2097 2023-03-16 21:16:01,272 - INFO - main.py - train - 68 - 【train】 epoch:0 491/2980 loss:15.0714 2023-03-16 21:16:02,544 - INFO - main.py - train - 68 - 【train】 epoch:0 492/2980 loss:7.0322 2023-03-16 21:16:03,799 - INFO - main.py - train - 68 - 【train】 epoch:0 493/2980 loss:18.3185 2023-03-16 21:16:05,054 - INFO - main.py - train - 68 - 【train】 epoch:0 494/2980 loss:21.8378 2023-03-16 21:16:06,365 - INFO - main.py - train - 68 - 【train】 epoch:0 495/2980 loss:27.2275 2023-03-16 21:16:07,646 - INFO - main.py - train - 68 - 【train】 epoch:0 496/2980 loss:3.8113 2023-03-16 21:16:08,903 - INFO - main.py - train - 68 - 【train】 epoch:0 497/2980 loss:14.3465 2023-03-16 21:16:10,161 - INFO - main.py - train - 68 - 【train】 epoch:0 498/2980 loss:2.5892 2023-03-16 21:16:17,462 - INFO - main.py - train - 68 - 【train】 epoch:0 499/2980 loss:19.3574 2023-03-16 21:16:18,779 - INFO - main.py - train - 68 - 【train】 epoch:0 500/2980 loss:5.8938 2023-03-16 21:16:20,034 - INFO - main.py - train - 68 - 【train】 epoch:0 501/2980 loss:6.8626 2023-03-16 21:16:21,545 - INFO - main.py - train - 68 - 【train】 epoch:0 502/2980 loss:15.0091 2023-03-16 21:16:22,824 - INFO - main.py - train - 68 - 【train】 epoch:0 503/2980 loss:13.5056 2023-03-16 21:16:24,112 - INFO - main.py - train - 68 - 【train】 epoch:0 504/2980 loss:35.2388 2023-03-16 21:16:25,391 - INFO - main.py - train - 68 - 【train】 epoch:0 505/2980 loss:21.8582 2023-03-16 21:17:04,415 - INFO - main.py - train - 68 - 【train】 epoch:0 506/2980 loss:6.9887 2023-03-16 21:17:05,585 - INFO - main.py - train - 68 - 【train】 epoch:0 507/2980 loss:7.9342 2023-03-16 21:17:06,750 - INFO - main.py - train - 68 - 【train】 epoch:0 508/2980 loss:7.0347 2023-03-16 21:17:07,924 - INFO - main.py - train - 68 - 【train】 epoch:0 509/2980 loss:7.3937 2023-03-16 21:17:09,174 - INFO - main.py - train - 68 - 【train】 epoch:0 510/2980 loss:21.0368 2023-03-16 21:17:10,444 - INFO - main.py - train - 68 - 【train】 epoch:0 511/2980 loss:12.0436 2023-03-16 21:17:11,715 - INFO - main.py - train - 68 - 【train】 epoch:0 512/2980 loss:10.3578 2023-03-16 21:17:12,948 - INFO - main.py - train - 68 - 【train】 epoch:0 513/2980 loss:14.2552 2023-03-16 21:17:14,204 - INFO - main.py - train - 68 - 【train】 epoch:0 514/2980 loss:4.2202 2023-03-16 21:17:15,508 - INFO - main.py - train - 68 - 【train】 epoch:0 515/2980 loss:10.5552 2023-03-16 21:17:16,813 - INFO - main.py - train - 68 - 【train】 epoch:0 516/2980 loss:20.4400 2023-03-16 21:17:18,070 - INFO - main.py - train - 68 - 【train】 epoch:0 517/2980 loss:2.4503 2023-03-16 21:17:19,411 - INFO - main.py - train - 68 - 【train】 epoch:0 518/2980 loss:6.0018 2023-03-16 21:17:20,737 - INFO - main.py - train - 68 - 【train】 epoch:0 519/2980 loss:16.2588 2023-03-16 21:17:22,132 - INFO - main.py - train - 68 - 【train】 epoch:0 520/2980 loss:4.6041 2023-03-16 21:17:23,561 - INFO - main.py - train - 68 - 【train】 epoch:0 521/2980 loss:30.9289 2023-03-16 21:17:24,960 - INFO - main.py - train - 68 - 【train】 epoch:0 522/2980 loss:9.7810 2023-03-16 21:17:26,702 - INFO - main.py - train - 68 - 【train】 epoch:0 523/2980 loss:11.0944 2023-03-16 21:17:28,273 - INFO - main.py - train - 68 - 【train】 epoch:0 524/2980 loss:9.6806 2023-03-16 21:17:29,619 - INFO - main.py - train - 68 - 【train】 epoch:0 525/2980 loss:8.3397 2023-03-16 21:17:31,636 - INFO - main.py - train - 68 - 【train】 epoch:0 526/2980 loss:24.1829 2023-03-16 21:17:33,079 - INFO - main.py - train - 68 - 【train】 epoch:0 527/2980 loss:17.1609 2023-03-16 21:17:34,175 - INFO - main.py - train - 68 - 【train】 epoch:0 528/2980 loss:0.3175 2023-03-16 21:17:35,374 - INFO - main.py - train - 68 - 【train】 epoch:0 529/2980 loss:20.5649 2023-03-16 21:17:36,524 - INFO - main.py - train - 68 - 【train】 epoch:0 530/2980 loss:0.9545 2023-03-16 21:17:37,773 - INFO - main.py - train - 68 - 【train】 epoch:0 531/2980 loss:2.8110 2023-03-16 21:17:39,270 - INFO - main.py - train - 68 - 【train】 epoch:0 532/2980 loss:26.4291 2023-03-16 21:17:40,637 - INFO - main.py - train - 68 - 【train】 epoch:0 533/2980 loss:6.1805 2023-03-16 21:17:41,956 - INFO - main.py - train - 68 - 【train】 epoch:0 534/2980 loss:6.2984 2023-03-16 21:17:43,199 - INFO - main.py - train - 68 - 【train】 epoch:0 535/2980 loss:10.1729 2023-03-16 21:17:44,452 - INFO - main.py - train - 68 - 【train】 epoch:0 536/2980 loss:6.7500 2023-03-16 21:17:45,672 - INFO - main.py - train - 68 - 【train】 epoch:0 537/2980 loss:13.1835 2023-03-16 21:17:47,411 - INFO - main.py - train - 68 - 【train】 epoch:0 538/2980 loss:15.0484 2023-03-16 21:17:48,685 - INFO - main.py - train - 68 - 【train】 epoch:0 539/2980 loss:7.7781 2023-03-16 21:17:49,949 - INFO - main.py - train - 68 - 【train】 epoch:0 540/2980 loss:9.2828 2023-03-16 21:17:51,105 - INFO - main.py - train - 68 - 【train】 epoch:0 541/2980 loss:3.7036 2023-03-16 21:17:52,334 - INFO - main.py - train - 68 - 【train】 epoch:0 542/2980 loss:16.4255 2023-03-16 21:17:53,525 - INFO - main.py - train - 68 - 【train】 epoch:0 543/2980 loss:6.5075 2023-03-16 21:17:54,755 - INFO - main.py - train - 68 - 【train】 epoch:0 544/2980 loss:2.8197 2023-03-16 21:17:56,058 - INFO - main.py - train - 68 - 【train】 epoch:0 545/2980 loss:4.3215 2023-03-16 21:17:57,304 - INFO - main.py - train - 68 - 【train】 epoch:0 546/2980 loss:7.2371 2023-03-16 21:17:58,557 - INFO - main.py - train - 68 - 【train】 epoch:0 547/2980 loss:15.7437 2023-03-16 21:17:59,759 - INFO - main.py - train - 68 - 【train】 epoch:0 548/2980 loss:8.9441 2023-03-16 21:18:00,993 - INFO - main.py - train - 68 - 【train】 epoch:0 549/2980 loss:15.3036 2023-03-16 21:18:02,192 - INFO - main.py - train - 68 - 【train】 epoch:0 550/2980 loss:8.3006 2023-03-16 21:18:03,406 - INFO - main.py - train - 68 - 【train】 epoch:0 551/2980 loss:14.1203 2023-03-16 21:18:04,611 - INFO - main.py - train - 68 - 【train】 epoch:0 552/2980 loss:10.5329 2023-03-16 21:18:05,786 - INFO - main.py - train - 68 - 【train】 epoch:0 553/2980 loss:13.2013 2023-03-16 21:18:07,116 - INFO - main.py - train - 68 - 【train】 epoch:0 554/2980 loss:18.4743 2023-03-16 21:18:08,321 - INFO - main.py - train - 68 - 【train】 epoch:0 555/2980 loss:19.9635 2023-03-16 21:18:09,516 - INFO - main.py - train - 68 - 【train】 epoch:0 556/2980 loss:7.7630 2023-03-16 21:18:10,796 - INFO - main.py - train - 68 - 【train】 epoch:0 557/2980 loss:44.7654 2023-03-16 21:18:11,995 - INFO - main.py - train - 68 - 【train】 epoch:0 558/2980 loss:25.7385 2023-03-16 21:18:13,235 - INFO - main.py - train - 68 - 【train】 epoch:0 559/2980 loss:24.2017 2023-03-16 21:18:14,438 - INFO - main.py - train - 68 - 【train】 epoch:0 560/2980 loss:30.6703 2023-03-16 21:18:15,639 - INFO - main.py - train - 68 - 【train】 epoch:0 561/2980 loss:6.6498 2023-03-16 21:18:16,785 - INFO - main.py - train - 68 - 【train】 epoch:0 562/2980 loss:8.6917 2023-03-16 21:18:17,965 - INFO - main.py - train - 68 - 【train】 epoch:0 563/2980 loss:22.3868 2023-03-16 21:18:19,177 - INFO - main.py - train - 68 - 【train】 epoch:0 564/2980 loss:12.9180 2023-03-16 21:18:20,383 - INFO - main.py - train - 68 - 【train】 epoch:0 565/2980 loss:65.0096 2023-03-16 21:18:21,544 - INFO - main.py - train - 68 - 【train】 epoch:0 566/2980 loss:9.1619 2023-03-16 21:18:22,693 - INFO - main.py - train - 68 - 【train】 epoch:0 567/2980 loss:6.1738 2023-03-16 21:18:23,867 - INFO - main.py - train - 68 - 【train】 epoch:0 568/2980 loss:12.3473 2023-03-16 21:18:25,066 - INFO - main.py - train - 68 - 【train】 epoch:0 569/2980 loss:9.6583 2023-03-16 21:18:26,289 - INFO - main.py - train - 68 - 【train】 epoch:0 570/2980 loss:23.5286 2023-03-16 21:18:27,462 - INFO - main.py - train - 68 - 【train】 epoch:0 571/2980 loss:10.1396 2023-03-16 21:18:28,666 - INFO - main.py - train - 68 - 【train】 epoch:0 572/2980 loss:33.9949 2023-03-16 21:18:29,909 - INFO - main.py - train - 68 - 【train】 epoch:0 573/2980 loss:28.4890 2023-03-16 21:18:31,121 - INFO - main.py - train - 68 - 【train】 epoch:0 574/2980 loss:17.1327 2023-03-16 21:18:32,298 - INFO - main.py - train - 68 - 【train】 epoch:0 575/2980 loss:17.3517 2023-03-16 21:18:33,454 - INFO - main.py - train - 68 - 【train】 epoch:0 576/2980 loss:9.2085 2023-03-16 21:18:34,617 - INFO - main.py - train - 68 - 【train】 epoch:0 577/2980 loss:8.5573 2023-03-16 21:18:35,792 - INFO - main.py - train - 68 - 【train】 epoch:0 578/2980 loss:1.6400 2023-03-16 21:18:36,962 - INFO - main.py - train - 68 - 【train】 epoch:0 579/2980 loss:11.5193 2023-03-16 21:18:38,126 - INFO - main.py - train - 68 - 【train】 epoch:0 580/2980 loss:9.0851 2023-03-16 21:18:39,322 - INFO - main.py - train - 68 - 【train】 epoch:0 581/2980 loss:12.4722 2023-03-16 21:18:40,513 - INFO - main.py - train - 68 - 【train】 epoch:0 582/2980 loss:30.6609 2023-03-16 21:18:41,694 - INFO - main.py - train - 68 - 【train】 epoch:0 583/2980 loss:19.9569 2023-03-16 21:18:42,872 - INFO - main.py - train - 68 - 【train】 epoch:0 584/2980 loss:6.4368 2023-03-16 21:18:44,043 - INFO - main.py - train - 68 - 【train】 epoch:0 585/2980 loss:9.3990 2023-03-16 21:18:45,292 - INFO - main.py - train - 68 - 【train】 epoch:0 586/2980 loss:33.0984 2023-03-16 21:18:46,470 - INFO - main.py - train - 68 - 【train】 epoch:0 587/2980 loss:13.6693 2023-03-16 21:18:47,653 - INFO - main.py - train - 68 - 【train】 epoch:0 588/2980 loss:11.1325 2023-03-16 21:18:48,826 - INFO - main.py - train - 68 - 【train】 epoch:0 589/2980 loss:20.1584 2023-03-16 21:18:50,010 - INFO - main.py - train - 68 - 【train】 epoch:0 590/2980 loss:7.5028 2023-03-16 21:18:51,223 - INFO - main.py - train - 68 - 【train】 epoch:0 591/2980 loss:11.5522 2023-03-16 21:18:52,402 - INFO - main.py - train - 68 - 【train】 epoch:0 592/2980 loss:37.5614 2023-03-16 21:18:53,572 - INFO - main.py - train - 68 - 【train】 epoch:0 593/2980 loss:9.2568 2023-03-16 21:18:54,742 - INFO - main.py - train - 68 - 【train】 epoch:0 594/2980 loss:3.1813 2023-03-16 21:18:55,915 - INFO - main.py - train - 68 - 【train】 epoch:0 595/2980 loss:6.4217 2023-03-16 21:19:09,015 - INFO - main.py - train - 68 - 【train】 epoch:1 596/2980 loss:11.8903 2023-03-16 21:19:10,276 - INFO - main.py - train - 68 - 【train】 epoch:1 597/2980 loss:29.6980 2023-03-16 21:19:11,447 - INFO - main.py - train - 68 - 【train】 epoch:1 598/2980 loss:20.3260 2023-03-16 21:19:12,592 - INFO - main.py - train - 68 - 【train】 epoch:1 599/2980 loss:7.7117 2023-03-16 21:19:13,778 - INFO - main.py - train - 68 - 【train】 epoch:1 600/2980 loss:9.2595 2023-03-16 21:19:14,924 - INFO - main.py - train - 68 - 【train】 epoch:1 601/2980 loss:5.6742 2023-03-16 21:19:16,109 - INFO - main.py - train - 68 - 【train】 epoch:1 602/2980 loss:13.4239 2023-03-16 21:19:17,333 - INFO - main.py - train - 68 - 【train】 epoch:1 603/2980 loss:10.9104 2023-03-16 21:19:18,619 - INFO - main.py - train - 68 - 【train】 epoch:1 604/2980 loss:25.3164 2023-03-16 21:19:20,055 - INFO - main.py - train - 68 - 【train】 epoch:1 605/2980 loss:10.7384 2023-03-16 21:19:21,516 - INFO - main.py - train - 68 - 【train】 epoch:1 606/2980 loss:5.5898 2023-03-16 21:19:22,739 - INFO - main.py - train - 68 - 【train】 epoch:1 607/2980 loss:8.1314 2023-03-16 21:19:23,924 - INFO - main.py - train - 68 - 【train】 epoch:1 608/2980 loss:10.7422 2023-03-16 21:19:25,103 - INFO - main.py - train - 68 - 【train】 epoch:1 609/2980 loss:10.2580 2023-03-16 21:19:26,347 - INFO - main.py - train - 68 - 【train】 epoch:1 610/2980 loss:16.5079 2023-03-16 21:19:27,577 - INFO - main.py - train - 68 - 【train】 epoch:1 611/2980 loss:32.0096 2023-03-16 21:19:28,953 - INFO - main.py - train - 68 - 【train】 epoch:1 612/2980 loss:6.6002 2023-03-16 21:19:30,154 - INFO - main.py - train - 68 - 【train】 epoch:1 613/2980 loss:10.7792 2023-03-16 21:19:31,511 - INFO - main.py - train - 68 - 【train】 epoch:1 614/2980 loss:29.6166 2023-03-16 21:19:32,672 - INFO - main.py - train - 68 - 【train】 epoch:1 615/2980 loss:11.6804 2023-03-16 21:19:33,863 - INFO - main.py - train - 68 - 【train】 epoch:1 616/2980 loss:18.2329 2023-03-16 21:19:35,035 - INFO - main.py - train - 68 - 【train】 epoch:1 617/2980 loss:8.2215 2023-03-16 21:19:36,236 - INFO - main.py - train - 68 - 【train】 epoch:1 618/2980 loss:8.3225 2023-03-16 21:19:37,451 - INFO - main.py - train - 68 - 【train】 epoch:1 619/2980 loss:13.4221 2023-03-16 21:19:38,621 - INFO - main.py - train - 68 - 【train】 epoch:1 620/2980 loss:14.5174 2023-03-16 21:19:39,815 - INFO - main.py - train - 68 - 【train】 epoch:1 621/2980 loss:25.5435 2023-03-16 21:19:40,966 - INFO - main.py - train - 68 - 【train】 epoch:1 622/2980 loss:9.7030 2023-03-16 21:19:42,193 - INFO - main.py - train - 68 - 【train】 epoch:1 623/2980 loss:40.4357 2023-03-16 21:19:43,380 - INFO - main.py - train - 68 - 【train】 epoch:1 624/2980 loss:8.1521 2023-03-16 21:19:44,532 - INFO - main.py - train - 68 - 【train】 epoch:1 625/2980 loss:16.0721 2023-03-16 21:19:45,706 - INFO - main.py - train - 68 - 【train】 epoch:1 626/2980 loss:13.7051 2023-03-16 21:19:46,900 - INFO - main.py - train - 68 - 【train】 epoch:1 627/2980 loss:12.6481 2023-03-16 21:19:48,051 - INFO - main.py - train - 68 - 【train】 epoch:1 628/2980 loss:1.4989 2023-03-16 21:19:49,236 - INFO - main.py - train - 68 - 【train】 epoch:1 629/2980 loss:9.7115 2023-03-16 21:19:50,387 - INFO - main.py - train - 68 - 【train】 epoch:1 630/2980 loss:18.0126 2023-03-16 21:19:51,553 - INFO - main.py - train - 68 - 【train】 epoch:1 631/2980 loss:6.0096 2023-03-16 21:19:52,742 - INFO - main.py - train - 68 - 【train】 epoch:1 632/2980 loss:11.1035 2023-03-16 21:19:53,918 - INFO - main.py - train - 68 - 【train】 epoch:1 633/2980 loss:6.5516 2023-03-16 21:19:55,102 - INFO - main.py - train - 68 - 【train】 epoch:1 634/2980 loss:20.9710 2023-03-16 21:19:56,273 - INFO - main.py - train - 68 - 【train】 epoch:1 635/2980 loss:6.0218 2023-03-16 21:19:57,442 - INFO - main.py - train - 68 - 【train】 epoch:1 636/2980 loss:9.1083 2023-03-16 21:19:58,660 - INFO - main.py - train - 68 - 【train】 epoch:1 637/2980 loss:9.1322 2023-03-16 21:19:59,921 - INFO - main.py - train - 68 - 【train】 epoch:1 638/2980 loss:27.5642 2023-03-16 21:20:01,177 - INFO - main.py - train - 68 - 【train】 epoch:1 639/2980 loss:8.5936 2023-03-16 21:20:02,465 - INFO - main.py - train - 68 - 【train】 epoch:1 640/2980 loss:12.6590 2023-03-16 21:20:03,723 - INFO - main.py - train - 68 - 【train】 epoch:1 641/2980 loss:6.8397 2023-03-16 21:20:04,959 - INFO - main.py - train - 68 - 【train】 epoch:1 642/2980 loss:7.5573 2023-03-16 21:20:06,238 - INFO - main.py - train - 68 - 【train】 epoch:1 643/2980 loss:1.8208 2023-03-16 21:20:07,447 - INFO - main.py - train - 68 - 【train】 epoch:1 644/2980 loss:18.5110 2023-03-16 21:20:08,757 - INFO - main.py - train - 68 - 【train】 epoch:1 645/2980 loss:3.3916 2023-03-16 21:20:10,205 - INFO - main.py - train - 68 - 【train】 epoch:1 646/2980 loss:6.1912 2023-03-16 21:20:11,724 - INFO - main.py - train - 68 - 【train】 epoch:1 647/2980 loss:14.2665 2023-03-16 21:20:13,150 - INFO - main.py - train - 68 - 【train】 epoch:1 648/2980 loss:8.4199 2023-03-16 21:20:15,091 - INFO - main.py - train - 68 - 【train】 epoch:1 649/2980 loss:15.8845 2023-03-16 21:20:16,393 - INFO - main.py - train - 68 - 【train】 epoch:1 650/2980 loss:5.6616 2023-03-16 21:20:17,689 - INFO - main.py - train - 68 - 【train】 epoch:1 651/2980 loss:29.5941 2023-03-16 21:20:18,993 - INFO - main.py - train - 68 - 【train】 epoch:1 652/2980 loss:14.4964 2023-03-16 21:20:20,216 - INFO - main.py - train - 68 - 【train】 epoch:1 653/2980 loss:2.8785 2023-03-16 21:20:21,605 - INFO - main.py - train - 68 - 【train】 epoch:1 654/2980 loss:9.2908 2023-03-16 21:20:22,869 - INFO - main.py - train - 68 - 【train】 epoch:1 655/2980 loss:37.6071 2023-03-16 21:20:24,085 - INFO - main.py - train - 68 - 【train】 epoch:1 656/2980 loss:10.2228 2023-03-16 21:20:25,350 - INFO - main.py - train - 68 - 【train】 epoch:1 657/2980 loss:20.7091 2023-03-16 21:20:26,619 - INFO - main.py - train - 68 - 【train】 epoch:1 658/2980 loss:18.0765 2023-03-16 21:20:27,988 - INFO - main.py - train - 68 - 【train】 epoch:1 659/2980 loss:16.1134 2023-03-16 21:20:29,251 - INFO - main.py - train - 68 - 【train】 epoch:1 660/2980 loss:37.6055 2023-03-16 21:20:30,531 - INFO - main.py - train - 68 - 【train】 epoch:1 661/2980 loss:5.8542 2023-03-16 21:20:31,880 - INFO - main.py - train - 68 - 【train】 epoch:1 662/2980 loss:2.7508 2023-03-16 21:20:33,175 - INFO - main.py - train - 68 - 【train】 epoch:1 663/2980 loss:7.0957 2023-03-16 21:20:34,548 - INFO - main.py - train - 68 - 【train】 epoch:1 664/2980 loss:8.2153 2023-03-16 21:20:35,827 - INFO - main.py - train - 68 - 【train】 epoch:1 665/2980 loss:36.4290 2023-03-16 21:20:37,025 - INFO - main.py - train - 68 - 【train】 epoch:1 666/2980 loss:10.7933 2023-03-16 21:20:38,225 - INFO - main.py - train - 68 - 【train】 epoch:1 667/2980 loss:6.3761 2023-03-16 21:20:39,451 - INFO - main.py - train - 68 - 【train】 epoch:1 668/2980 loss:29.8878 2023-03-16 21:20:40,626 - INFO - main.py - train - 68 - 【train】 epoch:1 669/2980 loss:29.3685 2023-03-16 21:20:41,851 - INFO - main.py - train - 68 - 【train】 epoch:1 670/2980 loss:3.5335 2023-03-16 21:20:43,043 - INFO - main.py - train - 68 - 【train】 epoch:1 671/2980 loss:7.3499 2023-03-16 21:20:44,252 - INFO - main.py - train - 68 - 【train】 epoch:1 672/2980 loss:12.1745 2023-03-16 21:20:45,552 - INFO - main.py - train - 68 - 【train】 epoch:1 673/2980 loss:2.8894 2023-03-16 21:20:46,857 - INFO - main.py - train - 68 - 【train】 epoch:1 674/2980 loss:26.3045 2023-03-16 21:20:48,134 - INFO - main.py - train - 68 - 【train】 epoch:1 675/2980 loss:5.9081 2023-03-16 21:20:49,414 - INFO - main.py - train - 68 - 【train】 epoch:1 676/2980 loss:2.3484 2023-03-16 21:20:50,717 - INFO - main.py - train - 68 - 【train】 epoch:1 677/2980 loss:6.3284 2023-03-16 21:20:52,026 - INFO - main.py - train - 68 - 【train】 epoch:1 678/2980 loss:17.0351 2023-03-16 21:20:53,293 - INFO - main.py - train - 68 - 【train】 epoch:1 679/2980 loss:17.5630 2023-03-16 21:20:54,503 - INFO - main.py - train - 68 - 【train】 epoch:1 680/2980 loss:15.7480 2023-03-16 21:20:55,787 - INFO - main.py - train - 68 - 【train】 epoch:1 681/2980 loss:5.8431 2023-03-16 21:20:56,987 - INFO - main.py - train - 68 - 【train】 epoch:1 682/2980 loss:7.1427 2023-03-16 21:20:58,221 - INFO - main.py - train - 68 - 【train】 epoch:1 683/2980 loss:13.5630 2023-03-16 21:20:59,397 - INFO - main.py - train - 68 - 【train】 epoch:1 684/2980 loss:3.3000 2023-03-16 21:21:00,572 - INFO - main.py - train - 68 - 【train】 epoch:1 685/2980 loss:10.5838 2023-03-16 21:21:01,792 - INFO - main.py - train - 68 - 【train】 epoch:1 686/2980 loss:19.5643 2023-03-16 21:21:03,006 - INFO - main.py - train - 68 - 【train】 epoch:1 687/2980 loss:13.5175 2023-03-16 21:21:04,245 - INFO - main.py - train - 68 - 【train】 epoch:1 688/2980 loss:15.8004 2023-03-16 21:21:05,471 - INFO - main.py - train - 68 - 【train】 epoch:1 689/2980 loss:18.8306 2023-03-16 21:21:06,689 - INFO - main.py - train - 68 - 【train】 epoch:1 690/2980 loss:17.0704 2023-03-16 21:21:07,890 - INFO - main.py - train - 68 - 【train】 epoch:1 691/2980 loss:46.9783 2023-03-16 21:21:09,092 - INFO - main.py - train - 68 - 【train】 epoch:1 692/2980 loss:26.5937 2023-03-16 21:21:10,255 - INFO - main.py - train - 68 - 【train】 epoch:1 693/2980 loss:12.5134 2023-03-16 21:21:11,526 - INFO - main.py - train - 68 - 【train】 epoch:1 694/2980 loss:1.8299 2023-03-16 21:21:12,763 - INFO - main.py - train - 68 - 【train】 epoch:1 695/2980 loss:12.3633 2023-03-16 21:21:14,014 - INFO - main.py - train - 68 - 【train】 epoch:1 696/2980 loss:17.1757 2023-03-16 21:21:15,286 - INFO - main.py - train - 68 - 【train】 epoch:1 697/2980 loss:11.7258 2023-03-16 21:21:16,520 - INFO - main.py - train - 68 - 【train】 epoch:1 698/2980 loss:3.9970 2023-03-16 21:21:17,688 - INFO - main.py - train - 68 - 【train】 epoch:1 699/2980 loss:8.9746 2023-03-16 21:21:18,858 - INFO - main.py - train - 68 - 【train】 epoch:1 700/2980 loss:2.4339 2023-03-16 21:21:20,102 - INFO - main.py - train - 68 - 【train】 epoch:1 701/2980 loss:5.9310 2023-03-16 21:21:21,282 - INFO - main.py - train - 68 - 【train】 epoch:1 702/2980 loss:4.2835 2023-03-16 21:21:22,475 - INFO - main.py - train - 68 - 【train】 epoch:1 703/2980 loss:2.4128 2023-03-16 21:21:23,630 - INFO - main.py - train - 68 - 【train】 epoch:1 704/2980 loss:2.4158 2023-03-16 21:21:24,850 - INFO - main.py - train - 68 - 【train】 epoch:1 705/2980 loss:19.2276 2023-03-16 21:21:26,132 - INFO - main.py - train - 68 - 【train】 epoch:1 706/2980 loss:1.4450 2023-03-16 21:21:27,425 - INFO - main.py - train - 68 - 【train】 epoch:1 707/2980 loss:28.6022 2023-03-16 21:21:28,756 - INFO - main.py - train - 68 - 【train】 epoch:1 708/2980 loss:4.7588 2023-03-16 21:21:29,985 - INFO - main.py - train - 68 - 【train】 epoch:1 709/2980 loss:10.8759 2023-03-16 21:21:31,203 - INFO - main.py - train - 68 - 【train】 epoch:1 710/2980 loss:6.9136 2023-03-16 21:21:32,384 - INFO - main.py - train - 68 - 【train】 epoch:1 711/2980 loss:25.2221 2023-03-16 21:21:33,566 - INFO - main.py - train - 68 - 【train】 epoch:1 712/2980 loss:13.3747 2023-03-16 21:21:34,723 - INFO - main.py - train - 68 - 【train】 epoch:1 713/2980 loss:9.8986 2023-03-16 21:21:35,912 - INFO - main.py - train - 68 - 【train】 epoch:1 714/2980 loss:30.3528 2023-03-16 21:21:37,072 - INFO - main.py - train - 68 - 【train】 epoch:1 715/2980 loss:4.5912 2023-03-16 21:21:38,203 - INFO - main.py - train - 68 - 【train】 epoch:1 716/2980 loss:5.6087 2023-03-16 21:21:39,363 - INFO - main.py - train - 68 - 【train】 epoch:1 717/2980 loss:7.6379 2023-03-16 21:21:40,552 - INFO - main.py - train - 68 - 【train】 epoch:1 718/2980 loss:14.5990 2023-03-16 21:21:41,713 - INFO - main.py - train - 68 - 【train】 epoch:1 719/2980 loss:12.4378 2023-03-16 21:21:42,879 - INFO - main.py - train - 68 - 【train】 epoch:1 720/2980 loss:32.6132 2023-03-16 21:21:44,015 - INFO - main.py - train - 68 - 【train】 epoch:1 721/2980 loss:2.6358 2023-03-16 21:21:45,261 - INFO - main.py - train - 68 - 【train】 epoch:1 722/2980 loss:12.4881 2023-03-16 21:21:46,502 - INFO - main.py - train - 68 - 【train】 epoch:1 723/2980 loss:16.2877 2023-03-16 21:21:47,782 - INFO - main.py - train - 68 - 【train】 epoch:1 724/2980 loss:31.0411 2023-03-16 21:21:48,950 - INFO - main.py - train - 68 - 【train】 epoch:1 725/2980 loss:7.5659 2023-03-16 21:21:50,123 - INFO - main.py - train - 68 - 【train】 epoch:1 726/2980 loss:19.9330 2023-03-16 21:21:51,309 - INFO - main.py - train - 68 - 【train】 epoch:1 727/2980 loss:12.5881 2023-03-16 21:21:52,624 - INFO - main.py - train - 68 - 【train】 epoch:1 728/2980 loss:9.1243 2023-03-16 21:21:53,938 - INFO - main.py - train - 68 - 【train】 epoch:1 729/2980 loss:12.0057 2023-03-16 21:21:55,165 - INFO - main.py - train - 68 - 【train】 epoch:1 730/2980 loss:7.0086 2023-03-16 21:21:56,439 - INFO - main.py - train - 68 - 【train】 epoch:1 731/2980 loss:30.2739 2023-03-16 21:21:57,682 - INFO - main.py - train - 68 - 【train】 epoch:1 732/2980 loss:2.9122 2023-03-16 21:21:58,917 - INFO - main.py - train - 68 - 【train】 epoch:1 733/2980 loss:11.5953 2023-03-16 21:22:00,102 - INFO - main.py - train - 68 - 【train】 epoch:1 734/2980 loss:4.8598 2023-03-16 21:22:01,386 - INFO - main.py - train - 68 - 【train】 epoch:1 735/2980 loss:5.2986 2023-03-16 21:22:02,666 - INFO - main.py - train - 68 - 【train】 epoch:1 736/2980 loss:12.3235 2023-03-16 21:22:03,995 - INFO - main.py - train - 68 - 【train】 epoch:1 737/2980 loss:5.0070 2023-03-16 21:22:05,296 - INFO - main.py - train - 68 - 【train】 epoch:1 738/2980 loss:2.7488 2023-03-16 21:22:06,513 - INFO - main.py - train - 68 - 【train】 epoch:1 739/2980 loss:25.9514 2023-03-16 21:22:07,791 - INFO - main.py - train - 68 - 【train】 epoch:1 740/2980 loss:21.1913 2023-03-16 21:22:08,988 - INFO - main.py - train - 68 - 【train】 epoch:1 741/2980 loss:9.8388 2023-03-16 21:22:10,332 - INFO - main.py - train - 68 - 【train】 epoch:1 742/2980 loss:41.3227 2023-03-16 21:22:11,601 - INFO - main.py - train - 68 - 【train】 epoch:1 743/2980 loss:4.3239 2023-03-16 21:22:12,884 - INFO - main.py - train - 68 - 【train】 epoch:1 744/2980 loss:2.8999 2023-03-16 21:22:14,137 - INFO - main.py - train - 68 - 【train】 epoch:1 745/2980 loss:9.0953 2023-03-16 21:22:15,425 - INFO - main.py - train - 68 - 【train】 epoch:1 746/2980 loss:11.9606 2023-03-16 21:22:16,693 - INFO - main.py - train - 68 - 【train】 epoch:1 747/2980 loss:10.4436 2023-03-16 21:22:17,921 - INFO - main.py - train - 68 - 【train】 epoch:1 748/2980 loss:11.4600 2023-03-16 21:22:19,211 - INFO - main.py - train - 68 - 【train】 epoch:1 749/2980 loss:7.9763 2023-03-16 21:22:20,484 - INFO - main.py - train - 68 - 【train】 epoch:1 750/2980 loss:11.8811 2023-03-16 21:22:21,896 - INFO - main.py - train - 68 - 【train】 epoch:1 751/2980 loss:12.5655 2023-03-16 21:22:23,194 - INFO - main.py - train - 68 - 【train】 epoch:1 752/2980 loss:16.2784 2023-03-16 21:22:24,430 - INFO - main.py - train - 68 - 【train】 epoch:1 753/2980 loss:1.9916 2023-03-16 21:22:25,604 - INFO - main.py - train - 68 - 【train】 epoch:1 754/2980 loss:15.1151 2023-03-16 21:22:26,836 - INFO - main.py - train - 68 - 【train】 epoch:1 755/2980 loss:7.3609 2023-03-16 21:22:28,059 - INFO - main.py - train - 68 - 【train】 epoch:1 756/2980 loss:6.1054 2023-03-16 21:22:29,248 - INFO - main.py - train - 68 - 【train】 epoch:1 757/2980 loss:8.0768 2023-03-16 21:22:30,455 - INFO - main.py - train - 68 - 【train】 epoch:1 758/2980 loss:10.8162 2023-03-16 21:22:31,662 - INFO - main.py - train - 68 - 【train】 epoch:1 759/2980 loss:5.3799 2023-03-16 21:22:32,971 - INFO - main.py - train - 68 - 【train】 epoch:1 760/2980 loss:8.9973 2023-03-16 21:22:34,190 - INFO - main.py - train - 68 - 【train】 epoch:1 761/2980 loss:7.1573 2023-03-16 21:22:35,363 - INFO - main.py - train - 68 - 【train】 epoch:1 762/2980 loss:4.8129 2023-03-16 21:22:36,632 - INFO - main.py - train - 68 - 【train】 epoch:1 763/2980 loss:16.9112 2023-03-16 21:22:37,867 - INFO - main.py - train - 68 - 【train】 epoch:1 764/2980 loss:4.3026 2023-03-16 21:22:39,077 - INFO - main.py - train - 68 - 【train】 epoch:1 765/2980 loss:4.4883 2023-03-16 21:22:40,334 - INFO - main.py - train - 68 - 【train】 epoch:1 766/2980 loss:12.1781 2023-03-16 21:22:41,586 - INFO - main.py - train - 68 - 【train】 epoch:1 767/2980 loss:4.4706 2023-03-16 21:22:42,766 - INFO - main.py - train - 68 - 【train】 epoch:1 768/2980 loss:15.6917 2023-03-16 21:22:43,956 - INFO - main.py - train - 68 - 【train】 epoch:1 769/2980 loss:15.8762 2023-03-16 21:22:45,226 - INFO - main.py - train - 68 - 【train】 epoch:1 770/2980 loss:40.7061 2023-03-16 21:22:46,485 - INFO - main.py - train - 68 - 【train】 epoch:1 771/2980 loss:46.1340 2023-03-16 21:22:47,762 - INFO - main.py - train - 68 - 【train】 epoch:1 772/2980 loss:8.5547 2023-03-16 21:22:49,010 - INFO - main.py - train - 68 - 【train】 epoch:1 773/2980 loss:16.2804 2023-03-16 21:22:50,260 - INFO - main.py - train - 68 - 【train】 epoch:1 774/2980 loss:13.1682 2023-03-16 21:22:51,415 - INFO - main.py - train - 68 - 【train】 epoch:1 775/2980 loss:12.4728 2023-03-16 21:22:52,580 - INFO - main.py - train - 68 - 【train】 epoch:1 776/2980 loss:16.4466 2023-03-16 21:22:53,758 - INFO - main.py - train - 68 - 【train】 epoch:1 777/2980 loss:4.9125 2023-03-16 21:22:54,902 - INFO - main.py - train - 68 - 【train】 epoch:1 778/2980 loss:1.0234 2023-03-16 21:22:56,077 - INFO - main.py - train - 68 - 【train】 epoch:1 779/2980 loss:17.2257 2023-03-16 21:22:57,283 - INFO - main.py - train - 68 - 【train】 epoch:1 780/2980 loss:40.0740 2023-03-16 21:22:58,480 - INFO - main.py - train - 68 - 【train】 epoch:1 781/2980 loss:7.5385 2023-03-16 21:22:59,666 - INFO - main.py - train - 68 - 【train】 epoch:1 782/2980 loss:37.7955 2023-03-16 21:23:00,838 - INFO - main.py - train - 68 - 【train】 epoch:1 783/2980 loss:17.6796 2023-03-16 21:23:02,017 - INFO - main.py - train - 68 - 【train】 epoch:1 784/2980 loss:34.7633 2023-03-16 21:23:03,207 - INFO - main.py - train - 68 - 【train】 epoch:1 785/2980 loss:20.5010 2023-03-16 21:23:04,415 - INFO - main.py - train - 68 - 【train】 epoch:1 786/2980 loss:16.3644 2023-03-16 21:23:05,552 - INFO - main.py - train - 68 - 【train】 epoch:1 787/2980 loss:16.2704 2023-03-16 21:23:06,722 - INFO - main.py - train - 68 - 【train】 epoch:1 788/2980 loss:17.0867 2023-03-16 21:23:07,896 - INFO - main.py - train - 68 - 【train】 epoch:1 789/2980 loss:8.1634 2023-03-16 21:23:09,054 - INFO - main.py - train - 68 - 【train】 epoch:1 790/2980 loss:8.5207 2023-03-16 21:23:10,211 - INFO - main.py - train - 68 - 【train】 epoch:1 791/2980 loss:27.7208 2023-03-16 21:23:11,372 - INFO - main.py - train - 68 - 【train】 epoch:1 792/2980 loss:3.3938 2023-03-16 21:23:12,551 - INFO - main.py - train - 68 - 【train】 epoch:1 793/2980 loss:4.3196 2023-03-16 21:23:13,716 - INFO - main.py - train - 68 - 【train】 epoch:1 794/2980 loss:3.6783 2023-03-16 21:23:14,887 - INFO - main.py - train - 68 - 【train】 epoch:1 795/2980 loss:17.7766 2023-03-16 21:23:16,063 - INFO - main.py - train - 68 - 【train】 epoch:1 796/2980 loss:4.7623 2023-03-16 21:23:17,244 - INFO - main.py - train - 68 - 【train】 epoch:1 797/2980 loss:3.0485 2023-03-16 21:23:18,413 - INFO - main.py - train - 68 - 【train】 epoch:1 798/2980 loss:12.2162 2023-03-16 21:23:19,569 - INFO - main.py - train - 68 - 【train】 epoch:1 799/2980 loss:6.5325 2023-03-16 21:23:20,749 - INFO - main.py - train - 68 - 【train】 epoch:1 800/2980 loss:37.4440 2023-03-16 21:23:21,926 - INFO - main.py - train - 68 - 【train】 epoch:1 801/2980 loss:6.3086 2023-03-16 21:23:23,090 - INFO - main.py - train - 68 - 【train】 epoch:1 802/2980 loss:8.2225 2023-03-16 21:23:24,288 - INFO - main.py - train - 68 - 【train】 epoch:1 803/2980 loss:19.0452 2023-03-16 21:23:25,447 - INFO - main.py - train - 68 - 【train】 epoch:1 804/2980 loss:11.6260 2023-03-16 21:23:26,615 - INFO - main.py - train - 68 - 【train】 epoch:1 805/2980 loss:12.2319 2023-03-16 21:23:27,774 - INFO - main.py - train - 68 - 【train】 epoch:1 806/2980 loss:1.4763 2023-03-16 21:23:28,928 - INFO - main.py - train - 68 - 【train】 epoch:1 807/2980 loss:11.1832 2023-03-16 21:23:30,130 - INFO - main.py - train - 68 - 【train】 epoch:1 808/2980 loss:19.3759 2023-03-16 21:23:31,287 - INFO - main.py - train - 68 - 【train】 epoch:1 809/2980 loss:11.2155 2023-03-16 21:23:32,519 - INFO - main.py - train - 68 - 【train】 epoch:1 810/2980 loss:26.6383 2023-03-16 21:23:33,672 - INFO - main.py - train - 68 - 【train】 epoch:1 811/2980 loss:1.9100 2023-03-16 21:23:34,815 - INFO - main.py - train - 68 - 【train】 epoch:1 812/2980 loss:16.8028 2023-03-16 21:23:35,997 - INFO - main.py - train - 68 - 【train】 epoch:1 813/2980 loss:2.8864 2023-03-16 21:23:37,152 - INFO - main.py - train - 68 - 【train】 epoch:1 814/2980 loss:6.9423 2023-03-16 21:23:38,325 - INFO - main.py - train - 68 - 【train】 epoch:1 815/2980 loss:10.7015 2023-03-16 21:23:39,486 - INFO - main.py - train - 68 - 【train】 epoch:1 816/2980 loss:11.3230 2023-03-16 21:23:40,629 - INFO - main.py - train - 68 - 【train】 epoch:1 817/2980 loss:11.0376 2023-03-16 21:23:41,807 - INFO - main.py - train - 68 - 【train】 epoch:1 818/2980 loss:17.0333 2023-03-16 21:23:42,963 - INFO - main.py - train - 68 - 【train】 epoch:1 819/2980 loss:6.5125 2023-03-16 21:23:44,117 - INFO - main.py - train - 68 - 【train】 epoch:1 820/2980 loss:20.2860 2023-03-16 21:23:45,298 - INFO - main.py - train - 68 - 【train】 epoch:1 821/2980 loss:26.9181 2023-03-16 21:23:46,464 - INFO - main.py - train - 68 - 【train】 epoch:1 822/2980 loss:5.8557 2023-03-16 21:23:47,635 - INFO - main.py - train - 68 - 【train】 epoch:1 823/2980 loss:11.0616 2023-03-16 21:23:48,836 - INFO - main.py - train - 68 - 【train】 epoch:1 824/2980 loss:6.7365 2023-03-16 21:23:50,008 - INFO - main.py - train - 68 - 【train】 epoch:1 825/2980 loss:9.9340 2023-03-16 21:23:51,160 - INFO - main.py - train - 68 - 【train】 epoch:1 826/2980 loss:3.1134 2023-03-16 21:23:52,319 - INFO - main.py - train - 68 - 【train】 epoch:1 827/2980 loss:20.9181 2023-03-16 21:23:53,483 - INFO - main.py - train - 68 - 【train】 epoch:1 828/2980 loss:22.4428 2023-03-16 21:23:54,675 - INFO - main.py - train - 68 - 【train】 epoch:1 829/2980 loss:4.7122 2023-03-16 21:23:55,932 - INFO - main.py - train - 68 - 【train】 epoch:1 830/2980 loss:6.3038 2023-03-16 21:23:57,170 - INFO - main.py - train - 68 - 【train】 epoch:1 831/2980 loss:11.0370 2023-03-16 21:23:58,401 - INFO - main.py - train - 68 - 【train】 epoch:1 832/2980 loss:5.4910 2023-03-16 21:23:59,656 - INFO - main.py - train - 68 - 【train】 epoch:1 833/2980 loss:15.5757 2023-03-16 21:24:00,886 - INFO - main.py - train - 68 - 【train】 epoch:1 834/2980 loss:9.5229 2023-03-16 21:24:02,059 - INFO - main.py - train - 68 - 【train】 epoch:1 835/2980 loss:2.4195 2023-03-16 21:24:03,211 - INFO - main.py - train - 68 - 【train】 epoch:1 836/2980 loss:4.6106 2023-03-16 21:24:04,435 - INFO - main.py - train - 68 - 【train】 epoch:1 837/2980 loss:13.5998 2023-03-16 21:24:05,721 - INFO - main.py - train - 68 - 【train】 epoch:1 838/2980 loss:33.5517 2023-03-16 21:24:06,974 - INFO - main.py - train - 68 - 【train】 epoch:1 839/2980 loss:1.9641 2023-03-16 21:24:08,255 - INFO - main.py - train - 68 - 【train】 epoch:1 840/2980 loss:7.1972 2023-03-16 21:24:09,464 - INFO - main.py - train - 68 - 【train】 epoch:1 841/2980 loss:13.7219 2023-03-16 21:24:10,623 - INFO - main.py - train - 68 - 【train】 epoch:1 842/2980 loss:5.3116 2023-03-16 21:24:11,772 - INFO - main.py - train - 68 - 【train】 epoch:1 843/2980 loss:12.0242 2023-03-16 21:24:12,959 - INFO - main.py - train - 68 - 【train】 epoch:1 844/2980 loss:12.3622 2023-03-16 21:24:14,120 - INFO - main.py - train - 68 - 【train】 epoch:1 845/2980 loss:25.6771 2023-03-16 21:24:15,307 - INFO - main.py - train - 68 - 【train】 epoch:1 846/2980 loss:22.7579 2023-03-16 21:24:16,456 - INFO - main.py - train - 68 - 【train】 epoch:1 847/2980 loss:5.4517 2023-03-16 21:24:17,602 - INFO - main.py - train - 68 - 【train】 epoch:1 848/2980 loss:7.3275 2023-03-16 21:24:18,766 - INFO - main.py - train - 68 - 【train】 epoch:1 849/2980 loss:7.6939 2023-03-16 21:24:19,952 - INFO - main.py - train - 68 - 【train】 epoch:1 850/2980 loss:30.8666 2023-03-16 21:24:21,121 - INFO - main.py - train - 68 - 【train】 epoch:1 851/2980 loss:17.1702 2023-03-16 21:24:22,299 - INFO - main.py - train - 68 - 【train】 epoch:1 852/2980 loss:5.8983 2023-03-16 21:24:23,505 - INFO - main.py - train - 68 - 【train】 epoch:1 853/2980 loss:8.6600 2023-03-16 21:24:24,681 - INFO - main.py - train - 68 - 【train】 epoch:1 854/2980 loss:14.9725 2023-03-16 21:24:25,845 - INFO - main.py - train - 68 - 【train】 epoch:1 855/2980 loss:4.0867 2023-03-16 21:24:27,017 - INFO - main.py - train - 68 - 【train】 epoch:1 856/2980 loss:5.4487 2023-03-16 21:24:28,179 - INFO - main.py - train - 68 - 【train】 epoch:1 857/2980 loss:9.6852 2023-03-16 21:24:29,341 - INFO - main.py - train - 68 - 【train】 epoch:1 858/2980 loss:5.2932 2023-03-16 21:24:30,500 - INFO - main.py - train - 68 - 【train】 epoch:1 859/2980 loss:8.4299 2023-03-16 21:24:31,682 - INFO - main.py - train - 68 - 【train】 epoch:1 860/2980 loss:14.3233 2023-03-16 21:24:32,854 - INFO - main.py - train - 68 - 【train】 epoch:1 861/2980 loss:10.2139 2023-03-16 21:24:34,019 - INFO - main.py - train - 68 - 【train】 epoch:1 862/2980 loss:7.0440 2023-03-16 21:24:35,211 - INFO - main.py - train - 68 - 【train】 epoch:1 863/2980 loss:17.1010 2023-03-16 21:24:36,379 - INFO - main.py - train - 68 - 【train】 epoch:1 864/2980 loss:15.8947 2023-03-16 21:24:37,553 - INFO - main.py - train - 68 - 【train】 epoch:1 865/2980 loss:7.8091 2023-03-16 21:24:38,703 - INFO - main.py - train - 68 - 【train】 epoch:1 866/2980 loss:1.8139 2023-03-16 21:24:39,866 - INFO - main.py - train - 68 - 【train】 epoch:1 867/2980 loss:0.8685 2023-03-16 21:24:41,081 - INFO - main.py - train - 68 - 【train】 epoch:1 868/2980 loss:22.1125 2023-03-16 21:24:42,255 - INFO - main.py - train - 68 - 【train】 epoch:1 869/2980 loss:6.2334 2023-03-16 21:24:43,410 - INFO - main.py - train - 68 - 【train】 epoch:1 870/2980 loss:7.3608 2023-03-16 21:24:44,580 - INFO - main.py - train - 68 - 【train】 epoch:1 871/2980 loss:16.5752 2023-03-16 21:24:45,753 - INFO - main.py - train - 68 - 【train】 epoch:1 872/2980 loss:4.0646 2023-03-16 21:24:46,956 - INFO - main.py - train - 68 - 【train】 epoch:1 873/2980 loss:12.8060 2023-03-16 21:24:48,133 - INFO - main.py - train - 68 - 【train】 epoch:1 874/2980 loss:6.9908 2023-03-16 21:24:49,315 - INFO - main.py - train - 68 - 【train】 epoch:1 875/2980 loss:6.1350 2023-03-16 21:24:50,478 - INFO - main.py - train - 68 - 【train】 epoch:1 876/2980 loss:10.0853 2023-03-16 21:24:51,669 - INFO - main.py - train - 68 - 【train】 epoch:1 877/2980 loss:4.7250 2023-03-16 21:24:52,819 - INFO - main.py - train - 68 - 【train】 epoch:1 878/2980 loss:7.5014 2023-03-16 21:24:53,983 - INFO - main.py - train - 68 - 【train】 epoch:1 879/2980 loss:3.5525 2023-03-16 21:24:55,170 - INFO - main.py - train - 68 - 【train】 epoch:1 880/2980 loss:6.6661 2023-03-16 21:24:56,345 - INFO - main.py - train - 68 - 【train】 epoch:1 881/2980 loss:12.5966 2023-03-16 21:24:57,505 - INFO - main.py - train - 68 - 【train】 epoch:1 882/2980 loss:45.5526 2023-03-16 21:24:58,681 - INFO - main.py - train - 68 - 【train】 epoch:1 883/2980 loss:15.0019 2023-03-16 21:24:59,871 - INFO - main.py - train - 68 - 【train】 epoch:1 884/2980 loss:9.5437 2023-03-16 21:25:01,057 - INFO - main.py - train - 68 - 【train】 epoch:1 885/2980 loss:8.4430 2023-03-16 21:25:02,229 - INFO - main.py - train - 68 - 【train】 epoch:1 886/2980 loss:9.8869 2023-03-16 21:25:03,424 - INFO - main.py - train - 68 - 【train】 epoch:1 887/2980 loss:9.8428 2023-03-16 21:25:04,582 - INFO - main.py - train - 68 - 【train】 epoch:1 888/2980 loss:2.5904 2023-03-16 21:25:05,859 - INFO - main.py - train - 68 - 【train】 epoch:1 889/2980 loss:5.2787 2023-03-16 21:25:07,112 - INFO - main.py - train - 68 - 【train】 epoch:1 890/2980 loss:12.6770 2023-03-16 21:25:08,353 - INFO - main.py - train - 68 - 【train】 epoch:1 891/2980 loss:4.1335 2023-03-16 21:25:09,588 - INFO - main.py - train - 68 - 【train】 epoch:1 892/2980 loss:12.0632 2023-03-16 21:25:10,819 - INFO - main.py - train - 68 - 【train】 epoch:1 893/2980 loss:8.2006 2023-03-16 21:25:12,008 - INFO - main.py - train - 68 - 【train】 epoch:1 894/2980 loss:4.4985 2023-03-16 21:25:13,234 - INFO - main.py - train - 68 - 【train】 epoch:1 895/2980 loss:4.6090 2023-03-16 21:25:14,394 - INFO - main.py - train - 68 - 【train】 epoch:1 896/2980 loss:10.3261 2023-03-16 21:25:15,559 - INFO - main.py - train - 68 - 【train】 epoch:1 897/2980 loss:10.8926 2023-03-16 21:25:16,733 - INFO - main.py - train - 68 - 【train】 epoch:1 898/2980 loss:2.5892 2023-03-16 21:25:17,940 - INFO - main.py - train - 68 - 【train】 epoch:1 899/2980 loss:23.2615 2023-03-16 21:25:19,109 - INFO - main.py - train - 68 - 【train】 epoch:1 900/2980 loss:3.1381 2023-03-16 21:25:20,268 - INFO - main.py - train - 68 - 【train】 epoch:1 901/2980 loss:3.0390 2023-03-16 21:25:21,442 - INFO - main.py - train - 68 - 【train】 epoch:1 902/2980 loss:46.2667 2023-03-16 21:25:22,623 - INFO - main.py - train - 68 - 【train】 epoch:1 903/2980 loss:10.7988 2023-03-16 21:25:23,782 - INFO - main.py - train - 68 - 【train】 epoch:1 904/2980 loss:7.5624 2023-03-16 21:25:24,941 - INFO - main.py - train - 68 - 【train】 epoch:1 905/2980 loss:1.9034 2023-03-16 21:25:26,113 - INFO - main.py - train - 68 - 【train】 epoch:1 906/2980 loss:9.8041 2023-03-16 21:25:27,278 - INFO - main.py - train - 68 - 【train】 epoch:1 907/2980 loss:4.0562 2023-03-16 21:25:28,429 - INFO - main.py - train - 68 - 【train】 epoch:1 908/2980 loss:5.1410 2023-03-16 21:25:29,604 - INFO - main.py - train - 68 - 【train】 epoch:1 909/2980 loss:41.0842 2023-03-16 21:25:30,770 - INFO - main.py - train - 68 - 【train】 epoch:1 910/2980 loss:26.0479 2023-03-16 21:25:31,940 - INFO - main.py - train - 68 - 【train】 epoch:1 911/2980 loss:4.9701 2023-03-16 21:25:33,114 - INFO - main.py - train - 68 - 【train】 epoch:1 912/2980 loss:17.0175 2023-03-16 21:25:34,287 - INFO - main.py - train - 68 - 【train】 epoch:1 913/2980 loss:34.0656 2023-03-16 21:25:35,460 - INFO - main.py - train - 68 - 【train】 epoch:1 914/2980 loss:4.0802 2023-03-16 21:25:36,608 - INFO - main.py - train - 68 - 【train】 epoch:1 915/2980 loss:8.1017 2023-03-16 21:25:37,774 - INFO - main.py - train - 68 - 【train】 epoch:1 916/2980 loss:5.9723 2023-03-16 21:25:38,973 - INFO - main.py - train - 68 - 【train】 epoch:1 917/2980 loss:25.0234 2023-03-16 21:25:40,135 - INFO - main.py - train - 68 - 【train】 epoch:1 918/2980 loss:23.4948 2023-03-16 21:25:41,298 - INFO - main.py - train - 68 - 【train】 epoch:1 919/2980 loss:13.0681 2023-03-16 21:25:42,476 - INFO - main.py - train - 68 - 【train】 epoch:1 920/2980 loss:23.9551 2023-03-16 21:25:43,643 - INFO - main.py - train - 68 - 【train】 epoch:1 921/2980 loss:8.5182 2023-03-16 21:25:44,804 - INFO - main.py - train - 68 - 【train】 epoch:1 922/2980 loss:4.8479 2023-03-16 21:25:46,010 - INFO - main.py - train - 68 - 【train】 epoch:1 923/2980 loss:16.9887 2023-03-16 21:25:47,279 - INFO - main.py - train - 68 - 【train】 epoch:1 924/2980 loss:20.8684 2023-03-16 21:25:48,523 - INFO - main.py - train - 68 - 【train】 epoch:1 925/2980 loss:12.3059 2023-03-16 21:25:49,808 - INFO - main.py - train - 68 - 【train】 epoch:1 926/2980 loss:24.4947 2023-03-16 21:25:51,039 - INFO - main.py - train - 68 - 【train】 epoch:1 927/2980 loss:1.7010 2023-03-16 21:25:52,231 - INFO - main.py - train - 68 - 【train】 epoch:1 928/2980 loss:7.9068 2023-03-16 21:25:53,397 - INFO - main.py - train - 68 - 【train】 epoch:1 929/2980 loss:14.3887 2023-03-16 21:25:54,558 - INFO - main.py - train - 68 - 【train】 epoch:1 930/2980 loss:7.7047 2023-03-16 21:25:55,820 - INFO - main.py - train - 68 - 【train】 epoch:1 931/2980 loss:3.9440 2023-03-16 21:25:57,064 - INFO - main.py - train - 68 - 【train】 epoch:1 932/2980 loss:9.0692 2023-03-16 21:25:58,298 - INFO - main.py - train - 68 - 【train】 epoch:1 933/2980 loss:8.3168 2023-03-16 21:25:59,630 - INFO - main.py - train - 68 - 【train】 epoch:1 934/2980 loss:7.4417 2023-03-16 21:26:00,844 - INFO - main.py - train - 68 - 【train】 epoch:1 935/2980 loss:7.3447 2023-03-16 21:26:02,006 - INFO - main.py - train - 68 - 【train】 epoch:1 936/2980 loss:2.3301 2023-03-16 21:26:03,173 - INFO - main.py - train - 68 - 【train】 epoch:1 937/2980 loss:22.7720 2023-03-16 21:26:04,341 - INFO - main.py - train - 68 - 【train】 epoch:1 938/2980 loss:7.1020 2023-03-16 21:26:05,525 - INFO - main.py - train - 68 - 【train】 epoch:1 939/2980 loss:11.1207 2023-03-16 21:26:06,695 - INFO - main.py - train - 68 - 【train】 epoch:1 940/2980 loss:33.9585 2023-03-16 21:26:07,863 - INFO - main.py - train - 68 - 【train】 epoch:1 941/2980 loss:7.4323 2023-03-16 21:26:09,049 - INFO - main.py - train - 68 - 【train】 epoch:1 942/2980 loss:12.8753 2023-03-16 21:26:10,278 - INFO - main.py - train - 68 - 【train】 epoch:1 943/2980 loss:16.6492 2023-03-16 21:26:11,529 - INFO - main.py - train - 68 - 【train】 epoch:1 944/2980 loss:4.6062 2023-03-16 21:26:12,766 - INFO - main.py - train - 68 - 【train】 epoch:1 945/2980 loss:17.1335 2023-03-16 21:26:14,026 - INFO - main.py - train - 68 - 【train】 epoch:1 946/2980 loss:20.4014 2023-03-16 21:26:15,313 - INFO - main.py - train - 68 - 【train】 epoch:1 947/2980 loss:2.9355 2023-03-16 21:26:16,487 - INFO - main.py - train - 68 - 【train】 epoch:1 948/2980 loss:12.9464 2023-03-16 21:26:17,690 - INFO - main.py - train - 68 - 【train】 epoch:1 949/2980 loss:10.5312 2023-03-16 21:26:18,836 - INFO - main.py - train - 68 - 【train】 epoch:1 950/2980 loss:1.4170 2023-03-16 21:26:19,975 - INFO - main.py - train - 68 - 【train】 epoch:1 951/2980 loss:5.6205 2023-03-16 21:26:21,115 - INFO - main.py - train - 68 - 【train】 epoch:1 952/2980 loss:4.5153 2023-03-16 21:26:22,315 - INFO - main.py - train - 68 - 【train】 epoch:1 953/2980 loss:6.7097 2023-03-16 21:26:23,507 - INFO - main.py - train - 68 - 【train】 epoch:1 954/2980 loss:10.1345 2023-03-16 21:26:24,670 - INFO - main.py - train - 68 - 【train】 epoch:1 955/2980 loss:6.4045 2023-03-16 21:26:25,846 - INFO - main.py - train - 68 - 【train】 epoch:1 956/2980 loss:5.5349 2023-03-16 21:26:27,030 - INFO - main.py - train - 68 - 【train】 epoch:1 957/2980 loss:1.0568 2023-03-16 21:26:28,181 - INFO - main.py - train - 68 - 【train】 epoch:1 958/2980 loss:15.4548 2023-03-16 21:26:29,369 - INFO - main.py - train - 68 - 【train】 epoch:1 959/2980 loss:8.8255 2023-03-16 21:26:30,552 - INFO - main.py - train - 68 - 【train】 epoch:1 960/2980 loss:16.9590 2023-03-16 21:26:31,731 - INFO - main.py - train - 68 - 【train】 epoch:1 961/2980 loss:5.2106 2023-03-16 21:26:32,896 - INFO - main.py - train - 68 - 【train】 epoch:1 962/2980 loss:3.7401 2023-03-16 21:26:34,066 - INFO - main.py - train - 68 - 【train】 epoch:1 963/2980 loss:6.6729 2023-03-16 21:26:35,331 - INFO - main.py - train - 68 - 【train】 epoch:1 964/2980 loss:3.3921 2023-03-16 21:26:36,523 - INFO - main.py - train - 68 - 【train】 epoch:1 965/2980 loss:13.0937 2023-03-16 21:26:37,689 - INFO - main.py - train - 68 - 【train】 epoch:1 966/2980 loss:2.8900 2023-03-16 21:26:38,867 - INFO - main.py - train - 68 - 【train】 epoch:1 967/2980 loss:21.6395 2023-03-16 21:26:40,045 - INFO - main.py - train - 68 - 【train】 epoch:1 968/2980 loss:5.1927 2023-03-16 21:26:41,218 - INFO - main.py - train - 68 - 【train】 epoch:1 969/2980 loss:3.4095 2023-03-16 21:26:42,375 - INFO - main.py - train - 68 - 【train】 epoch:1 970/2980 loss:3.7087 2023-03-16 21:26:43,530 - INFO - main.py - train - 68 - 【train】 epoch:1 971/2980 loss:13.0443 2023-03-16 21:26:44,717 - INFO - main.py - train - 68 - 【train】 epoch:1 972/2980 loss:5.0912 2023-03-16 21:26:45,908 - INFO - main.py - train - 68 - 【train】 epoch:1 973/2980 loss:22.9319 2023-03-16 21:26:47,069 - INFO - main.py - train - 68 - 【train】 epoch:1 974/2980 loss:13.3754 2023-03-16 21:26:48,321 - INFO - main.py - train - 68 - 【train】 epoch:1 975/2980 loss:19.4254 2023-03-16 21:26:49,502 - INFO - main.py - train - 68 - 【train】 epoch:1 976/2980 loss:5.8023 2023-03-16 21:26:50,665 - INFO - main.py - train - 68 - 【train】 epoch:1 977/2980 loss:8.0756 2023-03-16 21:26:51,831 - INFO - main.py - train - 68 - 【train】 epoch:1 978/2980 loss:9.1064 2023-03-16 21:26:53,000 - INFO - main.py - train - 68 - 【train】 epoch:1 979/2980 loss:2.4792 2023-03-16 21:26:54,290 - INFO - main.py - train - 68 - 【train】 epoch:1 980/2980 loss:20.8361 2023-03-16 21:26:55,500 - INFO - main.py - train - 68 - 【train】 epoch:1 981/2980 loss:6.7424 2023-03-16 21:26:56,755 - INFO - main.py - train - 68 - 【train】 epoch:1 982/2980 loss:11.3103 2023-03-16 21:26:58,041 - INFO - main.py - train - 68 - 【train】 epoch:1 983/2980 loss:11.3612 2023-03-16 21:26:59,281 - INFO - main.py - train - 68 - 【train】 epoch:1 984/2980 loss:14.3723 2023-03-16 21:27:00,447 - INFO - main.py - train - 68 - 【train】 epoch:1 985/2980 loss:5.5423 2023-03-16 21:27:01,609 - INFO - main.py - train - 68 - 【train】 epoch:1 986/2980 loss:7.2181 2023-03-16 21:27:02,764 - INFO - main.py - train - 68 - 【train】 epoch:1 987/2980 loss:6.8480 2023-03-16 21:27:03,938 - INFO - main.py - train - 68 - 【train】 epoch:1 988/2980 loss:12.2105 2023-03-16 21:27:05,182 - INFO - main.py - train - 68 - 【train】 epoch:1 989/2980 loss:10.8887 2023-03-16 21:27:06,354 - INFO - main.py - train - 68 - 【train】 epoch:1 990/2980 loss:5.0457 2023-03-16 21:27:07,600 - INFO - main.py - train - 68 - 【train】 epoch:1 991/2980 loss:7.0606 2023-03-16 21:27:09,038 - INFO - main.py - train - 68 - 【train】 epoch:1 992/2980 loss:22.2888 2023-03-16 21:27:10,298 - INFO - main.py - train - 68 - 【train】 epoch:1 993/2980 loss:11.3698 2023-03-16 21:27:11,759 - INFO - main.py - train - 68 - 【train】 epoch:1 994/2980 loss:3.8253 2023-03-16 21:27:13,288 - INFO - main.py - train - 68 - 【train】 epoch:1 995/2980 loss:2.6482 2023-03-16 21:27:14,919 - INFO - main.py - train - 68 - 【train】 epoch:1 996/2980 loss:3.4792 2023-03-16 21:27:16,649 - INFO - main.py - train - 68 - 【train】 epoch:1 997/2980 loss:7.9052 2023-03-16 21:27:18,454 - INFO - main.py - train - 68 - 【train】 epoch:1 998/2980 loss:7.4092 2023-03-16 21:27:20,164 - INFO - main.py - train - 68 - 【train】 epoch:1 999/2980 loss:9.9498 2023-03-16 21:27:21,948 - INFO - main.py - train - 68 - 【train】 epoch:1 1000/2980 loss:5.4523 2023-03-16 21:27:23,658 - INFO - main.py - train - 68 - 【train】 epoch:1 1001/2980 loss:3.0378 2023-03-16 21:27:25,240 - INFO - main.py - train - 68 - 【train】 epoch:1 1002/2980 loss:11.7100 2023-03-16 21:27:26,563 - INFO - main.py - train - 68 - 【train】 epoch:1 1003/2980 loss:10.3319 2023-03-16 21:27:27,797 - INFO - main.py - train - 68 - 【train】 epoch:1 1004/2980 loss:9.8397 2023-03-16 21:27:29,057 - INFO - main.py - train - 68 - 【train】 epoch:1 1005/2980 loss:4.5418 2023-03-16 21:27:30,323 - INFO - main.py - train - 68 - 【train】 epoch:1 1006/2980 loss:5.3447 2023-03-16 21:27:31,540 - INFO - main.py - train - 68 - 【train】 epoch:1 1007/2980 loss:8.0962 2023-03-16 21:27:32,733 - INFO - main.py - train - 68 - 【train】 epoch:1 1008/2980 loss:31.9592 2023-03-16 21:27:33,906 - INFO - main.py - train - 68 - 【train】 epoch:1 1009/2980 loss:11.0324 2023-03-16 21:27:35,102 - INFO - main.py - train - 68 - 【train】 epoch:1 1010/2980 loss:6.4683 2023-03-16 21:27:36,282 - INFO - main.py - train - 68 - 【train】 epoch:1 1011/2980 loss:3.2541 2023-03-16 21:27:37,458 - INFO - main.py - train - 68 - 【train】 epoch:1 1012/2980 loss:4.6102 2023-03-16 21:27:38,620 - INFO - main.py - train - 68 - 【train】 epoch:1 1013/2980 loss:4.5517 2023-03-16 21:27:39,809 - INFO - main.py - train - 68 - 【train】 epoch:1 1014/2980 loss:8.4781 2023-03-16 21:27:40,978 - INFO - main.py - train - 68 - 【train】 epoch:1 1015/2980 loss:16.3725 2023-03-16 21:27:42,607 - INFO - main.py - train - 68 - 【train】 epoch:1 1016/2980 loss:19.5878 2023-03-16 21:27:44,536 - INFO - main.py - train - 68 - 【train】 epoch:1 1017/2980 loss:3.4806 2023-03-16 21:27:46,576 - INFO - main.py - train - 68 - 【train】 epoch:1 1018/2980 loss:7.1065 2023-03-16 21:27:48,485 - INFO - main.py - train - 68 - 【train】 epoch:1 1019/2980 loss:19.2018 2023-03-16 21:27:50,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1020/2980 loss:31.9195 2023-03-16 21:27:52,000 - INFO - main.py - train - 68 - 【train】 epoch:1 1021/2980 loss:6.1052 2023-03-16 21:27:53,739 - INFO - main.py - train - 68 - 【train】 epoch:1 1022/2980 loss:1.8741 2023-03-16 21:27:55,472 - INFO - main.py - train - 68 - 【train】 epoch:1 1023/2980 loss:4.1490 2023-03-16 21:27:57,170 - INFO - main.py - train - 68 - 【train】 epoch:1 1024/2980 loss:7.5306 2023-03-16 21:27:58,854 - INFO - main.py - train - 68 - 【train】 epoch:1 1025/2980 loss:9.3527 2023-03-16 21:28:00,531 - INFO - main.py - train - 68 - 【train】 epoch:1 1026/2980 loss:10.8367 2023-03-16 21:28:02,248 - INFO - main.py - train - 68 - 【train】 epoch:1 1027/2980 loss:2.3944 2023-03-16 21:28:03,913 - INFO - main.py - train - 68 - 【train】 epoch:1 1028/2980 loss:12.2109 2023-03-16 21:28:05,624 - INFO - main.py - train - 68 - 【train】 epoch:1 1029/2980 loss:25.4460 2023-03-16 21:28:07,345 - INFO - main.py - train - 68 - 【train】 epoch:1 1030/2980 loss:9.9273 2023-03-16 21:28:09,028 - INFO - main.py - train - 68 - 【train】 epoch:1 1031/2980 loss:34.8388 2023-03-16 21:28:10,775 - INFO - main.py - train - 68 - 【train】 epoch:1 1032/2980 loss:5.9995 2023-03-16 21:28:12,493 - INFO - main.py - train - 68 - 【train】 epoch:1 1033/2980 loss:8.2287 2023-03-16 21:28:14,141 - INFO - main.py - train - 68 - 【train】 epoch:1 1034/2980 loss:1.7975 2023-03-16 21:28:15,710 - INFO - main.py - train - 68 - 【train】 epoch:1 1035/2980 loss:4.8540 2023-03-16 21:28:17,399 - INFO - main.py - train - 68 - 【train】 epoch:1 1036/2980 loss:2.8431 2023-03-16 21:28:19,089 - INFO - main.py - train - 68 - 【train】 epoch:1 1037/2980 loss:3.6557 2023-03-16 21:28:20,889 - INFO - main.py - train - 68 - 【train】 epoch:1 1038/2980 loss:20.7675 2023-03-16 21:28:22,643 - INFO - main.py - train - 68 - 【train】 epoch:1 1039/2980 loss:7.9315 2023-03-16 21:28:24,248 - INFO - main.py - train - 68 - 【train】 epoch:1 1040/2980 loss:4.8369 2023-03-16 21:28:25,650 - INFO - main.py - train - 68 - 【train】 epoch:1 1041/2980 loss:9.5495 2023-03-16 21:28:26,983 - INFO - main.py - train - 68 - 【train】 epoch:1 1042/2980 loss:11.5837 2023-03-16 21:28:28,276 - INFO - main.py - train - 68 - 【train】 epoch:1 1043/2980 loss:11.3224 2023-03-16 21:28:29,503 - INFO - main.py - train - 68 - 【train】 epoch:1 1044/2980 loss:12.9109 2023-03-16 21:28:30,716 - INFO - main.py - train - 68 - 【train】 epoch:1 1045/2980 loss:5.8566 2023-03-16 21:28:31,923 - INFO - main.py - train - 68 - 【train】 epoch:1 1046/2980 loss:3.1199 2023-03-16 21:28:33,124 - INFO - main.py - train - 68 - 【train】 epoch:1 1047/2980 loss:5.0180 2023-03-16 21:28:34,363 - INFO - main.py - train - 68 - 【train】 epoch:1 1048/2980 loss:22.2296 2023-03-16 21:28:35,585 - INFO - main.py - train - 68 - 【train】 epoch:1 1049/2980 loss:11.5404 2023-03-16 21:28:36,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1050/2980 loss:9.2469 2023-03-16 21:28:38,041 - INFO - main.py - train - 68 - 【train】 epoch:1 1051/2980 loss:7.8254 2023-03-16 21:28:39,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1052/2980 loss:5.6085 2023-03-16 21:28:40,444 - INFO - main.py - train - 68 - 【train】 epoch:1 1053/2980 loss:9.5167 2023-03-16 21:28:41,659 - INFO - main.py - train - 68 - 【train】 epoch:1 1054/2980 loss:6.8025 2023-03-16 21:28:42,884 - INFO - main.py - train - 68 - 【train】 epoch:1 1055/2980 loss:4.0214 2023-03-16 21:28:44,088 - INFO - main.py - train - 68 - 【train】 epoch:1 1056/2980 loss:3.1575 2023-03-16 21:28:45,297 - INFO - main.py - train - 68 - 【train】 epoch:1 1057/2980 loss:11.6980 2023-03-16 21:28:46,524 - INFO - main.py - train - 68 - 【train】 epoch:1 1058/2980 loss:10.1202 2023-03-16 21:28:47,720 - INFO - main.py - train - 68 - 【train】 epoch:1 1059/2980 loss:6.5442 2023-03-16 21:28:48,973 - INFO - main.py - train - 68 - 【train】 epoch:1 1060/2980 loss:36.0562 2023-03-16 21:28:50,235 - INFO - main.py - train - 68 - 【train】 epoch:1 1061/2980 loss:12.4579 2023-03-16 21:28:51,458 - INFO - main.py - train - 68 - 【train】 epoch:1 1062/2980 loss:16.2296 2023-03-16 21:28:52,656 - INFO - main.py - train - 68 - 【train】 epoch:1 1063/2980 loss:21.0582 2023-03-16 21:28:53,861 - INFO - main.py - train - 68 - 【train】 epoch:1 1064/2980 loss:3.6436 2023-03-16 21:28:55,047 - INFO - main.py - train - 68 - 【train】 epoch:1 1065/2980 loss:1.1470 2023-03-16 21:28:56,280 - INFO - main.py - train - 68 - 【train】 epoch:1 1066/2980 loss:12.3317 2023-03-16 21:28:57,517 - INFO - main.py - train - 68 - 【train】 epoch:1 1067/2980 loss:5.9994 2023-03-16 21:28:58,718 - INFO - main.py - train - 68 - 【train】 epoch:1 1068/2980 loss:3.6014 2023-03-16 21:28:59,954 - INFO - main.py - train - 68 - 【train】 epoch:1 1069/2980 loss:10.1524 2023-03-16 21:29:01,186 - INFO - main.py - train - 68 - 【train】 epoch:1 1070/2980 loss:14.0748 2023-03-16 21:29:02,373 - INFO - main.py - train - 68 - 【train】 epoch:1 1071/2980 loss:20.8607 2023-03-16 21:29:03,633 - INFO - main.py - train - 68 - 【train】 epoch:1 1072/2980 loss:12.8983 2023-03-16 21:29:04,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1073/2980 loss:5.0374 2023-03-16 21:29:06,056 - INFO - main.py - train - 68 - 【train】 epoch:1 1074/2980 loss:11.9300 2023-03-16 21:29:07,264 - INFO - main.py - train - 68 - 【train】 epoch:1 1075/2980 loss:13.5688 2023-03-16 21:29:08,425 - INFO - main.py - train - 68 - 【train】 epoch:1 1076/2980 loss:11.6208 2023-03-16 21:29:09,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1077/2980 loss:14.2926 2023-03-16 21:29:10,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1078/2980 loss:3.2680 2023-03-16 21:29:12,100 - INFO - main.py - train - 68 - 【train】 epoch:1 1079/2980 loss:16.0455 2023-03-16 21:29:13,306 - INFO - main.py - train - 68 - 【train】 epoch:1 1080/2980 loss:3.6666 2023-03-16 21:29:14,488 - INFO - main.py - train - 68 - 【train】 epoch:1 1081/2980 loss:1.8089 2023-03-16 21:29:15,738 - INFO - main.py - train - 68 - 【train】 epoch:1 1082/2980 loss:17.3301 2023-03-16 21:29:16,912 - INFO - main.py - train - 68 - 【train】 epoch:1 1083/2980 loss:2.3934 2023-03-16 21:29:18,164 - INFO - main.py - train - 68 - 【train】 epoch:1 1084/2980 loss:15.6766 2023-03-16 21:29:19,388 - INFO - main.py - train - 68 - 【train】 epoch:1 1085/2980 loss:5.7828 2023-03-16 21:29:20,605 - INFO - main.py - train - 68 - 【train】 epoch:1 1086/2980 loss:2.7940 2023-03-16 21:29:21,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1087/2980 loss:8.7797 2023-03-16 21:29:23,038 - INFO - main.py - train - 68 - 【train】 epoch:1 1088/2980 loss:6.3215 2023-03-16 21:29:24,256 - INFO - main.py - train - 68 - 【train】 epoch:1 1089/2980 loss:8.2025 2023-03-16 21:29:25,477 - INFO - main.py - train - 68 - 【train】 epoch:1 1090/2980 loss:14.7418 2023-03-16 21:29:26,692 - INFO - main.py - train - 68 - 【train】 epoch:1 1091/2980 loss:5.4914 2023-03-16 21:29:27,909 - INFO - main.py - train - 68 - 【train】 epoch:1 1092/2980 loss:13.0514 2023-03-16 21:29:29,157 - INFO - main.py - train - 68 - 【train】 epoch:1 1093/2980 loss:54.5407 2023-03-16 21:29:30,416 - INFO - main.py - train - 68 - 【train】 epoch:1 1094/2980 loss:8.9920 2023-03-16 21:29:31,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1095/2980 loss:11.8192 2023-03-16 21:29:32,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1096/2980 loss:9.7146 2023-03-16 21:29:34,074 - INFO - main.py - train - 68 - 【train】 epoch:1 1097/2980 loss:3.8483 2023-03-16 21:29:35,274 - INFO - main.py - train - 68 - 【train】 epoch:1 1098/2980 loss:2.4621 2023-03-16 21:29:36,506 - INFO - main.py - train - 68 - 【train】 epoch:1 1099/2980 loss:7.6119 2023-03-16 21:29:37,723 - INFO - main.py - train - 68 - 【train】 epoch:1 1100/2980 loss:5.7739 2023-03-16 21:29:38,930 - INFO - main.py - train - 68 - 【train】 epoch:1 1101/2980 loss:14.0892 2023-03-16 21:29:40,157 - INFO - main.py - train - 68 - 【train】 epoch:1 1102/2980 loss:21.4813 2023-03-16 21:29:41,382 - INFO - main.py - train - 68 - 【train】 epoch:1 1103/2980 loss:17.4829 2023-03-16 21:29:42,645 - INFO - main.py - train - 68 - 【train】 epoch:1 1104/2980 loss:0.9325 2023-03-16 21:29:43,869 - INFO - main.py - train - 68 - 【train】 epoch:1 1105/2980 loss:5.6382 2023-03-16 21:29:45,075 - INFO - main.py - train - 68 - 【train】 epoch:1 1106/2980 loss:13.1270 2023-03-16 21:29:46,280 - INFO - main.py - train - 68 - 【train】 epoch:1 1107/2980 loss:17.6311 2023-03-16 21:29:47,486 - INFO - main.py - train - 68 - 【train】 epoch:1 1108/2980 loss:13.5287 2023-03-16 21:29:48,668 - INFO - main.py - train - 68 - 【train】 epoch:1 1109/2980 loss:13.6544 2023-03-16 21:29:49,858 - INFO - main.py - train - 68 - 【train】 epoch:1 1110/2980 loss:2.0089 2023-03-16 21:29:51,047 - INFO - main.py - train - 68 - 【train】 epoch:1 1111/2980 loss:0.7823 2023-03-16 21:29:52,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1112/2980 loss:14.4291 2023-03-16 21:29:53,484 - INFO - main.py - train - 68 - 【train】 epoch:1 1113/2980 loss:4.0845 2023-03-16 21:29:54,715 - INFO - main.py - train - 68 - 【train】 epoch:1 1114/2980 loss:3.9165 2023-03-16 21:29:56,013 - INFO - main.py - train - 68 - 【train】 epoch:1 1115/2980 loss:0.5240 2023-03-16 21:29:57,231 - INFO - main.py - train - 68 - 【train】 epoch:1 1116/2980 loss:11.1321 2023-03-16 21:29:58,422 - INFO - main.py - train - 68 - 【train】 epoch:1 1117/2980 loss:12.3669 2023-03-16 21:29:59,627 - INFO - main.py - train - 68 - 【train】 epoch:1 1118/2980 loss:4.6577 2023-03-16 21:30:00,870 - INFO - main.py - train - 68 - 【train】 epoch:1 1119/2980 loss:18.1888 2023-03-16 21:30:02,078 - INFO - main.py - train - 68 - 【train】 epoch:1 1120/2980 loss:5.4895 2023-03-16 21:30:03,283 - INFO - main.py - train - 68 - 【train】 epoch:1 1121/2980 loss:6.5037 2023-03-16 21:30:04,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1122/2980 loss:6.1368 2023-03-16 21:30:05,700 - INFO - main.py - train - 68 - 【train】 epoch:1 1123/2980 loss:11.0347 2023-03-16 21:30:06,910 - INFO - main.py - train - 68 - 【train】 epoch:1 1124/2980 loss:8.8248 2023-03-16 21:30:08,119 - INFO - main.py - train - 68 - 【train】 epoch:1 1125/2980 loss:9.3793 2023-03-16 21:30:09,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1126/2980 loss:9.2755 2023-03-16 21:30:10,534 - INFO - main.py - train - 68 - 【train】 epoch:1 1127/2980 loss:2.7854 2023-03-16 21:30:11,747 - INFO - main.py - train - 68 - 【train】 epoch:1 1128/2980 loss:14.8346 2023-03-16 21:30:12,935 - INFO - main.py - train - 68 - 【train】 epoch:1 1129/2980 loss:1.4060 2023-03-16 21:30:14,144 - INFO - main.py - train - 68 - 【train】 epoch:1 1130/2980 loss:17.0023 2023-03-16 21:30:15,357 - INFO - main.py - train - 68 - 【train】 epoch:1 1131/2980 loss:6.1267 2023-03-16 21:30:16,569 - INFO - main.py - train - 68 - 【train】 epoch:1 1132/2980 loss:12.0294 2023-03-16 21:30:17,819 - INFO - main.py - train - 68 - 【train】 epoch:1 1133/2980 loss:15.1824 2023-03-16 21:30:19,026 - INFO - main.py - train - 68 - 【train】 epoch:1 1134/2980 loss:4.6587 2023-03-16 21:30:20,213 - INFO - main.py - train - 68 - 【train】 epoch:1 1135/2980 loss:1.3477 2023-03-16 21:30:21,407 - INFO - main.py - train - 68 - 【train】 epoch:1 1136/2980 loss:13.1562 2023-03-16 21:30:22,606 - INFO - main.py - train - 68 - 【train】 epoch:1 1137/2980 loss:7.0271 2023-03-16 21:30:23,817 - INFO - main.py - train - 68 - 【train】 epoch:1 1138/2980 loss:13.3018 2023-03-16 21:30:25,014 - INFO - main.py - train - 68 - 【train】 epoch:1 1139/2980 loss:49.4670 2023-03-16 21:30:26,252 - INFO - main.py - train - 68 - 【train】 epoch:1 1140/2980 loss:5.7692 2023-03-16 21:30:27,480 - INFO - main.py - train - 68 - 【train】 epoch:1 1141/2980 loss:16.0039 2023-03-16 21:30:28,671 - INFO - main.py - train - 68 - 【train】 epoch:1 1142/2980 loss:6.5459 2023-03-16 21:30:29,883 - INFO - main.py - train - 68 - 【train】 epoch:1 1143/2980 loss:8.9637 2023-03-16 21:30:31,089 - INFO - main.py - train - 68 - 【train】 epoch:1 1144/2980 loss:6.6863 2023-03-16 21:30:32,339 - INFO - main.py - train - 68 - 【train】 epoch:1 1145/2980 loss:17.7117 2023-03-16 21:30:33,547 - INFO - main.py - train - 68 - 【train】 epoch:1 1146/2980 loss:8.5278 2023-03-16 21:30:34,811 - INFO - main.py - train - 68 - 【train】 epoch:1 1147/2980 loss:2.6222 2023-03-16 21:30:36,085 - INFO - main.py - train - 68 - 【train】 epoch:1 1148/2980 loss:36.1017 2023-03-16 21:30:37,288 - INFO - main.py - train - 68 - 【train】 epoch:1 1149/2980 loss:2.5007 2023-03-16 21:30:38,478 - INFO - main.py - train - 68 - 【train】 epoch:1 1150/2980 loss:1.6031 2023-03-16 21:30:39,685 - INFO - main.py - train - 68 - 【train】 epoch:1 1151/2980 loss:3.2295 2023-03-16 21:30:40,879 - INFO - main.py - train - 68 - 【train】 epoch:1 1152/2980 loss:20.8805 2023-03-16 21:30:42,111 - INFO - main.py - train - 68 - 【train】 epoch:1 1153/2980 loss:30.2213 2023-03-16 21:30:43,316 - INFO - main.py - train - 68 - 【train】 epoch:1 1154/2980 loss:12.4474 2023-03-16 21:30:44,508 - INFO - main.py - train - 68 - 【train】 epoch:1 1155/2980 loss:11.0843 2023-03-16 21:30:45,742 - INFO - main.py - train - 68 - 【train】 epoch:1 1156/2980 loss:30.3947 2023-03-16 21:30:46,947 - INFO - main.py - train - 68 - 【train】 epoch:1 1157/2980 loss:8.6804 2023-03-16 21:30:48,149 - INFO - main.py - train - 68 - 【train】 epoch:1 1158/2980 loss:37.6159 2023-03-16 21:30:49,368 - INFO - main.py - train - 68 - 【train】 epoch:1 1159/2980 loss:1.2366 2023-03-16 21:30:50,584 - INFO - main.py - train - 68 - 【train】 epoch:1 1160/2980 loss:17.4860 2023-03-16 21:30:51,793 - INFO - main.py - train - 68 - 【train】 epoch:1 1161/2980 loss:4.4211 2023-03-16 21:30:52,961 - INFO - main.py - train - 68 - 【train】 epoch:1 1162/2980 loss:1.9216 2023-03-16 21:30:54,196 - INFO - main.py - train - 68 - 【train】 epoch:1 1163/2980 loss:19.1180 2023-03-16 21:30:55,401 - INFO - main.py - train - 68 - 【train】 epoch:1 1164/2980 loss:26.4997 2023-03-16 21:30:56,597 - INFO - main.py - train - 68 - 【train】 epoch:1 1165/2980 loss:4.6092 2023-03-16 21:30:57,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1166/2980 loss:14.9145 2023-03-16 21:30:59,060 - INFO - main.py - train - 68 - 【train】 epoch:1 1167/2980 loss:16.1700 2023-03-16 21:31:00,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1168/2980 loss:3.2075 2023-03-16 21:31:01,532 - INFO - main.py - train - 68 - 【train】 epoch:1 1169/2980 loss:18.4410 2023-03-16 21:31:02,738 - INFO - main.py - train - 68 - 【train】 epoch:1 1170/2980 loss:5.4525 2023-03-16 21:31:03,973 - INFO - main.py - train - 68 - 【train】 epoch:1 1171/2980 loss:10.0224 2023-03-16 21:31:05,192 - INFO - main.py - train - 68 - 【train】 epoch:1 1172/2980 loss:13.8551 2023-03-16 21:31:06,437 - INFO - main.py - train - 68 - 【train】 epoch:1 1173/2980 loss:6.0661 2023-03-16 21:31:07,667 - INFO - main.py - train - 68 - 【train】 epoch:1 1174/2980 loss:4.1318 2023-03-16 21:31:08,915 - INFO - main.py - train - 68 - 【train】 epoch:1 1175/2980 loss:5.9358 2023-03-16 21:31:10,156 - INFO - main.py - train - 68 - 【train】 epoch:1 1176/2980 loss:15.0139 2023-03-16 21:31:11,366 - INFO - main.py - train - 68 - 【train】 epoch:1 1177/2980 loss:7.6333 2023-03-16 21:31:12,654 - INFO - main.py - train - 68 - 【train】 epoch:1 1178/2980 loss:14.6435 2023-03-16 21:31:13,878 - INFO - main.py - train - 68 - 【train】 epoch:1 1179/2980 loss:4.0548 2023-03-16 21:31:15,101 - INFO - main.py - train - 68 - 【train】 epoch:1 1180/2980 loss:8.0483 2023-03-16 21:31:16,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1181/2980 loss:9.2244 2023-03-16 21:31:17,578 - INFO - main.py - train - 68 - 【train】 epoch:1 1182/2980 loss:9.3697 2023-03-16 21:31:18,795 - INFO - main.py - train - 68 - 【train】 epoch:1 1183/2980 loss:11.7489 2023-03-16 21:31:20,025 - INFO - main.py - train - 68 - 【train】 epoch:1 1184/2980 loss:21.0323 2023-03-16 21:31:21,262 - INFO - main.py - train - 68 - 【train】 epoch:1 1185/2980 loss:13.4797 2023-03-16 21:31:22,508 - INFO - main.py - train - 68 - 【train】 epoch:1 1186/2980 loss:6.8740 2023-03-16 21:31:23,719 - INFO - main.py - train - 68 - 【train】 epoch:1 1187/2980 loss:27.0627 2023-03-16 21:31:24,943 - INFO - main.py - train - 68 - 【train】 epoch:1 1188/2980 loss:0.6708 2023-03-16 21:31:26,207 - INFO - main.py - train - 68 - 【train】 epoch:1 1189/2980 loss:7.4321 2023-03-16 21:31:27,521 - INFO - main.py - train - 68 - 【train】 epoch:1 1190/2980 loss:4.4549 2023-03-16 21:31:28,740 - INFO - main.py - train - 68 - 【train】 epoch:1 1191/2980 loss:22.6290 2023-03-16 21:31:40,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1192/2980 loss:13.5099 2023-03-16 21:31:42,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1193/2980 loss:4.3807 2023-03-16 21:31:43,344 - INFO - main.py - train - 68 - 【train】 epoch:2 1194/2980 loss:4.9485 2023-03-16 21:31:44,545 - INFO - main.py - train - 68 - 【train】 epoch:2 1195/2980 loss:4.6944 2023-03-16 21:31:45,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1196/2980 loss:1.2047 2023-03-16 21:31:47,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1197/2980 loss:2.8347 2023-03-16 21:31:48,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1198/2980 loss:23.8334 2023-03-16 21:31:49,466 - INFO - main.py - train - 68 - 【train】 epoch:2 1199/2980 loss:7.2499 2023-03-16 21:31:50,706 - INFO - main.py - train - 68 - 【train】 epoch:2 1200/2980 loss:11.4501 2023-03-16 21:31:51,905 - INFO - main.py - train - 68 - 【train】 epoch:2 1201/2980 loss:6.8961 2023-03-16 21:31:53,116 - INFO - main.py - train - 68 - 【train】 epoch:2 1202/2980 loss:5.4155 2023-03-16 21:31:54,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1203/2980 loss:8.0607 2023-03-16 21:31:55,557 - INFO - main.py - train - 68 - 【train】 epoch:2 1204/2980 loss:18.6957 2023-03-16 21:31:56,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1205/2980 loss:4.3178 2023-03-16 21:31:57,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1206/2980 loss:8.3773 2023-03-16 21:31:59,157 - INFO - main.py - train - 68 - 【train】 epoch:2 1207/2980 loss:5.3528 2023-03-16 21:32:00,357 - INFO - main.py - train - 68 - 【train】 epoch:2 1208/2980 loss:17.9999 2023-03-16 21:32:01,597 - INFO - main.py - train - 68 - 【train】 epoch:2 1209/2980 loss:9.7303 2023-03-16 21:32:02,808 - INFO - main.py - train - 68 - 【train】 epoch:2 1210/2980 loss:11.3181 2023-03-16 21:32:03,989 - INFO - main.py - train - 68 - 【train】 epoch:2 1211/2980 loss:3.7254 2023-03-16 21:32:05,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1212/2980 loss:14.8951 2023-03-16 21:32:06,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1213/2980 loss:10.8947 2023-03-16 21:32:07,654 - INFO - main.py - train - 68 - 【train】 epoch:2 1214/2980 loss:4.1388 2023-03-16 21:32:08,870 - INFO - main.py - train - 68 - 【train】 epoch:2 1215/2980 loss:22.1698 2023-03-16 21:32:10,065 - INFO - main.py - train - 68 - 【train】 epoch:2 1216/2980 loss:13.1849 2023-03-16 21:32:11,271 - INFO - main.py - train - 68 - 【train】 epoch:2 1217/2980 loss:17.6139 2023-03-16 21:32:12,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1218/2980 loss:10.8990 2023-03-16 21:32:13,647 - INFO - main.py - train - 68 - 【train】 epoch:2 1219/2980 loss:8.1892 2023-03-16 21:32:14,814 - INFO - main.py - train - 68 - 【train】 epoch:2 1220/2980 loss:1.0251 2023-03-16 21:32:16,031 - INFO - main.py - train - 68 - 【train】 epoch:2 1221/2980 loss:13.4918 2023-03-16 21:32:17,244 - INFO - main.py - train - 68 - 【train】 epoch:2 1222/2980 loss:14.0736 2023-03-16 21:32:18,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1223/2980 loss:3.7286 2023-03-16 21:32:19,646 - INFO - main.py - train - 68 - 【train】 epoch:2 1224/2980 loss:33.4549 2023-03-16 21:32:20,850 - INFO - main.py - train - 68 - 【train】 epoch:2 1225/2980 loss:14.7013 2023-03-16 21:32:22,044 - INFO - main.py - train - 68 - 【train】 epoch:2 1226/2980 loss:11.2534 2023-03-16 21:32:23,238 - INFO - main.py - train - 68 - 【train】 epoch:2 1227/2980 loss:25.0290 2023-03-16 21:32:24,421 - INFO - main.py - train - 68 - 【train】 epoch:2 1228/2980 loss:9.7487 2023-03-16 21:32:25,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1229/2980 loss:6.4470 2023-03-16 21:32:26,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1230/2980 loss:4.9624 2023-03-16 21:32:28,022 - INFO - main.py - train - 68 - 【train】 epoch:2 1231/2980 loss:15.2565 2023-03-16 21:32:29,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1232/2980 loss:10.8770 2023-03-16 21:32:30,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1233/2980 loss:16.2843 2023-03-16 21:32:31,629 - INFO - main.py - train - 68 - 【train】 epoch:2 1234/2980 loss:3.3308 2023-03-16 21:32:32,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1235/2980 loss:0.6216 2023-03-16 21:32:34,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1236/2980 loss:9.3732 2023-03-16 21:32:35,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1237/2980 loss:11.0916 2023-03-16 21:32:36,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1238/2980 loss:9.1960 2023-03-16 21:32:37,745 - INFO - main.py - train - 68 - 【train】 epoch:2 1239/2980 loss:2.7332 2023-03-16 21:32:38,958 - INFO - main.py - train - 68 - 【train】 epoch:2 1240/2980 loss:26.6099 2023-03-16 21:32:40,152 - INFO - main.py - train - 68 - 【train】 epoch:2 1241/2980 loss:3.6064 2023-03-16 21:32:41,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1242/2980 loss:2.0976 2023-03-16 21:32:42,591 - INFO - main.py - train - 68 - 【train】 epoch:2 1243/2980 loss:6.9365 2023-03-16 21:32:43,806 - INFO - main.py - train - 68 - 【train】 epoch:2 1244/2980 loss:5.5320 2023-03-16 21:32:45,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1245/2980 loss:15.9915 2023-03-16 21:32:46,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1246/2980 loss:11.8440 2023-03-16 21:32:47,457 - INFO - main.py - train - 68 - 【train】 epoch:2 1247/2980 loss:5.6106 2023-03-16 21:32:48,703 - INFO - main.py - train - 68 - 【train】 epoch:2 1248/2980 loss:19.7798 2023-03-16 21:32:49,951 - INFO - main.py - train - 68 - 【train】 epoch:2 1249/2980 loss:4.9664 2023-03-16 21:32:51,170 - INFO - main.py - train - 68 - 【train】 epoch:2 1250/2980 loss:3.7754 2023-03-16 21:32:52,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1251/2980 loss:6.6033 2023-03-16 21:32:53,583 - INFO - main.py - train - 68 - 【train】 epoch:2 1252/2980 loss:5.2703 2023-03-16 21:32:54,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1253/2980 loss:4.5447 2023-03-16 21:32:56,043 - INFO - main.py - train - 68 - 【train】 epoch:2 1254/2980 loss:8.8444 2023-03-16 21:32:57,275 - INFO - main.py - train - 68 - 【train】 epoch:2 1255/2980 loss:21.0195 2023-03-16 21:32:58,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1256/2980 loss:12.5418 2023-03-16 21:32:59,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1257/2980 loss:10.3191 2023-03-16 21:33:00,860 - INFO - main.py - train - 68 - 【train】 epoch:2 1258/2980 loss:6.6393 2023-03-16 21:33:02,063 - INFO - main.py - train - 68 - 【train】 epoch:2 1259/2980 loss:12.9807 2023-03-16 21:33:03,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1260/2980 loss:3.4823 2023-03-16 21:33:04,488 - INFO - main.py - train - 68 - 【train】 epoch:2 1261/2980 loss:18.6990 2023-03-16 21:33:05,702 - INFO - main.py - train - 68 - 【train】 epoch:2 1262/2980 loss:9.6151 2023-03-16 21:33:06,878 - INFO - main.py - train - 68 - 【train】 epoch:2 1263/2980 loss:0.4665 2023-03-16 21:33:08,076 - INFO - main.py - train - 68 - 【train】 epoch:2 1264/2980 loss:3.6923 2023-03-16 21:33:09,287 - INFO - main.py - train - 68 - 【train】 epoch:2 1265/2980 loss:14.7167 2023-03-16 21:33:10,502 - INFO - main.py - train - 68 - 【train】 epoch:2 1266/2980 loss:4.1433 2023-03-16 21:33:11,719 - INFO - main.py - train - 68 - 【train】 epoch:2 1267/2980 loss:44.2059 2023-03-16 21:33:12,949 - INFO - main.py - train - 68 - 【train】 epoch:2 1268/2980 loss:2.9530 2023-03-16 21:33:14,155 - INFO - main.py - train - 68 - 【train】 epoch:2 1269/2980 loss:10.9387 2023-03-16 21:33:15,376 - INFO - main.py - train - 68 - 【train】 epoch:2 1270/2980 loss:2.6468 2023-03-16 21:33:16,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1271/2980 loss:2.3594 2023-03-16 21:33:17,836 - INFO - main.py - train - 68 - 【train】 epoch:2 1272/2980 loss:1.0312 2023-03-16 21:33:19,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1273/2980 loss:17.0614 2023-03-16 21:33:20,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1274/2980 loss:14.6351 2023-03-16 21:33:21,524 - INFO - main.py - train - 68 - 【train】 epoch:2 1275/2980 loss:4.9410 2023-03-16 21:33:22,770 - INFO - main.py - train - 68 - 【train】 epoch:2 1276/2980 loss:2.9046 2023-03-16 21:33:23,998 - INFO - main.py - train - 68 - 【train】 epoch:2 1277/2980 loss:32.6521 2023-03-16 21:33:25,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1278/2980 loss:1.8814 2023-03-16 21:33:26,458 - INFO - main.py - train - 68 - 【train】 epoch:2 1279/2980 loss:10.1598 2023-03-16 21:33:27,705 - INFO - main.py - train - 68 - 【train】 epoch:2 1280/2980 loss:10.0977 2023-03-16 21:33:28,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1281/2980 loss:9.3832 2023-03-16 21:33:30,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1282/2980 loss:18.7211 2023-03-16 21:33:31,358 - INFO - main.py - train - 68 - 【train】 epoch:2 1283/2980 loss:4.4916 2023-03-16 21:33:32,544 - INFO - main.py - train - 68 - 【train】 epoch:2 1284/2980 loss:0.8200 2023-03-16 21:33:33,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1285/2980 loss:21.8070 2023-03-16 21:33:35,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1286/2980 loss:18.7672 2023-03-16 21:33:36,295 - INFO - main.py - train - 68 - 【train】 epoch:2 1287/2980 loss:6.0488 2023-03-16 21:33:37,489 - INFO - main.py - train - 68 - 【train】 epoch:2 1288/2980 loss:2.2506 2023-03-16 21:33:38,691 - INFO - main.py - train - 68 - 【train】 epoch:2 1289/2980 loss:2.7838 2023-03-16 21:33:39,899 - INFO - main.py - train - 68 - 【train】 epoch:2 1290/2980 loss:2.5372 2023-03-16 21:33:41,112 - INFO - main.py - train - 68 - 【train】 epoch:2 1291/2980 loss:8.6087 2023-03-16 21:33:42,352 - INFO - main.py - train - 68 - 【train】 epoch:2 1292/2980 loss:9.5183 2023-03-16 21:33:43,574 - INFO - main.py - train - 68 - 【train】 epoch:2 1293/2980 loss:7.0374 2023-03-16 21:33:44,769 - INFO - main.py - train - 68 - 【train】 epoch:2 1294/2980 loss:8.6686 2023-03-16 21:33:46,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1295/2980 loss:13.6365 2023-03-16 21:33:47,228 - INFO - main.py - train - 68 - 【train】 epoch:2 1296/2980 loss:19.5039 2023-03-16 21:33:48,429 - INFO - main.py - train - 68 - 【train】 epoch:2 1297/2980 loss:5.9272 2023-03-16 21:33:49,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1298/2980 loss:5.9241 2023-03-16 21:33:50,861 - INFO - main.py - train - 68 - 【train】 epoch:2 1299/2980 loss:4.6917 2023-03-16 21:33:52,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1300/2980 loss:14.6437 2023-03-16 21:33:53,296 - INFO - main.py - train - 68 - 【train】 epoch:2 1301/2980 loss:11.3493 2023-03-16 21:33:54,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1302/2980 loss:1.7714 2023-03-16 21:33:55,710 - INFO - main.py - train - 68 - 【train】 epoch:2 1303/2980 loss:10.7773 2023-03-16 21:33:56,910 - INFO - main.py - train - 68 - 【train】 epoch:2 1304/2980 loss:10.3668 2023-03-16 21:33:58,096 - INFO - main.py - train - 68 - 【train】 epoch:2 1305/2980 loss:0.3002 2023-03-16 21:33:59,294 - INFO - main.py - train - 68 - 【train】 epoch:2 1306/2980 loss:11.5673 2023-03-16 21:34:00,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1307/2980 loss:5.1136 2023-03-16 21:34:01,684 - INFO - main.py - train - 68 - 【train】 epoch:2 1308/2980 loss:9.6174 2023-03-16 21:34:02,906 - INFO - main.py - train - 68 - 【train】 epoch:2 1309/2980 loss:15.5952 2023-03-16 21:34:04,103 - INFO - main.py - train - 68 - 【train】 epoch:2 1310/2980 loss:11.3975 2023-03-16 21:34:05,278 - INFO - main.py - train - 68 - 【train】 epoch:2 1311/2980 loss:3.5153 2023-03-16 21:34:06,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1312/2980 loss:14.5036 2023-03-16 21:34:07,675 - INFO - main.py - train - 68 - 【train】 epoch:2 1313/2980 loss:5.4831 2023-03-16 21:34:08,887 - INFO - main.py - train - 68 - 【train】 epoch:2 1314/2980 loss:4.7720 2023-03-16 21:34:10,099 - INFO - main.py - train - 68 - 【train】 epoch:2 1315/2980 loss:5.0106 2023-03-16 21:34:11,277 - INFO - main.py - train - 68 - 【train】 epoch:2 1316/2980 loss:14.7221 2023-03-16 21:34:12,574 - INFO - main.py - train - 68 - 【train】 epoch:2 1317/2980 loss:7.2484 2023-03-16 21:34:13,762 - INFO - main.py - train - 68 - 【train】 epoch:2 1318/2980 loss:7.8291 2023-03-16 21:34:14,959 - INFO - main.py - train - 68 - 【train】 epoch:2 1319/2980 loss:18.8564 2023-03-16 21:34:16,194 - INFO - main.py - train - 68 - 【train】 epoch:2 1320/2980 loss:3.3622 2023-03-16 21:34:17,389 - INFO - main.py - train - 68 - 【train】 epoch:2 1321/2980 loss:3.4018 2023-03-16 21:34:18,579 - INFO - main.py - train - 68 - 【train】 epoch:2 1322/2980 loss:2.1882 2023-03-16 21:34:19,770 - INFO - main.py - train - 68 - 【train】 epoch:2 1323/2980 loss:1.0690 2023-03-16 21:34:20,982 - INFO - main.py - train - 68 - 【train】 epoch:2 1324/2980 loss:2.0623 2023-03-16 21:34:22,192 - INFO - main.py - train - 68 - 【train】 epoch:2 1325/2980 loss:31.3422 2023-03-16 21:34:23,413 - INFO - main.py - train - 68 - 【train】 epoch:2 1326/2980 loss:6.3044 2023-03-16 21:34:24,608 - INFO - main.py - train - 68 - 【train】 epoch:2 1327/2980 loss:4.6260 2023-03-16 21:34:25,810 - INFO - main.py - train - 68 - 【train】 epoch:2 1328/2980 loss:2.2901 2023-03-16 21:34:27,026 - INFO - main.py - train - 68 - 【train】 epoch:2 1329/2980 loss:16.1281 2023-03-16 21:34:28,224 - INFO - main.py - train - 68 - 【train】 epoch:2 1330/2980 loss:2.9241 2023-03-16 21:34:29,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1331/2980 loss:10.8236 2023-03-16 21:34:30,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1332/2980 loss:7.7905 2023-03-16 21:34:31,892 - INFO - main.py - train - 68 - 【train】 epoch:2 1333/2980 loss:18.0086 2023-03-16 21:34:33,110 - INFO - main.py - train - 68 - 【train】 epoch:2 1334/2980 loss:23.4874 2023-03-16 21:34:34,349 - INFO - main.py - train - 68 - 【train】 epoch:2 1335/2980 loss:14.2575 2023-03-16 21:34:35,537 - INFO - main.py - train - 68 - 【train】 epoch:2 1336/2980 loss:5.7591 2023-03-16 21:34:36,753 - INFO - main.py - train - 68 - 【train】 epoch:2 1337/2980 loss:10.8144 2023-03-16 21:34:37,941 - INFO - main.py - train - 68 - 【train】 epoch:2 1338/2980 loss:17.7967 2023-03-16 21:34:39,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1339/2980 loss:10.1867 2023-03-16 21:34:40,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1340/2980 loss:10.0042 2023-03-16 21:34:41,567 - INFO - main.py - train - 68 - 【train】 epoch:2 1341/2980 loss:5.9889 2023-03-16 21:34:42,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1342/2980 loss:8.2094 2023-03-16 21:34:43,997 - INFO - main.py - train - 68 - 【train】 epoch:2 1343/2980 loss:23.3700 2023-03-16 21:34:45,202 - INFO - main.py - train - 68 - 【train】 epoch:2 1344/2980 loss:33.3359 2023-03-16 21:34:46,448 - INFO - main.py - train - 68 - 【train】 epoch:2 1345/2980 loss:12.3713 2023-03-16 21:34:47,667 - INFO - main.py - train - 68 - 【train】 epoch:2 1346/2980 loss:8.9423 2023-03-16 21:34:48,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1347/2980 loss:14.1378 2023-03-16 21:34:50,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1348/2980 loss:8.2214 2023-03-16 21:34:51,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1349/2980 loss:8.0259 2023-03-16 21:34:52,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1350/2980 loss:6.3914 2023-03-16 21:34:54,321 - INFO - main.py - train - 68 - 【train】 epoch:2 1351/2980 loss:12.7190 2023-03-16 21:34:55,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1352/2980 loss:3.4638 2023-03-16 21:34:57,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1353/2980 loss:5.0209 2023-03-16 21:34:58,349 - INFO - main.py - train - 68 - 【train】 epoch:2 1354/2980 loss:14.4373 2023-03-16 21:34:59,674 - INFO - main.py - train - 68 - 【train】 epoch:2 1355/2980 loss:9.0832 2023-03-16 21:35:01,005 - INFO - main.py - train - 68 - 【train】 epoch:2 1356/2980 loss:7.3633 2023-03-16 21:35:02,302 - INFO - main.py - train - 68 - 【train】 epoch:2 1357/2980 loss:6.4021 2023-03-16 21:35:03,653 - INFO - main.py - train - 68 - 【train】 epoch:2 1358/2980 loss:4.4316 2023-03-16 21:35:04,995 - INFO - main.py - train - 68 - 【train】 epoch:2 1359/2980 loss:6.9391 2023-03-16 21:35:06,426 - INFO - main.py - train - 68 - 【train】 epoch:2 1360/2980 loss:6.6329 2023-03-16 21:35:07,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1361/2980 loss:5.2503 2023-03-16 21:35:09,078 - INFO - main.py - train - 68 - 【train】 epoch:2 1362/2980 loss:6.9053 2023-03-16 21:35:10,351 - INFO - main.py - train - 68 - 【train】 epoch:2 1363/2980 loss:1.4683 2023-03-16 21:35:11,672 - INFO - main.py - train - 68 - 【train】 epoch:2 1364/2980 loss:3.9011 2023-03-16 21:35:12,999 - INFO - main.py - train - 68 - 【train】 epoch:2 1365/2980 loss:4.3293 2023-03-16 21:35:14,303 - INFO - main.py - train - 68 - 【train】 epoch:2 1366/2980 loss:4.2992 2023-03-16 21:35:15,601 - INFO - main.py - train - 68 - 【train】 epoch:2 1367/2980 loss:1.5219 2023-03-16 21:35:16,898 - INFO - main.py - train - 68 - 【train】 epoch:2 1368/2980 loss:3.0923 2023-03-16 21:35:18,187 - INFO - main.py - train - 68 - 【train】 epoch:2 1369/2980 loss:1.3260 2023-03-16 21:35:19,495 - INFO - main.py - train - 68 - 【train】 epoch:2 1370/2980 loss:4.5070 2023-03-16 21:35:20,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1371/2980 loss:6.0422 2023-03-16 21:35:22,111 - INFO - main.py - train - 68 - 【train】 epoch:2 1372/2980 loss:9.0056 2023-03-16 21:35:23,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1373/2980 loss:7.3751 2023-03-16 21:35:24,754 - INFO - main.py - train - 68 - 【train】 epoch:2 1374/2980 loss:11.9881 2023-03-16 21:35:26,048 - INFO - main.py - train - 68 - 【train】 epoch:2 1375/2980 loss:6.5128 2023-03-16 21:35:27,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1376/2980 loss:3.4521 2023-03-16 21:35:28,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1377/2980 loss:6.2817 2023-03-16 21:35:30,041 - INFO - main.py - train - 68 - 【train】 epoch:2 1378/2980 loss:21.1292 2023-03-16 21:35:31,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1379/2980 loss:5.5861 2023-03-16 21:35:32,654 - INFO - main.py - train - 68 - 【train】 epoch:2 1380/2980 loss:11.3056 2023-03-16 21:35:33,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1381/2980 loss:7.4495 2023-03-16 21:35:35,286 - INFO - main.py - train - 68 - 【train】 epoch:2 1382/2980 loss:12.3866 2023-03-16 21:35:36,573 - INFO - main.py - train - 68 - 【train】 epoch:2 1383/2980 loss:4.2125 2023-03-16 21:35:37,874 - INFO - main.py - train - 68 - 【train】 epoch:2 1384/2980 loss:3.0662 2023-03-16 21:35:39,108 - INFO - main.py - train - 68 - 【train】 epoch:2 1385/2980 loss:4.6263 2023-03-16 21:35:40,290 - INFO - main.py - train - 68 - 【train】 epoch:2 1386/2980 loss:6.9178 2023-03-16 21:35:41,508 - INFO - main.py - train - 68 - 【train】 epoch:2 1387/2980 loss:4.4033 2023-03-16 21:35:42,723 - INFO - main.py - train - 68 - 【train】 epoch:2 1388/2980 loss:14.1681 2023-03-16 21:35:43,900 - INFO - main.py - train - 68 - 【train】 epoch:2 1389/2980 loss:4.1819 2023-03-16 21:35:45,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1390/2980 loss:5.2591 2023-03-16 21:35:46,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1391/2980 loss:23.3524 2023-03-16 21:35:47,489 - INFO - main.py - train - 68 - 【train】 epoch:2 1392/2980 loss:8.9163 2023-03-16 21:35:48,681 - INFO - main.py - train - 68 - 【train】 epoch:2 1393/2980 loss:7.8144 2023-03-16 21:35:49,904 - INFO - main.py - train - 68 - 【train】 epoch:2 1394/2980 loss:12.5432 2023-03-16 21:35:51,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1395/2980 loss:4.1569 2023-03-16 21:35:52,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1396/2980 loss:4.6851 2023-03-16 21:35:53,511 - INFO - main.py - train - 68 - 【train】 epoch:2 1397/2980 loss:5.3859 2023-03-16 21:35:54,688 - INFO - main.py - train - 68 - 【train】 epoch:2 1398/2980 loss:5.6046 2023-03-16 21:35:55,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1399/2980 loss:9.5589 2023-03-16 21:35:57,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1400/2980 loss:9.3398 2023-03-16 21:35:58,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1401/2980 loss:11.4046 2023-03-16 21:35:59,514 - INFO - main.py - train - 68 - 【train】 epoch:2 1402/2980 loss:7.5389 2023-03-16 21:36:00,774 - INFO - main.py - train - 68 - 【train】 epoch:2 1403/2980 loss:4.5237 2023-03-16 21:36:01,979 - INFO - main.py - train - 68 - 【train】 epoch:2 1404/2980 loss:10.7373 2023-03-16 21:36:03,167 - INFO - main.py - train - 68 - 【train】 epoch:2 1405/2980 loss:3.0427 2023-03-16 21:36:04,373 - INFO - main.py - train - 68 - 【train】 epoch:2 1406/2980 loss:2.3149 2023-03-16 21:36:05,566 - INFO - main.py - train - 68 - 【train】 epoch:2 1407/2980 loss:6.6341 2023-03-16 21:36:06,761 - INFO - main.py - train - 68 - 【train】 epoch:2 1408/2980 loss:11.1287 2023-03-16 21:36:07,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1409/2980 loss:0.4568 2023-03-16 21:36:09,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1410/2980 loss:8.1639 2023-03-16 21:36:10,387 - INFO - main.py - train - 68 - 【train】 epoch:2 1411/2980 loss:3.9305 2023-03-16 21:36:11,572 - INFO - main.py - train - 68 - 【train】 epoch:2 1412/2980 loss:4.2719 2023-03-16 21:36:12,816 - INFO - main.py - train - 68 - 【train】 epoch:2 1413/2980 loss:15.4982 2023-03-16 21:36:13,997 - INFO - main.py - train - 68 - 【train】 epoch:2 1414/2980 loss:6.4394 2023-03-16 21:36:15,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1415/2980 loss:14.1558 2023-03-16 21:36:16,446 - INFO - main.py - train - 68 - 【train】 epoch:2 1416/2980 loss:7.7133 2023-03-16 21:36:17,662 - INFO - main.py - train - 68 - 【train】 epoch:2 1417/2980 loss:3.4439 2023-03-16 21:36:18,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1418/2980 loss:8.5958 2023-03-16 21:36:20,063 - INFO - main.py - train - 68 - 【train】 epoch:2 1419/2980 loss:5.8719 2023-03-16 21:36:21,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1420/2980 loss:17.1736 2023-03-16 21:36:22,456 - INFO - main.py - train - 68 - 【train】 epoch:2 1421/2980 loss:7.7948 2023-03-16 21:36:23,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1422/2980 loss:19.7102 2023-03-16 21:36:24,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1423/2980 loss:4.3234 2023-03-16 21:36:26,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1424/2980 loss:3.2527 2023-03-16 21:36:27,283 - INFO - main.py - train - 68 - 【train】 epoch:2 1425/2980 loss:20.0218 2023-03-16 21:36:28,453 - INFO - main.py - train - 68 - 【train】 epoch:2 1426/2980 loss:7.2606 2023-03-16 21:36:29,646 - INFO - main.py - train - 68 - 【train】 epoch:2 1427/2980 loss:3.4223 2023-03-16 21:36:30,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1428/2980 loss:2.1249 2023-03-16 21:36:32,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1429/2980 loss:24.5935 2023-03-16 21:36:33,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1430/2980 loss:2.0856 2023-03-16 21:36:34,407 - INFO - main.py - train - 68 - 【train】 epoch:2 1431/2980 loss:19.1300 2023-03-16 21:36:35,612 - INFO - main.py - train - 68 - 【train】 epoch:2 1432/2980 loss:26.3421 2023-03-16 21:36:36,801 - INFO - main.py - train - 68 - 【train】 epoch:2 1433/2980 loss:10.5403 2023-03-16 21:36:38,003 - INFO - main.py - train - 68 - 【train】 epoch:2 1434/2980 loss:6.8728 2023-03-16 21:36:39,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1435/2980 loss:8.5302 2023-03-16 21:36:40,345 - INFO - main.py - train - 68 - 【train】 epoch:2 1436/2980 loss:2.0019 2023-03-16 21:36:41,529 - INFO - main.py - train - 68 - 【train】 epoch:2 1437/2980 loss:3.4568 2023-03-16 21:36:42,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1438/2980 loss:6.7516 2023-03-16 21:36:43,880 - INFO - main.py - train - 68 - 【train】 epoch:2 1439/2980 loss:3.2615 2023-03-16 21:36:45,033 - INFO - main.py - train - 68 - 【train】 epoch:2 1440/2980 loss:12.9076 2023-03-16 21:36:46,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1441/2980 loss:15.6714 2023-03-16 21:36:47,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1442/2980 loss:24.9074 2023-03-16 21:36:48,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1443/2980 loss:29.8391 2023-03-16 21:36:49,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1444/2980 loss:2.8508 2023-03-16 21:36:51,017 - INFO - main.py - train - 68 - 【train】 epoch:2 1445/2980 loss:4.1556 2023-03-16 21:36:52,277 - INFO - main.py - train - 68 - 【train】 epoch:2 1446/2980 loss:10.4155 2023-03-16 21:36:53,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1447/2980 loss:5.2246 2023-03-16 21:36:54,633 - INFO - main.py - train - 68 - 【train】 epoch:2 1448/2980 loss:4.9863 2023-03-16 21:36:55,829 - INFO - main.py - train - 68 - 【train】 epoch:2 1449/2980 loss:10.8736 2023-03-16 21:36:57,088 - INFO - main.py - train - 68 - 【train】 epoch:2 1450/2980 loss:37.3624 2023-03-16 21:36:58,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1451/2980 loss:10.7769 2023-03-16 21:36:59,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1452/2980 loss:2.2204 2023-03-16 21:37:00,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1453/2980 loss:6.1006 2023-03-16 21:37:01,891 - INFO - main.py - train - 68 - 【train】 epoch:2 1454/2980 loss:2.7149 2023-03-16 21:37:03,101 - INFO - main.py - train - 68 - 【train】 epoch:2 1455/2980 loss:6.0150 2023-03-16 21:37:04,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1456/2980 loss:5.6269 2023-03-16 21:37:05,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1457/2980 loss:4.5735 2023-03-16 21:37:06,716 - INFO - main.py - train - 68 - 【train】 epoch:2 1458/2980 loss:5.1174 2023-03-16 21:37:07,932 - INFO - main.py - train - 68 - 【train】 epoch:2 1459/2980 loss:32.0809 2023-03-16 21:37:09,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1460/2980 loss:3.5306 2023-03-16 21:37:10,363 - INFO - main.py - train - 68 - 【train】 epoch:2 1461/2980 loss:15.6505 2023-03-16 21:37:11,577 - INFO - main.py - train - 68 - 【train】 epoch:2 1462/2980 loss:14.3950 2023-03-16 21:37:12,793 - INFO - main.py - train - 68 - 【train】 epoch:2 1463/2980 loss:0.4040 2023-03-16 21:37:14,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1464/2980 loss:12.9298 2023-03-16 21:37:15,212 - INFO - main.py - train - 68 - 【train】 epoch:2 1465/2980 loss:3.0695 2023-03-16 21:37:16,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1466/2980 loss:11.1549 2023-03-16 21:37:17,632 - INFO - main.py - train - 68 - 【train】 epoch:2 1467/2980 loss:7.1413 2023-03-16 21:37:18,802 - INFO - main.py - train - 68 - 【train】 epoch:2 1468/2980 loss:2.3232 2023-03-16 21:37:20,023 - INFO - main.py - train - 68 - 【train】 epoch:2 1469/2980 loss:7.9684 2023-03-16 21:37:21,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1470/2980 loss:10.0671 2023-03-16 21:37:22,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1471/2980 loss:25.6235 2023-03-16 21:37:23,616 - INFO - main.py - train - 68 - 【train】 epoch:2 1472/2980 loss:2.1980 2023-03-16 21:37:24,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1473/2980 loss:4.6328 2023-03-16 21:37:26,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1474/2980 loss:8.8649 2023-03-16 21:37:27,202 - INFO - main.py - train - 68 - 【train】 epoch:2 1475/2980 loss:1.3144 2023-03-16 21:37:28,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1476/2980 loss:4.4509 2023-03-16 21:37:29,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1477/2980 loss:10.8373 2023-03-16 21:37:30,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1478/2980 loss:6.5888 2023-03-16 21:37:32,067 - INFO - main.py - train - 68 - 【train】 epoch:2 1479/2980 loss:4.5621 2023-03-16 21:37:33,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1480/2980 loss:8.4015 2023-03-16 21:37:34,632 - INFO - main.py - train - 68 - 【train】 epoch:2 1481/2980 loss:4.3279 2023-03-16 21:37:35,863 - INFO - main.py - train - 68 - 【train】 epoch:2 1482/2980 loss:7.0528 2023-03-16 21:37:37,064 - INFO - main.py - train - 68 - 【train】 epoch:2 1483/2980 loss:12.8562 2023-03-16 21:37:38,245 - INFO - main.py - train - 68 - 【train】 epoch:2 1484/2980 loss:5.1816 2023-03-16 21:37:39,462 - INFO - main.py - train - 68 - 【train】 epoch:2 1485/2980 loss:7.1397 2023-03-16 21:37:40,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1486/2980 loss:9.8651 2023-03-16 21:37:41,852 - INFO - main.py - train - 68 - 【train】 epoch:2 1487/2980 loss:6.6549 2023-03-16 21:37:43,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1488/2980 loss:5.0542 2023-03-16 21:37:44,278 - INFO - main.py - train - 68 - 【train】 epoch:2 1489/2980 loss:2.9532 2023-03-16 21:37:45,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1490/2980 loss:3.7446 2023-03-16 21:37:46,691 - INFO - main.py - train - 68 - 【train】 epoch:2 1491/2980 loss:16.4262 2023-03-16 21:37:47,887 - INFO - main.py - train - 68 - 【train】 epoch:2 1492/2980 loss:9.6074 2023-03-16 21:37:49,062 - INFO - main.py - train - 68 - 【train】 epoch:2 1493/2980 loss:16.9088 2023-03-16 21:37:50,276 - INFO - main.py - train - 68 - 【train】 epoch:2 1494/2980 loss:5.3994 2023-03-16 21:37:51,470 - INFO - main.py - train - 68 - 【train】 epoch:2 1495/2980 loss:4.2582 2023-03-16 21:37:52,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1496/2980 loss:1.0900 2023-03-16 21:37:53,816 - INFO - main.py - train - 68 - 【train】 epoch:2 1497/2980 loss:1.7439 2023-03-16 21:37:55,008 - INFO - main.py - train - 68 - 【train】 epoch:2 1498/2980 loss:10.4488 2023-03-16 21:37:56,251 - INFO - main.py - train - 68 - 【train】 epoch:2 1499/2980 loss:6.5972 2023-03-16 21:37:57,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1500/2980 loss:2.6698 2023-03-16 21:37:58,620 - INFO - main.py - train - 68 - 【train】 epoch:2 1501/2980 loss:3.7002 2023-03-16 21:37:59,823 - INFO - main.py - train - 68 - 【train】 epoch:2 1502/2980 loss:22.0185 2023-03-16 21:38:01,015 - INFO - main.py - train - 68 - 【train】 epoch:2 1503/2980 loss:5.7545 2023-03-16 21:38:02,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1504/2980 loss:10.5314 2023-03-16 21:38:03,411 - INFO - main.py - train - 68 - 【train】 epoch:2 1505/2980 loss:10.2834 2023-03-16 21:38:04,604 - INFO - main.py - train - 68 - 【train】 epoch:2 1506/2980 loss:6.7648 2023-03-16 21:38:05,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1507/2980 loss:0.7375 2023-03-16 21:38:07,010 - INFO - main.py - train - 68 - 【train】 epoch:2 1508/2980 loss:14.2582 2023-03-16 21:38:08,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1509/2980 loss:12.4440 2023-03-16 21:38:09,439 - INFO - main.py - train - 68 - 【train】 epoch:2 1510/2980 loss:7.4602 2023-03-16 21:38:10,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1511/2980 loss:9.7202 2023-03-16 21:38:11,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1512/2980 loss:0.7599 2023-03-16 21:38:13,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1513/2980 loss:6.1208 2023-03-16 21:38:14,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1514/2980 loss:6.3555 2023-03-16 21:38:15,410 - INFO - main.py - train - 68 - 【train】 epoch:2 1515/2980 loss:5.5425 2023-03-16 21:38:16,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1516/2980 loss:5.9202 2023-03-16 21:38:17,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1517/2980 loss:9.0018 2023-03-16 21:38:19,068 - INFO - main.py - train - 68 - 【train】 epoch:2 1518/2980 loss:10.1155 2023-03-16 21:38:20,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1519/2980 loss:7.6478 2023-03-16 21:38:21,523 - INFO - main.py - train - 68 - 【train】 epoch:2 1520/2980 loss:9.4367 2023-03-16 21:38:22,775 - INFO - main.py - train - 68 - 【train】 epoch:2 1521/2980 loss:19.2199 2023-03-16 21:38:23,984 - INFO - main.py - train - 68 - 【train】 epoch:2 1522/2980 loss:8.4400 2023-03-16 21:38:25,185 - INFO - main.py - train - 68 - 【train】 epoch:2 1523/2980 loss:4.9196 2023-03-16 21:38:26,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1524/2980 loss:3.4935 2023-03-16 21:38:27,699 - INFO - main.py - train - 68 - 【train】 epoch:2 1525/2980 loss:10.5845 2023-03-16 21:38:28,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1526/2980 loss:7.5861 2023-03-16 21:38:30,183 - INFO - main.py - train - 68 - 【train】 epoch:2 1527/2980 loss:5.2630 2023-03-16 21:38:31,417 - INFO - main.py - train - 68 - 【train】 epoch:2 1528/2980 loss:8.6196 2023-03-16 21:38:32,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1529/2980 loss:6.2829 2023-03-16 21:38:33,866 - INFO - main.py - train - 68 - 【train】 epoch:2 1530/2980 loss:7.0320 2023-03-16 21:38:35,060 - INFO - main.py - train - 68 - 【train】 epoch:2 1531/2980 loss:1.6202 2023-03-16 21:38:36,398 - INFO - main.py - train - 68 - 【train】 epoch:2 1532/2980 loss:42.1277 2023-03-16 21:38:37,585 - INFO - main.py - train - 68 - 【train】 epoch:2 1533/2980 loss:16.6208 2023-03-16 21:38:38,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1534/2980 loss:3.1652 2023-03-16 21:38:40,009 - INFO - main.py - train - 68 - 【train】 epoch:2 1535/2980 loss:5.7317 2023-03-16 21:38:41,258 - INFO - main.py - train - 68 - 【train】 epoch:2 1536/2980 loss:4.7012 2023-03-16 21:38:42,487 - INFO - main.py - train - 68 - 【train】 epoch:2 1537/2980 loss:1.5822 2023-03-16 21:38:43,725 - INFO - main.py - train - 68 - 【train】 epoch:2 1538/2980 loss:7.7928 2023-03-16 21:38:45,062 - INFO - main.py - train - 68 - 【train】 epoch:2 1539/2980 loss:0.3735 2023-03-16 21:38:46,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1540/2980 loss:6.7250 2023-03-16 21:38:47,633 - INFO - main.py - train - 68 - 【train】 epoch:2 1541/2980 loss:1.8695 2023-03-16 21:38:48,822 - INFO - main.py - train - 68 - 【train】 epoch:2 1542/2980 loss:15.3184 2023-03-16 21:38:50,016 - INFO - main.py - train - 68 - 【train】 epoch:2 1543/2980 loss:9.3845 2023-03-16 21:38:51,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1544/2980 loss:12.4501 2023-03-16 21:38:52,418 - INFO - main.py - train - 68 - 【train】 epoch:2 1545/2980 loss:3.1117 2023-03-16 21:38:53,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1546/2980 loss:6.0340 2023-03-16 21:38:54,788 - INFO - main.py - train - 68 - 【train】 epoch:2 1547/2980 loss:12.6368 2023-03-16 21:38:56,059 - INFO - main.py - train - 68 - 【train】 epoch:2 1548/2980 loss:10.3989 2023-03-16 21:38:57,253 - INFO - main.py - train - 68 - 【train】 epoch:2 1549/2980 loss:7.6922 2023-03-16 21:38:58,482 - INFO - main.py - train - 68 - 【train】 epoch:2 1550/2980 loss:11.4438 2023-03-16 21:39:08,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1551/2980 loss:12.5599 2023-03-16 21:39:09,663 - INFO - main.py - train - 68 - 【train】 epoch:2 1552/2980 loss:10.6456 2023-03-16 21:39:10,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1553/2980 loss:0.7569 2023-03-16 21:39:12,113 - INFO - main.py - train - 68 - 【train】 epoch:2 1554/2980 loss:7.1520 2023-03-16 21:39:13,302 - INFO - main.py - train - 68 - 【train】 epoch:2 1555/2980 loss:17.4165 2023-03-16 21:39:14,510 - INFO - main.py - train - 68 - 【train】 epoch:2 1556/2980 loss:51.5392 2023-03-16 21:39:15,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1557/2980 loss:5.9367 2023-03-16 21:39:17,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1558/2980 loss:1.8951 2023-03-16 21:39:18,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1559/2980 loss:2.2204 2023-03-16 21:39:19,547 - INFO - main.py - train - 68 - 【train】 epoch:2 1560/2980 loss:4.2002 2023-03-16 21:39:20,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1561/2980 loss:9.4125 2023-03-16 21:39:22,322 - INFO - main.py - train - 68 - 【train】 epoch:2 1562/2980 loss:1.2759 2023-03-16 21:39:23,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1563/2980 loss:5.2563 2023-03-16 21:39:24,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1564/2980 loss:17.9659 2023-03-16 21:39:26,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1565/2980 loss:13.6612 2023-03-16 21:39:27,972 - INFO - main.py - train - 68 - 【train】 epoch:2 1566/2980 loss:1.6733 2023-03-16 21:39:29,519 - INFO - main.py - train - 68 - 【train】 epoch:2 1567/2980 loss:21.9406 2023-03-16 21:39:30,821 - INFO - main.py - train - 68 - 【train】 epoch:2 1568/2980 loss:19.2929 2023-03-16 21:39:32,023 - INFO - main.py - train - 68 - 【train】 epoch:2 1569/2980 loss:12.6861 2023-03-16 21:39:33,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1570/2980 loss:3.6480 2023-03-16 21:39:34,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1571/2980 loss:5.6568 2023-03-16 21:39:35,793 - INFO - main.py - train - 68 - 【train】 epoch:2 1572/2980 loss:12.7883 2023-03-16 21:39:36,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1573/2980 loss:6.9040 2023-03-16 21:39:38,206 - INFO - main.py - train - 68 - 【train】 epoch:2 1574/2980 loss:3.7994 2023-03-16 21:39:39,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1575/2980 loss:14.5773 2023-03-16 21:39:40,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1576/2980 loss:12.7517 2023-03-16 21:39:41,953 - INFO - main.py - train - 68 - 【train】 epoch:2 1577/2980 loss:3.8571 2023-03-16 21:39:43,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1578/2980 loss:7.7538 2023-03-16 21:39:44,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1579/2980 loss:10.2275 2023-03-16 21:39:45,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1580/2980 loss:16.5552 2023-03-16 21:39:47,186 - INFO - main.py - train - 68 - 【train】 epoch:2 1581/2980 loss:6.7296 2023-03-16 21:39:48,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1582/2980 loss:8.2315 2023-03-16 21:39:49,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1583/2980 loss:5.7882 2023-03-16 21:39:51,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1584/2980 loss:8.7615 2023-03-16 21:39:52,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1585/2980 loss:11.8003 2023-03-16 21:39:53,592 - INFO - main.py - train - 68 - 【train】 epoch:2 1586/2980 loss:3.7517 2023-03-16 21:39:54,840 - INFO - main.py - train - 68 - 【train】 epoch:2 1587/2980 loss:8.2974 2023-03-16 21:39:56,069 - INFO - main.py - train - 68 - 【train】 epoch:2 1588/2980 loss:1.3213 2023-03-16 21:39:57,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1589/2980 loss:15.9650 2023-03-16 21:39:58,497 - INFO - main.py - train - 68 - 【train】 epoch:2 1590/2980 loss:0.2657 2023-03-16 21:39:59,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1591/2980 loss:2.4606 2023-03-16 21:40:01,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1592/2980 loss:10.2901 2023-03-16 21:40:02,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1593/2980 loss:2.1300 2023-03-16 21:40:03,439 - INFO - main.py - train - 68 - 【train】 epoch:2 1594/2980 loss:2.4307 2023-03-16 21:40:04,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1595/2980 loss:9.2183 2023-03-16 21:40:05,846 - INFO - main.py - train - 68 - 【train】 epoch:2 1596/2980 loss:7.2681 2023-03-16 21:40:07,076 - INFO - main.py - train - 68 - 【train】 epoch:2 1597/2980 loss:4.0268 2023-03-16 21:40:08,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1598/2980 loss:11.8105 2023-03-16 21:40:09,465 - INFO - main.py - train - 68 - 【train】 epoch:2 1599/2980 loss:1.1980 2023-03-16 21:40:10,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1600/2980 loss:9.1157 2023-03-16 21:40:11,875 - INFO - main.py - train - 68 - 【train】 epoch:2 1601/2980 loss:10.8676 2023-03-16 21:40:13,088 - INFO - main.py - train - 68 - 【train】 epoch:2 1602/2980 loss:4.2872 2023-03-16 21:40:14,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1603/2980 loss:3.6594 2023-03-16 21:40:15,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1604/2980 loss:10.7616 2023-03-16 21:40:16,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1605/2980 loss:3.9501 2023-03-16 21:40:17,932 - INFO - main.py - train - 68 - 【train】 epoch:2 1606/2980 loss:19.8903 2023-03-16 21:40:19,123 - INFO - main.py - train - 68 - 【train】 epoch:2 1607/2980 loss:8.6595 2023-03-16 21:40:20,362 - INFO - main.py - train - 68 - 【train】 epoch:2 1608/2980 loss:16.4792 2023-03-16 21:40:21,589 - INFO - main.py - train - 68 - 【train】 epoch:2 1609/2980 loss:16.9765 2023-03-16 21:40:22,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1610/2980 loss:1.3727 2023-03-16 21:40:24,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1611/2980 loss:4.2829 2023-03-16 21:40:25,257 - INFO - main.py - train - 68 - 【train】 epoch:2 1612/2980 loss:4.1519 2023-03-16 21:40:26,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1613/2980 loss:9.4244 2023-03-16 21:40:27,731 - INFO - main.py - train - 68 - 【train】 epoch:2 1614/2980 loss:13.7332 2023-03-16 21:40:28,967 - INFO - main.py - train - 68 - 【train】 epoch:2 1615/2980 loss:8.2995 2023-03-16 21:40:30,232 - INFO - main.py - train - 68 - 【train】 epoch:2 1616/2980 loss:17.4182 2023-03-16 21:40:31,463 - INFO - main.py - train - 68 - 【train】 epoch:2 1617/2980 loss:1.8194 2023-03-16 21:40:32,733 - INFO - main.py - train - 68 - 【train】 epoch:2 1618/2980 loss:5.6195 2023-03-16 21:40:33,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1619/2980 loss:15.4573 2023-03-16 21:40:35,164 - INFO - main.py - train - 68 - 【train】 epoch:2 1620/2980 loss:5.2314 2023-03-16 21:40:36,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1621/2980 loss:19.0799 2023-03-16 21:40:37,634 - INFO - main.py - train - 68 - 【train】 epoch:2 1622/2980 loss:13.3515 2023-03-16 21:40:38,819 - INFO - main.py - train - 68 - 【train】 epoch:2 1623/2980 loss:7.3194 2023-03-16 21:40:40,026 - INFO - main.py - train - 68 - 【train】 epoch:2 1624/2980 loss:13.1020 2023-03-16 21:40:41,220 - INFO - main.py - train - 68 - 【train】 epoch:2 1625/2980 loss:8.4088 2023-03-16 21:40:42,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1626/2980 loss:6.4772 2023-03-16 21:40:43,662 - INFO - main.py - train - 68 - 【train】 epoch:2 1627/2980 loss:4.4839 2023-03-16 21:40:44,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1628/2980 loss:2.1226 2023-03-16 21:40:46,109 - INFO - main.py - train - 68 - 【train】 epoch:2 1629/2980 loss:38.4936 2023-03-16 21:40:47,327 - INFO - main.py - train - 68 - 【train】 epoch:2 1630/2980 loss:8.3795 2023-03-16 21:40:48,561 - INFO - main.py - train - 68 - 【train】 epoch:2 1631/2980 loss:18.2939 2023-03-16 21:40:49,782 - INFO - main.py - train - 68 - 【train】 epoch:2 1632/2980 loss:1.6979 2023-03-16 21:40:51,019 - INFO - main.py - train - 68 - 【train】 epoch:2 1633/2980 loss:14.5093 2023-03-16 21:40:52,233 - INFO - main.py - train - 68 - 【train】 epoch:2 1634/2980 loss:7.9113 2023-03-16 21:40:53,457 - INFO - main.py - train - 68 - 【train】 epoch:2 1635/2980 loss:8.0577 2023-03-16 21:40:54,667 - INFO - main.py - train - 68 - 【train】 epoch:2 1636/2980 loss:12.1738 2023-03-16 21:40:55,906 - INFO - main.py - train - 68 - 【train】 epoch:2 1637/2980 loss:12.9635 2023-03-16 21:40:57,089 - INFO - main.py - train - 68 - 【train】 epoch:2 1638/2980 loss:6.2461 2023-03-16 21:40:58,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1639/2980 loss:10.3045 2023-03-16 21:40:59,532 - INFO - main.py - train - 68 - 【train】 epoch:2 1640/2980 loss:8.4713 2023-03-16 21:41:00,745 - INFO - main.py - train - 68 - 【train】 epoch:2 1641/2980 loss:8.8176 2023-03-16 21:41:01,981 - INFO - main.py - train - 68 - 【train】 epoch:2 1642/2980 loss:4.1533 2023-03-16 21:41:03,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1643/2980 loss:13.7101 2023-03-16 21:41:04,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1644/2980 loss:7.5240 2023-03-16 21:41:05,664 - INFO - main.py - train - 68 - 【train】 epoch:2 1645/2980 loss:10.2337 2023-03-16 21:41:06,871 - INFO - main.py - train - 68 - 【train】 epoch:2 1646/2980 loss:14.7218 2023-03-16 21:41:08,093 - INFO - main.py - train - 68 - 【train】 epoch:2 1647/2980 loss:8.3487 2023-03-16 21:41:09,326 - INFO - main.py - train - 68 - 【train】 epoch:2 1648/2980 loss:19.5372 2023-03-16 21:41:10,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1649/2980 loss:2.0320 2023-03-16 21:41:11,763 - INFO - main.py - train - 68 - 【train】 epoch:2 1650/2980 loss:9.5490 2023-03-16 21:41:12,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1651/2980 loss:4.1318 2023-03-16 21:41:14,147 - INFO - main.py - train - 68 - 【train】 epoch:2 1652/2980 loss:7.3332 2023-03-16 21:41:15,339 - INFO - main.py - train - 68 - 【train】 epoch:2 1653/2980 loss:8.9889 2023-03-16 21:41:16,569 - INFO - main.py - train - 68 - 【train】 epoch:2 1654/2980 loss:4.0222 2023-03-16 21:41:17,798 - INFO - main.py - train - 68 - 【train】 epoch:2 1655/2980 loss:6.6236 2023-03-16 21:41:19,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1656/2980 loss:16.2100 2023-03-16 21:41:20,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1657/2980 loss:11.1165 2023-03-16 21:41:21,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1658/2980 loss:12.3628 2023-03-16 21:41:22,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1659/2980 loss:8.0624 2023-03-16 21:41:23,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1660/2980 loss:1.8607 2023-03-16 21:41:25,225 - INFO - main.py - train - 68 - 【train】 epoch:2 1661/2980 loss:2.2102 2023-03-16 21:41:26,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1662/2980 loss:6.8263 2023-03-16 21:41:27,728 - INFO - main.py - train - 68 - 【train】 epoch:2 1663/2980 loss:10.7143 2023-03-16 21:41:28,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1664/2980 loss:0.8359 2023-03-16 21:41:30,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1665/2980 loss:10.4350 2023-03-16 21:41:31,391 - INFO - main.py - train - 68 - 【train】 epoch:2 1666/2980 loss:2.5668 2023-03-16 21:41:32,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1667/2980 loss:3.7532 2023-03-16 21:41:33,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1668/2980 loss:6.7285 2023-03-16 21:41:35,089 - INFO - main.py - train - 68 - 【train】 epoch:2 1669/2980 loss:5.7676 2023-03-16 21:41:36,319 - INFO - main.py - train - 68 - 【train】 epoch:2 1670/2980 loss:6.0943 2023-03-16 21:41:37,542 - INFO - main.py - train - 68 - 【train】 epoch:2 1671/2980 loss:1.1977 2023-03-16 21:41:38,744 - INFO - main.py - train - 68 - 【train】 epoch:2 1672/2980 loss:2.2128 2023-03-16 21:41:39,971 - INFO - main.py - train - 68 - 【train】 epoch:2 1673/2980 loss:17.5163 2023-03-16 21:41:41,169 - INFO - main.py - train - 68 - 【train】 epoch:2 1674/2980 loss:4.9199 2023-03-16 21:41:42,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1675/2980 loss:4.1711 2023-03-16 21:41:43,616 - INFO - main.py - train - 68 - 【train】 epoch:2 1676/2980 loss:13.6015 2023-03-16 21:41:44,801 - INFO - main.py - train - 68 - 【train】 epoch:2 1677/2980 loss:1.8389 2023-03-16 21:41:46,022 - INFO - main.py - train - 68 - 【train】 epoch:2 1678/2980 loss:0.6212 2023-03-16 21:41:47,223 - INFO - main.py - train - 68 - 【train】 epoch:2 1679/2980 loss:4.5445 2023-03-16 21:41:48,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1680/2980 loss:2.6983 2023-03-16 21:41:49,651 - INFO - main.py - train - 68 - 【train】 epoch:2 1681/2980 loss:0.9039 2023-03-16 21:41:50,865 - INFO - main.py - train - 68 - 【train】 epoch:2 1682/2980 loss:0.3676 2023-03-16 21:41:52,094 - INFO - main.py - train - 68 - 【train】 epoch:2 1683/2980 loss:32.2471 2023-03-16 21:41:53,331 - INFO - main.py - train - 68 - 【train】 epoch:2 1684/2980 loss:19.0634 2023-03-16 21:41:54,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1685/2980 loss:10.6535 2023-03-16 21:41:55,764 - INFO - main.py - train - 68 - 【train】 epoch:2 1686/2980 loss:3.0061 2023-03-16 21:41:56,994 - INFO - main.py - train - 68 - 【train】 epoch:2 1687/2980 loss:6.3611 2023-03-16 21:41:58,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1688/2980 loss:3.4445 2023-03-16 21:41:59,409 - INFO - main.py - train - 68 - 【train】 epoch:2 1689/2980 loss:6.9204 2023-03-16 21:42:00,618 - INFO - main.py - train - 68 - 【train】 epoch:2 1690/2980 loss:6.9636 2023-03-16 21:42:01,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1691/2980 loss:4.1495 2023-03-16 21:42:03,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1692/2980 loss:10.3122 2023-03-16 21:42:04,289 - INFO - main.py - train - 68 - 【train】 epoch:2 1693/2980 loss:25.1015 2023-03-16 21:42:05,641 - INFO - main.py - train - 68 - 【train】 epoch:2 1694/2980 loss:13.9923 2023-03-16 21:42:06,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1695/2980 loss:0.2489 2023-03-16 21:42:08,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1696/2980 loss:3.4503 2023-03-16 21:42:10,087 - INFO - main.py - train - 68 - 【train】 epoch:2 1697/2980 loss:8.1821 2023-03-16 21:42:12,028 - INFO - main.py - train - 68 - 【train】 epoch:2 1698/2980 loss:19.9278 2023-03-16 21:42:13,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1699/2980 loss:2.1960 2023-03-16 21:42:15,677 - INFO - main.py - train - 68 - 【train】 epoch:2 1700/2980 loss:4.5936 2023-03-16 21:42:17,511 - INFO - main.py - train - 68 - 【train】 epoch:2 1701/2980 loss:2.3854 2023-03-16 21:42:19,453 - INFO - main.py - train - 68 - 【train】 epoch:2 1702/2980 loss:2.4166 2023-03-16 21:42:21,310 - INFO - main.py - train - 68 - 【train】 epoch:2 1703/2980 loss:13.8965 2023-03-16 21:42:23,434 - INFO - main.py - train - 68 - 【train】 epoch:2 1704/2980 loss:24.8208 2023-03-16 21:42:25,460 - INFO - main.py - train - 68 - 【train】 epoch:2 1705/2980 loss:7.1987 2023-03-16 21:42:27,615 - INFO - main.py - train - 68 - 【train】 epoch:2 1706/2980 loss:4.2975 2023-03-16 21:42:29,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1707/2980 loss:20.1362 2023-03-16 21:42:31,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1708/2980 loss:11.9878 2023-03-16 21:42:32,215 - INFO - main.py - train - 68 - 【train】 epoch:2 1709/2980 loss:2.0897 2023-03-16 21:42:33,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1710/2980 loss:11.2796 2023-03-16 21:42:34,614 - INFO - main.py - train - 68 - 【train】 epoch:2 1711/2980 loss:8.6273 2023-03-16 21:42:35,847 - INFO - main.py - train - 68 - 【train】 epoch:2 1712/2980 loss:6.6649 2023-03-16 21:42:37,034 - INFO - main.py - train - 68 - 【train】 epoch:2 1713/2980 loss:1.7405 2023-03-16 21:42:38,251 - INFO - main.py - train - 68 - 【train】 epoch:2 1714/2980 loss:5.7141 2023-03-16 21:42:39,438 - INFO - main.py - train - 68 - 【train】 epoch:2 1715/2980 loss:7.2124 2023-03-16 21:42:40,642 - INFO - main.py - train - 68 - 【train】 epoch:2 1716/2980 loss:5.8527 2023-03-16 21:42:41,815 - INFO - main.py - train - 68 - 【train】 epoch:2 1717/2980 loss:0.6802 2023-03-16 21:42:43,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1718/2980 loss:4.9435 2023-03-16 21:42:44,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1719/2980 loss:1.5695 2023-03-16 21:42:45,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1720/2980 loss:1.6994 2023-03-16 21:42:46,594 - INFO - main.py - train - 68 - 【train】 epoch:2 1721/2980 loss:16.6909 2023-03-16 21:42:47,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1722/2980 loss:0.5789 2023-03-16 21:42:49,007 - INFO - main.py - train - 68 - 【train】 epoch:2 1723/2980 loss:8.8275 2023-03-16 21:42:50,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1724/2980 loss:9.6016 2023-03-16 21:42:51,437 - INFO - main.py - train - 68 - 【train】 epoch:2 1725/2980 loss:10.9300 2023-03-16 21:42:52,656 - INFO - main.py - train - 68 - 【train】 epoch:2 1726/2980 loss:25.3981 2023-03-16 21:42:53,875 - INFO - main.py - train - 68 - 【train】 epoch:2 1727/2980 loss:16.8872 2023-03-16 21:42:55,054 - INFO - main.py - train - 68 - 【train】 epoch:2 1728/2980 loss:8.8804 2023-03-16 21:42:56,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1729/2980 loss:2.9993 2023-03-16 21:42:57,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1730/2980 loss:15.7848 2023-03-16 21:42:58,663 - INFO - main.py - train - 68 - 【train】 epoch:2 1731/2980 loss:6.0017 2023-03-16 21:42:59,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1732/2980 loss:5.8646 2023-03-16 21:43:01,068 - INFO - main.py - train - 68 - 【train】 epoch:2 1733/2980 loss:4.0753 2023-03-16 21:43:02,323 - INFO - main.py - train - 68 - 【train】 epoch:2 1734/2980 loss:6.1111 2023-03-16 21:43:03,547 - INFO - main.py - train - 68 - 【train】 epoch:2 1735/2980 loss:6.0637 2023-03-16 21:43:04,737 - INFO - main.py - train - 68 - 【train】 epoch:2 1736/2980 loss:3.1127 2023-03-16 21:43:05,973 - INFO - main.py - train - 68 - 【train】 epoch:2 1737/2980 loss:4.3568 2023-03-16 21:43:07,191 - INFO - main.py - train - 68 - 【train】 epoch:2 1738/2980 loss:15.3804 2023-03-16 21:43:08,377 - INFO - main.py - train - 68 - 【train】 epoch:2 1739/2980 loss:2.1153 2023-03-16 21:43:09,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1740/2980 loss:12.0602 2023-03-16 21:43:10,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1741/2980 loss:7.9086 2023-03-16 21:43:12,057 - INFO - main.py - train - 68 - 【train】 epoch:2 1742/2980 loss:9.3668 2023-03-16 21:43:13,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1743/2980 loss:24.8995 2023-03-16 21:43:14,492 - INFO - main.py - train - 68 - 【train】 epoch:2 1744/2980 loss:2.1512 2023-03-16 21:43:15,731 - INFO - main.py - train - 68 - 【train】 epoch:2 1745/2980 loss:5.3399 2023-03-16 21:43:16,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1746/2980 loss:9.2086 2023-03-16 21:43:18,231 - INFO - main.py - train - 68 - 【train】 epoch:2 1747/2980 loss:20.9867 2023-03-16 21:43:19,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1748/2980 loss:9.7745 2023-03-16 21:43:20,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1749/2980 loss:8.0425 2023-03-16 21:43:21,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1750/2980 loss:8.6209 2023-03-16 21:43:23,092 - INFO - main.py - train - 68 - 【train】 epoch:2 1751/2980 loss:5.6769 2023-03-16 21:43:24,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1752/2980 loss:8.8108 2023-03-16 21:43:25,536 - INFO - main.py - train - 68 - 【train】 epoch:2 1753/2980 loss:2.1926 2023-03-16 21:43:26,721 - INFO - main.py - train - 68 - 【train】 epoch:2 1754/2980 loss:4.3141 2023-03-16 21:43:27,952 - INFO - main.py - train - 68 - 【train】 epoch:2 1755/2980 loss:12.4739 2023-03-16 21:43:29,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1756/2980 loss:11.9666 2023-03-16 21:43:30,385 - INFO - main.py - train - 68 - 【train】 epoch:2 1757/2980 loss:4.3524 2023-03-16 21:43:31,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1758/2980 loss:21.2548 2023-03-16 21:43:32,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1759/2980 loss:7.5854 2023-03-16 21:43:34,079 - INFO - main.py - train - 68 - 【train】 epoch:2 1760/2980 loss:14.6201 2023-03-16 21:43:35,284 - INFO - main.py - train - 68 - 【train】 epoch:2 1761/2980 loss:0.3228 2023-03-16 21:43:36,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1762/2980 loss:15.2354 2023-03-16 21:43:37,693 - INFO - main.py - train - 68 - 【train】 epoch:2 1763/2980 loss:14.2401 2023-03-16 21:43:38,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1764/2980 loss:9.8944 2023-03-16 21:43:40,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1765/2980 loss:22.9268 2023-03-16 21:43:41,319 - INFO - main.py - train - 68 - 【train】 epoch:2 1766/2980 loss:7.3416 2023-03-16 21:43:42,533 - INFO - main.py - train - 68 - 【train】 epoch:2 1767/2980 loss:1.8814 2023-03-16 21:43:43,742 - INFO - main.py - train - 68 - 【train】 epoch:2 1768/2980 loss:1.2381 2023-03-16 21:43:44,931 - INFO - main.py - train - 68 - 【train】 epoch:2 1769/2980 loss:4.6473 2023-03-16 21:43:46,145 - INFO - main.py - train - 68 - 【train】 epoch:2 1770/2980 loss:1.4571 2023-03-16 21:43:47,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1771/2980 loss:4.9091 2023-03-16 21:43:48,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1772/2980 loss:11.3973 2023-03-16 21:43:49,771 - INFO - main.py - train - 68 - 【train】 epoch:2 1773/2980 loss:2.7035 2023-03-16 21:43:51,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1774/2980 loss:19.1471 2023-03-16 21:43:52,204 - INFO - main.py - train - 68 - 【train】 epoch:2 1775/2980 loss:3.5060 2023-03-16 21:43:53,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1776/2980 loss:6.7220 2023-03-16 21:43:54,593 - INFO - main.py - train - 68 - 【train】 epoch:2 1777/2980 loss:1.8363 2023-03-16 21:43:55,803 - INFO - main.py - train - 68 - 【train】 epoch:2 1778/2980 loss:2.9790 2023-03-16 21:43:56,999 - INFO - main.py - train - 68 - 【train】 epoch:2 1779/2980 loss:8.4513 2023-03-16 21:43:58,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1780/2980 loss:1.4384 2023-03-16 21:43:59,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1781/2980 loss:5.2046 2023-03-16 21:44:00,689 - INFO - main.py - train - 68 - 【train】 epoch:2 1782/2980 loss:12.5262 2023-03-16 21:44:02,006 - INFO - main.py - train - 68 - 【train】 epoch:2 1783/2980 loss:1.4924 2023-03-16 21:44:03,264 - INFO - main.py - train - 68 - 【train】 epoch:2 1784/2980 loss:13.8119 2023-03-16 21:44:04,456 - INFO - main.py - train - 68 - 【train】 epoch:2 1785/2980 loss:1.0026 2023-03-16 21:44:05,694 - INFO - main.py - train - 68 - 【train】 epoch:2 1786/2980 loss:10.7723 2023-03-16 21:44:06,909 - INFO - main.py - train - 68 - 【train】 epoch:2 1787/2980 loss:3.1448 2023-03-16 21:44:18,816 - INFO - main.py - train - 68 - 【train】 epoch:3 1788/2980 loss:8.1536 2023-03-16 21:44:20,081 - INFO - main.py - train - 68 - 【train】 epoch:3 1789/2980 loss:2.8229 2023-03-16 21:44:21,387 - INFO - main.py - train - 68 - 【train】 epoch:3 1790/2980 loss:8.6674 2023-03-16 21:44:22,588 - INFO - main.py - train - 68 - 【train】 epoch:3 1791/2980 loss:5.1833 2023-03-16 21:44:23,778 - INFO - main.py - train - 68 - 【train】 epoch:3 1792/2980 loss:3.8817 2023-03-16 21:44:24,948 - INFO - main.py - train - 68 - 【train】 epoch:3 1793/2980 loss:4.9704 2023-03-16 21:44:26,180 - INFO - main.py - train - 68 - 【train】 epoch:3 1794/2980 loss:6.4259 2023-03-16 21:44:27,417 - INFO - main.py - train - 68 - 【train】 epoch:3 1795/2980 loss:5.5717 2023-03-16 21:44:28,619 - INFO - main.py - train - 68 - 【train】 epoch:3 1796/2980 loss:3.8833 2023-03-16 21:44:29,812 - INFO - main.py - train - 68 - 【train】 epoch:3 1797/2980 loss:5.2204 2023-03-16 21:44:31,015 - INFO - main.py - train - 68 - 【train】 epoch:3 1798/2980 loss:16.6878 2023-03-16 21:44:32,229 - INFO - main.py - train - 68 - 【train】 epoch:3 1799/2980 loss:24.2356 2023-03-16 21:44:33,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1800/2980 loss:5.7872 2023-03-16 21:44:34,689 - INFO - main.py - train - 68 - 【train】 epoch:3 1801/2980 loss:3.2865 2023-03-16 21:44:35,912 - INFO - main.py - train - 68 - 【train】 epoch:3 1802/2980 loss:3.7353 2023-03-16 21:44:37,172 - INFO - main.py - train - 68 - 【train】 epoch:3 1803/2980 loss:4.7209 2023-03-16 21:44:38,391 - INFO - main.py - train - 68 - 【train】 epoch:3 1804/2980 loss:2.6565 2023-03-16 21:44:39,620 - INFO - main.py - train - 68 - 【train】 epoch:3 1805/2980 loss:6.4210 2023-03-16 21:44:40,820 - INFO - main.py - train - 68 - 【train】 epoch:3 1806/2980 loss:1.0040 2023-03-16 21:44:42,051 - INFO - main.py - train - 68 - 【train】 epoch:3 1807/2980 loss:5.3594 2023-03-16 21:44:43,283 - INFO - main.py - train - 68 - 【train】 epoch:3 1808/2980 loss:9.7836 2023-03-16 21:44:44,507 - INFO - main.py - train - 68 - 【train】 epoch:3 1809/2980 loss:8.2906 2023-03-16 21:44:45,782 - INFO - main.py - train - 68 - 【train】 epoch:3 1810/2980 loss:7.1773 2023-03-16 21:44:46,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1811/2980 loss:1.3909 2023-03-16 21:44:48,236 - INFO - main.py - train - 68 - 【train】 epoch:3 1812/2980 loss:6.9649 2023-03-16 21:44:49,505 - INFO - main.py - train - 68 - 【train】 epoch:3 1813/2980 loss:2.9632 2023-03-16 21:44:50,726 - INFO - main.py - train - 68 - 【train】 epoch:3 1814/2980 loss:3.9861 2023-03-16 21:44:51,963 - INFO - main.py - train - 68 - 【train】 epoch:3 1815/2980 loss:6.4970 2023-03-16 21:44:53,215 - INFO - main.py - train - 68 - 【train】 epoch:3 1816/2980 loss:1.0967 2023-03-16 21:44:54,431 - INFO - main.py - train - 68 - 【train】 epoch:3 1817/2980 loss:1.8096 2023-03-16 21:44:55,673 - INFO - main.py - train - 68 - 【train】 epoch:3 1818/2980 loss:1.9639 2023-03-16 21:44:56,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1819/2980 loss:23.1016 2023-03-16 21:44:58,209 - INFO - main.py - train - 68 - 【train】 epoch:3 1820/2980 loss:15.5300 2023-03-16 21:44:59,423 - INFO - main.py - train - 68 - 【train】 epoch:3 1821/2980 loss:0.5574 2023-03-16 21:45:00,631 - INFO - main.py - train - 68 - 【train】 epoch:3 1822/2980 loss:4.3796 2023-03-16 21:45:01,873 - INFO - main.py - train - 68 - 【train】 epoch:3 1823/2980 loss:4.7356 2023-03-16 21:45:03,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1824/2980 loss:2.8515 2023-03-16 21:45:04,311 - INFO - main.py - train - 68 - 【train】 epoch:3 1825/2980 loss:12.2964 2023-03-16 21:45:05,576 - INFO - main.py - train - 68 - 【train】 epoch:3 1826/2980 loss:4.7419 2023-03-16 21:45:06,848 - INFO - main.py - train - 68 - 【train】 epoch:3 1827/2980 loss:5.9903 2023-03-16 21:45:08,085 - INFO - main.py - train - 68 - 【train】 epoch:3 1828/2980 loss:10.9405 2023-03-16 21:45:09,321 - INFO - main.py - train - 68 - 【train】 epoch:3 1829/2980 loss:6.5179 2023-03-16 21:45:10,523 - INFO - main.py - train - 68 - 【train】 epoch:3 1830/2980 loss:6.2841 2023-03-16 21:45:11,744 - INFO - main.py - train - 68 - 【train】 epoch:3 1831/2980 loss:7.0042 2023-03-16 21:45:12,961 - INFO - main.py - train - 68 - 【train】 epoch:3 1832/2980 loss:10.9270 2023-03-16 21:45:14,234 - INFO - main.py - train - 68 - 【train】 epoch:3 1833/2980 loss:25.9297 2023-03-16 21:45:15,415 - INFO - main.py - train - 68 - 【train】 epoch:3 1834/2980 loss:0.8951 2023-03-16 21:45:16,618 - INFO - main.py - train - 68 - 【train】 epoch:3 1835/2980 loss:4.1068 2023-03-16 21:45:17,838 - INFO - main.py - train - 68 - 【train】 epoch:3 1836/2980 loss:6.4016 2023-03-16 21:45:19,047 - INFO - main.py - train - 68 - 【train】 epoch:3 1837/2980 loss:8.0961 2023-03-16 21:45:20,262 - INFO - main.py - train - 68 - 【train】 epoch:3 1838/2980 loss:4.3285 2023-03-16 21:45:21,480 - INFO - main.py - train - 68 - 【train】 epoch:3 1839/2980 loss:1.8495 2023-03-16 21:45:22,669 - INFO - main.py - train - 68 - 【train】 epoch:3 1840/2980 loss:4.2597 2023-03-16 21:45:23,880 - INFO - main.py - train - 68 - 【train】 epoch:3 1841/2980 loss:7.9640 2023-03-16 21:45:25,114 - INFO - main.py - train - 68 - 【train】 epoch:3 1842/2980 loss:2.1851 2023-03-16 21:45:26,352 - INFO - main.py - train - 68 - 【train】 epoch:3 1843/2980 loss:1.6562 2023-03-16 21:45:27,603 - INFO - main.py - train - 68 - 【train】 epoch:3 1844/2980 loss:9.6430 2023-03-16 21:45:28,803 - INFO - main.py - train - 68 - 【train】 epoch:3 1845/2980 loss:10.1967 2023-03-16 21:45:30,014 - INFO - main.py - train - 68 - 【train】 epoch:3 1846/2980 loss:6.6125 2023-03-16 21:45:31,197 - INFO - main.py - train - 68 - 【train】 epoch:3 1847/2980 loss:4.3681 2023-03-16 21:45:32,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1848/2980 loss:11.4818 2023-03-16 21:45:33,679 - INFO - main.py - train - 68 - 【train】 epoch:3 1849/2980 loss:2.8231 2023-03-16 21:45:34,877 - INFO - main.py - train - 68 - 【train】 epoch:3 1850/2980 loss:1.2242 2023-03-16 21:45:36,102 - INFO - main.py - train - 68 - 【train】 epoch:3 1851/2980 loss:4.7175 2023-03-16 21:45:37,296 - INFO - main.py - train - 68 - 【train】 epoch:3 1852/2980 loss:3.7330 2023-03-16 21:45:38,522 - INFO - main.py - train - 68 - 【train】 epoch:3 1853/2980 loss:4.1778 2023-03-16 21:45:39,704 - INFO - main.py - train - 68 - 【train】 epoch:3 1854/2980 loss:6.3279 2023-03-16 21:45:40,915 - INFO - main.py - train - 68 - 【train】 epoch:3 1855/2980 loss:14.2817 2023-03-16 21:45:42,117 - INFO - main.py - train - 68 - 【train】 epoch:3 1856/2980 loss:6.1239 2023-03-16 21:45:43,315 - INFO - main.py - train - 68 - 【train】 epoch:3 1857/2980 loss:10.9403 2023-03-16 21:45:44,495 - INFO - main.py - train - 68 - 【train】 epoch:3 1858/2980 loss:2.6487 2023-03-16 21:45:45,693 - INFO - main.py - train - 68 - 【train】 epoch:3 1859/2980 loss:12.5878 2023-03-16 21:45:46,911 - INFO - main.py - train - 68 - 【train】 epoch:3 1860/2980 loss:23.7000 2023-03-16 21:45:48,101 - INFO - main.py - train - 68 - 【train】 epoch:3 1861/2980 loss:1.7775 2023-03-16 21:45:49,295 - INFO - main.py - train - 68 - 【train】 epoch:3 1862/2980 loss:3.4227 2023-03-16 21:45:50,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1863/2980 loss:1.6139 2023-03-16 21:45:51,677 - INFO - main.py - train - 68 - 【train】 epoch:3 1864/2980 loss:3.9446 2023-03-16 21:45:52,884 - INFO - main.py - train - 68 - 【train】 epoch:3 1865/2980 loss:2.4627 2023-03-16 21:45:54,099 - INFO - main.py - train - 68 - 【train】 epoch:3 1866/2980 loss:3.1713 2023-03-16 21:45:55,280 - INFO - main.py - train - 68 - 【train】 epoch:3 1867/2980 loss:10.1597 2023-03-16 21:45:56,524 - INFO - main.py - train - 68 - 【train】 epoch:3 1868/2980 loss:0.9967 2023-03-16 21:45:57,736 - INFO - main.py - train - 68 - 【train】 epoch:3 1869/2980 loss:4.9608 2023-03-16 21:45:58,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1870/2980 loss:4.7111 2023-03-16 21:46:00,132 - INFO - main.py - train - 68 - 【train】 epoch:3 1871/2980 loss:4.1293 2023-03-16 21:46:01,332 - INFO - main.py - train - 68 - 【train】 epoch:3 1872/2980 loss:4.5878 2023-03-16 21:46:02,527 - INFO - main.py - train - 68 - 【train】 epoch:3 1873/2980 loss:5.5294 2023-03-16 21:46:03,747 - INFO - main.py - train - 68 - 【train】 epoch:3 1874/2980 loss:1.2389 2023-03-16 21:46:04,974 - INFO - main.py - train - 68 - 【train】 epoch:3 1875/2980 loss:5.7425 2023-03-16 21:46:06,277 - INFO - main.py - train - 68 - 【train】 epoch:3 1876/2980 loss:4.5498 2023-03-16 21:46:07,495 - INFO - main.py - train - 68 - 【train】 epoch:3 1877/2980 loss:6.6923 2023-03-16 21:46:08,696 - INFO - main.py - train - 68 - 【train】 epoch:3 1878/2980 loss:7.8293 2023-03-16 21:46:09,962 - INFO - main.py - train - 68 - 【train】 epoch:3 1879/2980 loss:4.1485 2023-03-16 21:46:11,173 - INFO - main.py - train - 68 - 【train】 epoch:3 1880/2980 loss:6.8958 2023-03-16 21:46:12,384 - INFO - main.py - train - 68 - 【train】 epoch:3 1881/2980 loss:14.0992 2023-03-16 21:46:13,652 - INFO - main.py - train - 68 - 【train】 epoch:3 1882/2980 loss:9.1698 2023-03-16 21:46:14,883 - INFO - main.py - train - 68 - 【train】 epoch:3 1883/2980 loss:2.6814 2023-03-16 21:46:16,117 - INFO - main.py - train - 68 - 【train】 epoch:3 1884/2980 loss:2.6951 2023-03-16 21:46:17,321 - INFO - main.py - train - 68 - 【train】 epoch:3 1885/2980 loss:9.3880 2023-03-16 21:46:18,564 - INFO - main.py - train - 68 - 【train】 epoch:3 1886/2980 loss:6.3038 2023-03-16 21:46:19,788 - INFO - main.py - train - 68 - 【train】 epoch:3 1887/2980 loss:0.4210 2023-03-16 21:46:21,010 - INFO - main.py - train - 68 - 【train】 epoch:3 1888/2980 loss:2.3362 2023-03-16 21:46:22,251 - INFO - main.py - train - 68 - 【train】 epoch:3 1889/2980 loss:1.3989 2023-03-16 21:46:23,482 - INFO - main.py - train - 68 - 【train】 epoch:3 1890/2980 loss:8.1022 2023-03-16 21:46:24,710 - INFO - main.py - train - 68 - 【train】 epoch:3 1891/2980 loss:4.6304 2023-03-16 21:46:25,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1892/2980 loss:3.3737 2023-03-16 21:46:27,211 - INFO - main.py - train - 68 - 【train】 epoch:3 1893/2980 loss:3.2924 2023-03-16 21:46:28,483 - INFO - main.py - train - 68 - 【train】 epoch:3 1894/2980 loss:1.6295 2023-03-16 21:46:29,731 - INFO - main.py - train - 68 - 【train】 epoch:3 1895/2980 loss:4.4846 2023-03-16 21:46:30,966 - INFO - main.py - train - 68 - 【train】 epoch:3 1896/2980 loss:2.5195 2023-03-16 21:46:32,206 - INFO - main.py - train - 68 - 【train】 epoch:3 1897/2980 loss:11.2230 2023-03-16 21:46:33,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1898/2980 loss:1.9190 2023-03-16 21:46:34,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1899/2980 loss:0.8454 2023-03-16 21:46:35,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1900/2980 loss:4.5284 2023-03-16 21:46:37,193 - INFO - main.py - train - 68 - 【train】 epoch:3 1901/2980 loss:5.1028 2023-03-16 21:46:38,391 - INFO - main.py - train - 68 - 【train】 epoch:3 1902/2980 loss:0.7566 2023-03-16 21:46:39,668 - INFO - main.py - train - 68 - 【train】 epoch:3 1903/2980 loss:3.7597 2023-03-16 21:46:40,888 - INFO - main.py - train - 68 - 【train】 epoch:3 1904/2980 loss:3.2466 2023-03-16 21:46:42,140 - INFO - main.py - train - 68 - 【train】 epoch:3 1905/2980 loss:5.2889 2023-03-16 21:46:43,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1906/2980 loss:6.7052 2023-03-16 21:46:44,654 - INFO - main.py - train - 68 - 【train】 epoch:3 1907/2980 loss:26.0818 2023-03-16 21:46:45,897 - INFO - main.py - train - 68 - 【train】 epoch:3 1908/2980 loss:7.0533 2023-03-16 21:46:47,104 - INFO - main.py - train - 68 - 【train】 epoch:3 1909/2980 loss:6.0371 2023-03-16 21:46:48,336 - INFO - main.py - train - 68 - 【train】 epoch:3 1910/2980 loss:4.4249 2023-03-16 21:46:49,612 - INFO - main.py - train - 68 - 【train】 epoch:3 1911/2980 loss:7.7184 2023-03-16 21:46:50,847 - INFO - main.py - train - 68 - 【train】 epoch:3 1912/2980 loss:11.8513 2023-03-16 21:46:52,211 - INFO - main.py - train - 68 - 【train】 epoch:3 1913/2980 loss:4.4488 2023-03-16 21:46:53,554 - INFO - main.py - train - 68 - 【train】 epoch:3 1914/2980 loss:3.3527 2023-03-16 21:46:54,809 - INFO - main.py - train - 68 - 【train】 epoch:3 1915/2980 loss:2.0685 2023-03-16 21:46:56,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1916/2980 loss:12.1142 2023-03-16 21:46:57,423 - INFO - main.py - train - 68 - 【train】 epoch:3 1917/2980 loss:5.4298 2023-03-16 21:46:58,734 - INFO - main.py - train - 68 - 【train】 epoch:3 1918/2980 loss:25.0737 2023-03-16 21:47:00,109 - INFO - main.py - train - 68 - 【train】 epoch:3 1919/2980 loss:4.0794 2023-03-16 21:47:01,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1920/2980 loss:3.6573 2023-03-16 21:47:02,689 - INFO - main.py - train - 68 - 【train】 epoch:3 1921/2980 loss:2.0268 2023-03-16 21:47:03,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1922/2980 loss:2.9746 2023-03-16 21:47:05,182 - INFO - main.py - train - 68 - 【train】 epoch:3 1923/2980 loss:5.8160 2023-03-16 21:47:06,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1924/2980 loss:0.8062 2023-03-16 21:47:07,592 - INFO - main.py - train - 68 - 【train】 epoch:3 1925/2980 loss:11.1750 2023-03-16 21:47:08,783 - INFO - main.py - train - 68 - 【train】 epoch:3 1926/2980 loss:19.1336 2023-03-16 21:47:10,014 - INFO - main.py - train - 68 - 【train】 epoch:3 1927/2980 loss:12.7735 2023-03-16 21:47:11,202 - INFO - main.py - train - 68 - 【train】 epoch:3 1928/2980 loss:4.6617 2023-03-16 21:47:12,394 - INFO - main.py - train - 68 - 【train】 epoch:3 1929/2980 loss:5.7862 2023-03-16 21:47:13,593 - INFO - main.py - train - 68 - 【train】 epoch:3 1930/2980 loss:7.0565 2023-03-16 21:47:14,791 - INFO - main.py - train - 68 - 【train】 epoch:3 1931/2980 loss:6.0764 2023-03-16 21:47:15,990 - INFO - main.py - train - 68 - 【train】 epoch:3 1932/2980 loss:10.5945 2023-03-16 21:47:17,156 - INFO - main.py - train - 68 - 【train】 epoch:3 1933/2980 loss:20.8488 2023-03-16 21:47:18,345 - INFO - main.py - train - 68 - 【train】 epoch:3 1934/2980 loss:2.2782 2023-03-16 21:47:19,544 - INFO - main.py - train - 68 - 【train】 epoch:3 1935/2980 loss:3.9942 2023-03-16 21:47:20,732 - INFO - main.py - train - 68 - 【train】 epoch:3 1936/2980 loss:6.3776 2023-03-16 21:47:21,933 - INFO - main.py - train - 68 - 【train】 epoch:3 1937/2980 loss:14.7530 2023-03-16 21:47:23,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1938/2980 loss:12.2549 2023-03-16 21:47:24,279 - INFO - main.py - train - 68 - 【train】 epoch:3 1939/2980 loss:4.3778 2023-03-16 21:47:25,489 - INFO - main.py - train - 68 - 【train】 epoch:3 1940/2980 loss:3.0678 2023-03-16 21:47:26,668 - INFO - main.py - train - 68 - 【train】 epoch:3 1941/2980 loss:6.4584 2023-03-16 21:47:27,889 - INFO - main.py - train - 68 - 【train】 epoch:3 1942/2980 loss:8.2694 2023-03-16 21:47:29,095 - INFO - main.py - train - 68 - 【train】 epoch:3 1943/2980 loss:5.2986 2023-03-16 21:47:30,286 - INFO - main.py - train - 68 - 【train】 epoch:3 1944/2980 loss:4.8000 2023-03-16 21:47:31,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1945/2980 loss:1.8086 2023-03-16 21:47:32,663 - INFO - main.py - train - 68 - 【train】 epoch:3 1946/2980 loss:13.2592 2023-03-16 21:47:33,892 - INFO - main.py - train - 68 - 【train】 epoch:3 1947/2980 loss:6.3096 2023-03-16 21:47:35,061 - INFO - main.py - train - 68 - 【train】 epoch:3 1948/2980 loss:5.2559 2023-03-16 21:47:36,247 - INFO - main.py - train - 68 - 【train】 epoch:3 1949/2980 loss:5.2793 2023-03-16 21:47:37,454 - INFO - main.py - train - 68 - 【train】 epoch:3 1950/2980 loss:8.2412 2023-03-16 21:47:38,705 - INFO - main.py - train - 68 - 【train】 epoch:3 1951/2980 loss:26.3220 2023-03-16 21:47:39,895 - INFO - main.py - train - 68 - 【train】 epoch:3 1952/2980 loss:2.7330 2023-03-16 21:47:41,085 - INFO - main.py - train - 68 - 【train】 epoch:3 1953/2980 loss:7.1811 2023-03-16 21:47:42,277 - INFO - main.py - train - 68 - 【train】 epoch:3 1954/2980 loss:1.7399 2023-03-16 21:47:43,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1955/2980 loss:3.5976 2023-03-16 21:47:44,625 - INFO - main.py - train - 68 - 【train】 epoch:3 1956/2980 loss:1.8567 2023-03-16 21:47:45,856 - INFO - main.py - train - 68 - 【train】 epoch:3 1957/2980 loss:2.6176 2023-03-16 21:47:47,062 - INFO - main.py - train - 68 - 【train】 epoch:3 1958/2980 loss:3.0007 2023-03-16 21:47:48,233 - INFO - main.py - train - 68 - 【train】 epoch:3 1959/2980 loss:4.5297 2023-03-16 21:47:49,412 - INFO - main.py - train - 68 - 【train】 epoch:3 1960/2980 loss:5.0727 2023-03-16 21:47:50,577 - INFO - main.py - train - 68 - 【train】 epoch:3 1961/2980 loss:4.4677 2023-03-16 21:47:51,845 - INFO - main.py - train - 68 - 【train】 epoch:3 1962/2980 loss:5.3052 2023-03-16 21:47:53,149 - INFO - main.py - train - 68 - 【train】 epoch:3 1963/2980 loss:1.5070 2023-03-16 21:47:54,378 - INFO - main.py - train - 68 - 【train】 epoch:3 1964/2980 loss:11.9987 2023-03-16 21:47:55,561 - INFO - main.py - train - 68 - 【train】 epoch:3 1965/2980 loss:0.8716 2023-03-16 21:47:56,755 - INFO - main.py - train - 68 - 【train】 epoch:3 1966/2980 loss:5.9484 2023-03-16 21:47:57,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1967/2980 loss:4.9691 2023-03-16 21:47:59,139 - INFO - main.py - train - 68 - 【train】 epoch:3 1968/2980 loss:2.5964 2023-03-16 21:48:00,313 - INFO - main.py - train - 68 - 【train】 epoch:3 1969/2980 loss:2.4248 2023-03-16 21:48:01,507 - INFO - main.py - train - 68 - 【train】 epoch:3 1970/2980 loss:1.8597 2023-03-16 21:48:02,708 - INFO - main.py - train - 68 - 【train】 epoch:3 1971/2980 loss:1.6431 2023-03-16 21:48:03,898 - INFO - main.py - train - 68 - 【train】 epoch:3 1972/2980 loss:2.8616 2023-03-16 21:48:05,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1973/2980 loss:5.4787 2023-03-16 21:48:06,322 - INFO - main.py - train - 68 - 【train】 epoch:3 1974/2980 loss:0.9775 2023-03-16 21:48:07,527 - INFO - main.py - train - 68 - 【train】 epoch:3 1975/2980 loss:5.7731 2023-03-16 21:48:08,696 - INFO - main.py - train - 68 - 【train】 epoch:3 1976/2980 loss:9.9171 2023-03-16 21:48:09,886 - INFO - main.py - train - 68 - 【train】 epoch:3 1977/2980 loss:4.8133 2023-03-16 21:48:11,092 - INFO - main.py - train - 68 - 【train】 epoch:3 1978/2980 loss:10.6295 2023-03-16 21:48:12,284 - INFO - main.py - train - 68 - 【train】 epoch:3 1979/2980 loss:13.6966 2023-03-16 21:48:13,466 - INFO - main.py - train - 68 - 【train】 epoch:3 1980/2980 loss:3.2188 2023-03-16 21:48:14,649 - INFO - main.py - train - 68 - 【train】 epoch:3 1981/2980 loss:5.1084 2023-03-16 21:48:15,826 - INFO - main.py - train - 68 - 【train】 epoch:3 1982/2980 loss:2.7280 2023-03-16 21:48:17,001 - INFO - main.py - train - 68 - 【train】 epoch:3 1983/2980 loss:5.0785 2023-03-16 21:48:18,175 - INFO - main.py - train - 68 - 【train】 epoch:3 1984/2980 loss:4.2602 2023-03-16 21:48:19,363 - INFO - main.py - train - 68 - 【train】 epoch:3 1985/2980 loss:10.2401 2023-03-16 21:48:20,523 - INFO - main.py - train - 68 - 【train】 epoch:3 1986/2980 loss:3.0614 2023-03-16 21:48:21,711 - INFO - main.py - train - 68 - 【train】 epoch:3 1987/2980 loss:7.7809 2023-03-16 21:48:22,922 - INFO - main.py - train - 68 - 【train】 epoch:3 1988/2980 loss:2.3072 2023-03-16 21:48:24,112 - INFO - main.py - train - 68 - 【train】 epoch:3 1989/2980 loss:1.4903 2023-03-16 21:48:25,268 - INFO - main.py - train - 68 - 【train】 epoch:3 1990/2980 loss:6.1863 2023-03-16 21:48:26,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1991/2980 loss:7.9537 2023-03-16 21:48:27,702 - INFO - main.py - train - 68 - 【train】 epoch:3 1992/2980 loss:6.7577 2023-03-16 21:48:28,885 - INFO - main.py - train - 68 - 【train】 epoch:3 1993/2980 loss:3.0255 2023-03-16 21:48:30,051 - INFO - main.py - train - 68 - 【train】 epoch:3 1994/2980 loss:2.0472 2023-03-16 21:48:31,243 - INFO - main.py - train - 68 - 【train】 epoch:3 1995/2980 loss:10.0864 2023-03-16 21:48:32,433 - INFO - main.py - train - 68 - 【train】 epoch:3 1996/2980 loss:13.7977 2023-03-16 21:48:33,656 - INFO - main.py - train - 68 - 【train】 epoch:3 1997/2980 loss:6.7212 2023-03-16 21:48:34,852 - INFO - main.py - train - 68 - 【train】 epoch:3 1998/2980 loss:7.2847 2023-03-16 21:48:36,065 - INFO - main.py - train - 68 - 【train】 epoch:3 1999/2980 loss:2.8027 2023-03-16 21:48:37,240 - INFO - main.py - train - 68 - 【train】 epoch:3 2000/2980 loss:1.7394 2023-03-16 21:48:38,453 - INFO - main.py - train - 68 - 【train】 epoch:3 2001/2980 loss:4.1706 2023-03-16 21:48:39,658 - INFO - main.py - train - 68 - 【train】 epoch:3 2002/2980 loss:15.8660 2023-03-16 21:48:40,834 - INFO - main.py - train - 68 - 【train】 epoch:3 2003/2980 loss:5.9665 2023-03-16 21:48:42,015 - INFO - main.py - train - 68 - 【train】 epoch:3 2004/2980 loss:7.2970 2023-03-16 21:48:43,300 - INFO - main.py - train - 68 - 【train】 epoch:3 2005/2980 loss:8.1770 2023-03-16 21:48:44,483 - INFO - main.py - train - 68 - 【train】 epoch:3 2006/2980 loss:3.5458 2023-03-16 21:48:45,699 - INFO - main.py - train - 68 - 【train】 epoch:3 2007/2980 loss:6.1259 2023-03-16 21:48:46,880 - INFO - main.py - train - 68 - 【train】 epoch:3 2008/2980 loss:6.2983 2023-03-16 21:48:48,065 - INFO - main.py - train - 68 - 【train】 epoch:3 2009/2980 loss:1.1197 2023-03-16 21:48:49,248 - INFO - main.py - train - 68 - 【train】 epoch:3 2010/2980 loss:3.8450 2023-03-16 21:48:50,462 - INFO - main.py - train - 68 - 【train】 epoch:3 2011/2980 loss:25.6485 2023-03-16 21:48:51,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2012/2980 loss:14.0013 2023-03-16 21:48:52,864 - INFO - main.py - train - 68 - 【train】 epoch:3 2013/2980 loss:3.4954 2023-03-16 21:48:54,084 - INFO - main.py - train - 68 - 【train】 epoch:3 2014/2980 loss:14.2868 2023-03-16 21:48:55,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2015/2980 loss:3.6789 2023-03-16 21:48:56,445 - INFO - main.py - train - 68 - 【train】 epoch:3 2016/2980 loss:3.7371 2023-03-16 21:48:57,624 - INFO - main.py - train - 68 - 【train】 epoch:3 2017/2980 loss:0.4046 2023-03-16 21:48:58,805 - INFO - main.py - train - 68 - 【train】 epoch:3 2018/2980 loss:0.6445 2023-03-16 21:48:59,985 - INFO - main.py - train - 68 - 【train】 epoch:3 2019/2980 loss:0.6840 2023-03-16 21:49:01,173 - INFO - main.py - train - 68 - 【train】 epoch:3 2020/2980 loss:3.3179 2023-03-16 21:49:02,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2021/2980 loss:16.5275 2023-03-16 21:49:03,541 - INFO - main.py - train - 68 - 【train】 epoch:3 2022/2980 loss:1.3730 2023-03-16 21:49:04,724 - INFO - main.py - train - 68 - 【train】 epoch:3 2023/2980 loss:28.3391 2023-03-16 21:49:05,895 - INFO - main.py - train - 68 - 【train】 epoch:3 2024/2980 loss:2.7072 2023-03-16 21:49:07,072 - INFO - main.py - train - 68 - 【train】 epoch:3 2025/2980 loss:11.0862 2023-03-16 21:49:08,266 - INFO - main.py - train - 68 - 【train】 epoch:3 2026/2980 loss:12.2316 2023-03-16 21:49:09,461 - INFO - main.py - train - 68 - 【train】 epoch:3 2027/2980 loss:4.2860 2023-03-16 21:49:10,672 - INFO - main.py - train - 68 - 【train】 epoch:3 2028/2980 loss:11.8813 2023-03-16 21:49:11,866 - INFO - main.py - train - 68 - 【train】 epoch:3 2029/2980 loss:1.7834 2023-03-16 21:49:13,079 - INFO - main.py - train - 68 - 【train】 epoch:3 2030/2980 loss:8.0053 2023-03-16 21:49:14,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2031/2980 loss:8.9488 2023-03-16 21:49:15,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2032/2980 loss:6.2488 2023-03-16 21:49:16,662 - INFO - main.py - train - 68 - 【train】 epoch:3 2033/2980 loss:9.3312 2023-03-16 21:49:17,833 - INFO - main.py - train - 68 - 【train】 epoch:3 2034/2980 loss:4.5769 2023-03-16 21:49:19,013 - INFO - main.py - train - 68 - 【train】 epoch:3 2035/2980 loss:16.5680 2023-03-16 21:49:20,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2036/2980 loss:6.3645 2023-03-16 21:49:21,391 - INFO - main.py - train - 68 - 【train】 epoch:3 2037/2980 loss:13.4086 2023-03-16 21:49:22,576 - INFO - main.py - train - 68 - 【train】 epoch:3 2038/2980 loss:9.7894 2023-03-16 21:49:23,778 - INFO - main.py - train - 68 - 【train】 epoch:3 2039/2980 loss:7.2475 2023-03-16 21:49:24,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2040/2980 loss:13.5179 2023-03-16 21:49:26,176 - INFO - main.py - train - 68 - 【train】 epoch:3 2041/2980 loss:11.1311 2023-03-16 21:49:27,402 - INFO - main.py - train - 68 - 【train】 epoch:3 2042/2980 loss:7.2532 2023-03-16 21:49:28,616 - INFO - main.py - train - 68 - 【train】 epoch:3 2043/2980 loss:2.0573 2023-03-16 21:49:29,803 - INFO - main.py - train - 68 - 【train】 epoch:3 2044/2980 loss:1.9745 2023-03-16 21:49:30,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2045/2980 loss:7.6828 2023-03-16 21:49:32,157 - INFO - main.py - train - 68 - 【train】 epoch:3 2046/2980 loss:3.1624 2023-03-16 21:49:33,382 - INFO - main.py - train - 68 - 【train】 epoch:3 2047/2980 loss:15.0108 2023-03-16 21:49:34,629 - INFO - main.py - train - 68 - 【train】 epoch:3 2048/2980 loss:11.3414 2023-03-16 21:49:35,824 - INFO - main.py - train - 68 - 【train】 epoch:3 2049/2980 loss:5.7869 2023-03-16 21:49:37,016 - INFO - main.py - train - 68 - 【train】 epoch:3 2050/2980 loss:3.9891 2023-03-16 21:49:38,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2051/2980 loss:9.9926 2023-03-16 21:49:39,387 - INFO - main.py - train - 68 - 【train】 epoch:3 2052/2980 loss:1.0444 2023-03-16 21:49:40,560 - INFO - main.py - train - 68 - 【train】 epoch:3 2053/2980 loss:2.0840 2023-03-16 21:49:41,752 - INFO - main.py - train - 68 - 【train】 epoch:3 2054/2980 loss:7.1740 2023-03-16 21:49:42,934 - INFO - main.py - train - 68 - 【train】 epoch:3 2055/2980 loss:5.7816 2023-03-16 21:49:44,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2056/2980 loss:3.4169 2023-03-16 21:49:45,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2057/2980 loss:9.2999 2023-03-16 21:49:46,516 - INFO - main.py - train - 68 - 【train】 epoch:3 2058/2980 loss:5.2675 2023-03-16 21:49:47,720 - INFO - main.py - train - 68 - 【train】 epoch:3 2059/2980 loss:7.8756 2023-03-16 21:49:48,908 - INFO - main.py - train - 68 - 【train】 epoch:3 2060/2980 loss:5.8312 2023-03-16 21:49:50,084 - INFO - main.py - train - 68 - 【train】 epoch:3 2061/2980 loss:6.8583 2023-03-16 21:49:51,279 - INFO - main.py - train - 68 - 【train】 epoch:3 2062/2980 loss:5.5013 2023-03-16 21:49:52,448 - INFO - main.py - train - 68 - 【train】 epoch:3 2063/2980 loss:0.3114 2023-03-16 21:49:53,639 - INFO - main.py - train - 68 - 【train】 epoch:3 2064/2980 loss:6.4922 2023-03-16 21:49:54,809 - INFO - main.py - train - 68 - 【train】 epoch:3 2065/2980 loss:2.7513 2023-03-16 21:49:55,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2066/2980 loss:2.2916 2023-03-16 21:49:57,187 - INFO - main.py - train - 68 - 【train】 epoch:3 2067/2980 loss:10.4371 2023-03-16 21:49:58,461 - INFO - main.py - train - 68 - 【train】 epoch:3 2068/2980 loss:7.3574 2023-03-16 21:49:59,641 - INFO - main.py - train - 68 - 【train】 epoch:3 2069/2980 loss:2.8878 2023-03-16 21:50:00,820 - INFO - main.py - train - 68 - 【train】 epoch:3 2070/2980 loss:7.8190 2023-03-16 21:50:02,023 - INFO - main.py - train - 68 - 【train】 epoch:3 2071/2980 loss:2.9440 2023-03-16 21:50:03,225 - INFO - main.py - train - 68 - 【train】 epoch:3 2072/2980 loss:9.9693 2023-03-16 21:50:04,405 - INFO - main.py - train - 68 - 【train】 epoch:3 2073/2980 loss:2.6179 2023-03-16 21:50:05,633 - INFO - main.py - train - 68 - 【train】 epoch:3 2074/2980 loss:10.5443 2023-03-16 21:50:06,821 - INFO - main.py - train - 68 - 【train】 epoch:3 2075/2980 loss:14.0710 2023-03-16 21:50:08,033 - INFO - main.py - train - 68 - 【train】 epoch:3 2076/2980 loss:1.2816 2023-03-16 21:50:09,194 - INFO - main.py - train - 68 - 【train】 epoch:3 2077/2980 loss:4.7258 2023-03-16 21:50:10,362 - INFO - main.py - train - 68 - 【train】 epoch:3 2078/2980 loss:4.5842 2023-03-16 21:50:11,552 - INFO - main.py - train - 68 - 【train】 epoch:3 2079/2980 loss:3.5145 2023-03-16 21:50:12,780 - INFO - main.py - train - 68 - 【train】 epoch:3 2080/2980 loss:2.0676 2023-03-16 21:50:13,977 - INFO - main.py - train - 68 - 【train】 epoch:3 2081/2980 loss:11.1056 2023-03-16 21:50:15,156 - INFO - main.py - train - 68 - 【train】 epoch:3 2082/2980 loss:2.9065 2023-03-16 21:50:16,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2083/2980 loss:2.4492 2023-03-16 21:50:17,540 - INFO - main.py - train - 68 - 【train】 epoch:3 2084/2980 loss:3.5079 2023-03-16 21:50:18,792 - INFO - main.py - train - 68 - 【train】 epoch:3 2085/2980 loss:2.6441 2023-03-16 21:50:20,008 - INFO - main.py - train - 68 - 【train】 epoch:3 2086/2980 loss:12.3675 2023-03-16 21:50:21,204 - INFO - main.py - train - 68 - 【train】 epoch:3 2087/2980 loss:6.6616 2023-03-16 21:50:22,400 - INFO - main.py - train - 68 - 【train】 epoch:3 2088/2980 loss:12.9742 2023-03-16 21:50:23,591 - INFO - main.py - train - 68 - 【train】 epoch:3 2089/2980 loss:0.8893 2023-03-16 21:50:24,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2090/2980 loss:2.3788 2023-03-16 21:50:26,020 - INFO - main.py - train - 68 - 【train】 epoch:3 2091/2980 loss:3.8439 2023-03-16 21:50:27,223 - INFO - main.py - train - 68 - 【train】 epoch:3 2092/2980 loss:16.8589 2023-03-16 21:50:28,404 - INFO - main.py - train - 68 - 【train】 epoch:3 2093/2980 loss:0.8455 2023-03-16 21:50:29,633 - INFO - main.py - train - 68 - 【train】 epoch:3 2094/2980 loss:0.1456 2023-03-16 21:50:30,805 - INFO - main.py - train - 68 - 【train】 epoch:3 2095/2980 loss:1.3615 2023-03-16 21:50:31,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2096/2980 loss:5.8834 2023-03-16 21:50:33,200 - INFO - main.py - train - 68 - 【train】 epoch:3 2097/2980 loss:3.8591 2023-03-16 21:50:34,389 - INFO - main.py - train - 68 - 【train】 epoch:3 2098/2980 loss:2.0354 2023-03-16 21:50:35,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2099/2980 loss:1.0692 2023-03-16 21:50:36,783 - INFO - main.py - train - 68 - 【train】 epoch:3 2100/2980 loss:0.1701 2023-03-16 21:50:37,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2101/2980 loss:2.6999 2023-03-16 21:50:39,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2102/2980 loss:13.6195 2023-03-16 21:50:40,353 - INFO - main.py - train - 68 - 【train】 epoch:3 2103/2980 loss:0.6800 2023-03-16 21:50:41,556 - INFO - main.py - train - 68 - 【train】 epoch:3 2104/2980 loss:3.8133 2023-03-16 21:50:42,713 - INFO - main.py - train - 68 - 【train】 epoch:3 2105/2980 loss:2.0003 2023-03-16 21:50:43,894 - INFO - main.py - train - 68 - 【train】 epoch:3 2106/2980 loss:5.7870 2023-03-16 21:50:45,070 - INFO - main.py - train - 68 - 【train】 epoch:3 2107/2980 loss:1.4128 2023-03-16 21:50:46,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2108/2980 loss:16.1444 2023-03-16 21:50:47,503 - INFO - main.py - train - 68 - 【train】 epoch:3 2109/2980 loss:9.5541 2023-03-16 21:50:48,711 - INFO - main.py - train - 68 - 【train】 epoch:3 2110/2980 loss:36.5972 2023-03-16 21:50:49,895 - INFO - main.py - train - 68 - 【train】 epoch:3 2111/2980 loss:4.3186 2023-03-16 21:50:51,049 - INFO - main.py - train - 68 - 【train】 epoch:3 2112/2980 loss:6.2456 2023-03-16 21:50:52,276 - INFO - main.py - train - 68 - 【train】 epoch:3 2113/2980 loss:9.8562 2023-03-16 21:50:53,479 - INFO - main.py - train - 68 - 【train】 epoch:3 2114/2980 loss:2.1005 2023-03-16 21:50:54,702 - INFO - main.py - train - 68 - 【train】 epoch:3 2115/2980 loss:8.4324 2023-03-16 21:50:55,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2116/2980 loss:11.3589 2023-03-16 21:50:57,258 - INFO - main.py - train - 68 - 【train】 epoch:3 2117/2980 loss:4.2646 2023-03-16 21:50:58,492 - INFO - main.py - train - 68 - 【train】 epoch:3 2118/2980 loss:1.8728 2023-03-16 21:50:59,789 - INFO - main.py - train - 68 - 【train】 epoch:3 2119/2980 loss:13.3818 2023-03-16 21:51:01,068 - INFO - main.py - train - 68 - 【train】 epoch:3 2120/2980 loss:2.6659 2023-03-16 21:51:02,372 - INFO - main.py - train - 68 - 【train】 epoch:3 2121/2980 loss:3.4946 2023-03-16 21:51:03,620 - INFO - main.py - train - 68 - 【train】 epoch:3 2122/2980 loss:4.8212 2023-03-16 21:51:04,832 - INFO - main.py - train - 68 - 【train】 epoch:3 2123/2980 loss:29.4707 2023-03-16 21:51:06,087 - INFO - main.py - train - 68 - 【train】 epoch:3 2124/2980 loss:6.8228 2023-03-16 21:51:07,287 - INFO - main.py - train - 68 - 【train】 epoch:3 2125/2980 loss:8.3880 2023-03-16 21:51:08,502 - INFO - main.py - train - 68 - 【train】 epoch:3 2126/2980 loss:8.2404 2023-03-16 21:51:09,817 - INFO - main.py - train - 68 - 【train】 epoch:3 2127/2980 loss:3.8647 2023-03-16 21:51:10,991 - INFO - main.py - train - 68 - 【train】 epoch:3 2128/2980 loss:1.1929 2023-03-16 21:51:12,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2129/2980 loss:5.9385 2023-03-16 21:51:13,402 - INFO - main.py - train - 68 - 【train】 epoch:3 2130/2980 loss:11.7735 2023-03-16 21:51:14,635 - INFO - main.py - train - 68 - 【train】 epoch:3 2131/2980 loss:6.0813 2023-03-16 21:51:15,855 - INFO - main.py - train - 68 - 【train】 epoch:3 2132/2980 loss:2.4726 2023-03-16 21:51:17,046 - INFO - main.py - train - 68 - 【train】 epoch:3 2133/2980 loss:6.6907 2023-03-16 21:51:18,237 - INFO - main.py - train - 68 - 【train】 epoch:3 2134/2980 loss:1.1295 2023-03-16 21:51:19,434 - INFO - main.py - train - 68 - 【train】 epoch:3 2135/2980 loss:7.9660 2023-03-16 21:51:20,652 - INFO - main.py - train - 68 - 【train】 epoch:3 2136/2980 loss:11.1743 2023-03-16 21:51:21,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2137/2980 loss:5.0415 2023-03-16 21:51:22,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2138/2980 loss:3.6940 2023-03-16 21:51:24,154 - INFO - main.py - train - 68 - 【train】 epoch:3 2139/2980 loss:9.5146 2023-03-16 21:51:25,334 - INFO - main.py - train - 68 - 【train】 epoch:3 2140/2980 loss:9.5970 2023-03-16 21:51:26,506 - INFO - main.py - train - 68 - 【train】 epoch:3 2141/2980 loss:1.7588 2023-03-16 21:51:27,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2142/2980 loss:4.5438 2023-03-16 21:51:29,031 - INFO - main.py - train - 68 - 【train】 epoch:3 2143/2980 loss:8.7289 2023-03-16 21:51:30,370 - INFO - main.py - train - 68 - 【train】 epoch:3 2144/2980 loss:3.5977 2023-03-16 21:51:31,709 - INFO - main.py - train - 68 - 【train】 epoch:3 2145/2980 loss:1.7582 2023-03-16 21:51:32,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2146/2980 loss:2.2397 2023-03-16 21:51:34,150 - INFO - main.py - train - 68 - 【train】 epoch:3 2147/2980 loss:2.3633 2023-03-16 21:51:35,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2148/2980 loss:4.4119 2023-03-16 21:51:36,710 - INFO - main.py - train - 68 - 【train】 epoch:3 2149/2980 loss:0.5440 2023-03-16 21:51:37,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2150/2980 loss:20.7553 2023-03-16 21:51:39,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2151/2980 loss:1.4396 2023-03-16 21:51:40,684 - INFO - main.py - train - 68 - 【train】 epoch:3 2152/2980 loss:3.4464 2023-03-16 21:51:41,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2153/2980 loss:5.1387 2023-03-16 21:51:43,276 - INFO - main.py - train - 68 - 【train】 epoch:3 2154/2980 loss:4.9648 2023-03-16 21:51:44,509 - INFO - main.py - train - 68 - 【train】 epoch:3 2155/2980 loss:4.2822 2023-03-16 21:51:45,768 - INFO - main.py - train - 68 - 【train】 epoch:3 2156/2980 loss:5.3986 2023-03-16 21:51:47,046 - INFO - main.py - train - 68 - 【train】 epoch:3 2157/2980 loss:6.1873 2023-03-16 21:51:48,319 - INFO - main.py - train - 68 - 【train】 epoch:3 2158/2980 loss:2.9139 2023-03-16 21:51:49,537 - INFO - main.py - train - 68 - 【train】 epoch:3 2159/2980 loss:7.9043 2023-03-16 21:51:50,863 - INFO - main.py - train - 68 - 【train】 epoch:3 2160/2980 loss:15.5170 2023-03-16 21:51:52,213 - INFO - main.py - train - 68 - 【train】 epoch:3 2161/2980 loss:2.5180 2023-03-16 21:51:53,503 - INFO - main.py - train - 68 - 【train】 epoch:3 2162/2980 loss:10.1525 2023-03-16 21:51:54,858 - INFO - main.py - train - 68 - 【train】 epoch:3 2163/2980 loss:16.4058 2023-03-16 21:51:56,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2164/2980 loss:5.8514 2023-03-16 21:51:57,436 - INFO - main.py - train - 68 - 【train】 epoch:3 2165/2980 loss:13.7234 2023-03-16 21:51:58,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2166/2980 loss:2.8471 2023-03-16 21:51:59,909 - INFO - main.py - train - 68 - 【train】 epoch:3 2167/2980 loss:18.4343 2023-03-16 21:52:01,116 - INFO - main.py - train - 68 - 【train】 epoch:3 2168/2980 loss:7.6211 2023-03-16 21:52:02,292 - INFO - main.py - train - 68 - 【train】 epoch:3 2169/2980 loss:3.7518 2023-03-16 21:52:03,504 - INFO - main.py - train - 68 - 【train】 epoch:3 2170/2980 loss:6.4694 2023-03-16 21:52:04,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2171/2980 loss:3.6774 2023-03-16 21:52:05,909 - INFO - main.py - train - 68 - 【train】 epoch:3 2172/2980 loss:11.4759 2023-03-16 21:52:07,106 - INFO - main.py - train - 68 - 【train】 epoch:3 2173/2980 loss:3.3530 2023-03-16 21:52:08,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2174/2980 loss:21.0988 2023-03-16 21:52:09,522 - INFO - main.py - train - 68 - 【train】 epoch:3 2175/2980 loss:4.6028 2023-03-16 21:52:10,690 - INFO - main.py - train - 68 - 【train】 epoch:3 2176/2980 loss:6.7922 2023-03-16 21:52:11,897 - INFO - main.py - train - 68 - 【train】 epoch:3 2177/2980 loss:10.2150 2023-03-16 21:52:13,116 - INFO - main.py - train - 68 - 【train】 epoch:3 2178/2980 loss:7.3861 2023-03-16 21:52:14,330 - INFO - main.py - train - 68 - 【train】 epoch:3 2179/2980 loss:20.2877 2023-03-16 21:52:15,547 - INFO - main.py - train - 68 - 【train】 epoch:3 2180/2980 loss:3.5164 2023-03-16 21:52:16,708 - INFO - main.py - train - 68 - 【train】 epoch:3 2181/2980 loss:1.2821 2023-03-16 21:52:17,888 - INFO - main.py - train - 68 - 【train】 epoch:3 2182/2980 loss:3.3131 2023-03-16 21:52:19,142 - INFO - main.py - train - 68 - 【train】 epoch:3 2183/2980 loss:6.6287 2023-03-16 21:52:20,335 - INFO - main.py - train - 68 - 【train】 epoch:3 2184/2980 loss:5.5074 2023-03-16 21:52:21,605 - INFO - main.py - train - 68 - 【train】 epoch:3 2185/2980 loss:3.8432 2023-03-16 21:52:22,787 - INFO - main.py - train - 68 - 【train】 epoch:3 2186/2980 loss:1.7499 2023-03-16 21:52:24,014 - INFO - main.py - train - 68 - 【train】 epoch:3 2187/2980 loss:1.5232 2023-03-16 21:52:25,239 - INFO - main.py - train - 68 - 【train】 epoch:3 2188/2980 loss:5.5210 2023-03-16 21:52:26,679 - INFO - main.py - train - 68 - 【train】 epoch:3 2189/2980 loss:10.9946 2023-03-16 21:52:28,002 - INFO - main.py - train - 68 - 【train】 epoch:3 2190/2980 loss:7.9933 2023-03-16 21:52:29,305 - INFO - main.py - train - 68 - 【train】 epoch:3 2191/2980 loss:0.9898 2023-03-16 21:52:30,631 - INFO - main.py - train - 68 - 【train】 epoch:3 2192/2980 loss:13.7858 2023-03-16 21:52:31,876 - INFO - main.py - train - 68 - 【train】 epoch:3 2193/2980 loss:10.6360 2023-03-16 21:52:33,056 - INFO - main.py - train - 68 - 【train】 epoch:3 2194/2980 loss:1.2563 2023-03-16 21:52:34,317 - INFO - main.py - train - 68 - 【train】 epoch:3 2195/2980 loss:7.5086 2023-03-16 21:52:35,534 - INFO - main.py - train - 68 - 【train】 epoch:3 2196/2980 loss:3.9295 2023-03-16 21:52:36,731 - INFO - main.py - train - 68 - 【train】 epoch:3 2197/2980 loss:3.1365 2023-03-16 21:52:38,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2198/2980 loss:1.7349 2023-03-16 21:52:39,249 - INFO - main.py - train - 68 - 【train】 epoch:3 2199/2980 loss:0.8717 2023-03-16 21:52:40,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2200/2980 loss:1.9891 2023-03-16 21:52:41,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2201/2980 loss:4.6183 2023-03-16 21:52:43,193 - INFO - main.py - train - 68 - 【train】 epoch:3 2202/2980 loss:5.6639 2023-03-16 21:52:44,394 - INFO - main.py - train - 68 - 【train】 epoch:3 2203/2980 loss:4.0051 2023-03-16 21:52:45,563 - INFO - main.py - train - 68 - 【train】 epoch:3 2204/2980 loss:0.7376 2023-03-16 21:52:46,756 - INFO - main.py - train - 68 - 【train】 epoch:3 2205/2980 loss:14.1290 2023-03-16 21:52:47,957 - INFO - main.py - train - 68 - 【train】 epoch:3 2206/2980 loss:10.5585 2023-03-16 21:52:49,264 - INFO - main.py - train - 68 - 【train】 epoch:3 2207/2980 loss:2.9450 2023-03-16 21:52:50,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2208/2980 loss:9.3734 2023-03-16 21:52:51,757 - INFO - main.py - train - 68 - 【train】 epoch:3 2209/2980 loss:17.4044 2023-03-16 21:52:53,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2210/2980 loss:7.5302 2023-03-16 21:52:54,268 - INFO - main.py - train - 68 - 【train】 epoch:3 2211/2980 loss:12.4467 2023-03-16 21:52:55,513 - INFO - main.py - train - 68 - 【train】 epoch:3 2212/2980 loss:7.7644 2023-03-16 21:52:56,750 - INFO - main.py - train - 68 - 【train】 epoch:3 2213/2980 loss:6.1428 2023-03-16 21:52:57,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2214/2980 loss:13.4583 2023-03-16 21:52:59,227 - INFO - main.py - train - 68 - 【train】 epoch:3 2215/2980 loss:3.8095 2023-03-16 21:53:00,425 - INFO - main.py - train - 68 - 【train】 epoch:3 2216/2980 loss:6.2623 2023-03-16 21:53:01,634 - INFO - main.py - train - 68 - 【train】 epoch:3 2217/2980 loss:11.2581 2023-03-16 21:53:02,885 - INFO - main.py - train - 68 - 【train】 epoch:3 2218/2980 loss:1.8454 2023-03-16 21:53:04,147 - INFO - main.py - train - 68 - 【train】 epoch:3 2219/2980 loss:3.6118 2023-03-16 21:53:05,414 - INFO - main.py - train - 68 - 【train】 epoch:3 2220/2980 loss:3.0730 2023-03-16 21:53:06,610 - INFO - main.py - train - 68 - 【train】 epoch:3 2221/2980 loss:5.0238 2023-03-16 21:53:07,839 - INFO - main.py - train - 68 - 【train】 epoch:3 2222/2980 loss:4.9123 2023-03-16 21:53:09,053 - INFO - main.py - train - 68 - 【train】 epoch:3 2223/2980 loss:3.6700 2023-03-16 21:53:10,282 - INFO - main.py - train - 68 - 【train】 epoch:3 2224/2980 loss:7.2711 2023-03-16 21:53:11,480 - INFO - main.py - train - 68 - 【train】 epoch:3 2225/2980 loss:9.7746 2023-03-16 21:53:12,688 - INFO - main.py - train - 68 - 【train】 epoch:3 2226/2980 loss:3.8983 2023-03-16 21:53:13,923 - INFO - main.py - train - 68 - 【train】 epoch:3 2227/2980 loss:15.1771 2023-03-16 21:53:15,092 - INFO - main.py - train - 68 - 【train】 epoch:3 2228/2980 loss:5.0354 2023-03-16 21:53:16,341 - INFO - main.py - train - 68 - 【train】 epoch:3 2229/2980 loss:14.7056 2023-03-16 21:53:17,513 - INFO - main.py - train - 68 - 【train】 epoch:3 2230/2980 loss:9.2855 2023-03-16 21:53:18,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2231/2980 loss:4.2774 2023-03-16 21:53:19,886 - INFO - main.py - train - 68 - 【train】 epoch:3 2232/2980 loss:4.4036 2023-03-16 21:53:21,062 - INFO - main.py - train - 68 - 【train】 epoch:3 2233/2980 loss:5.9547 2023-03-16 21:53:22,248 - INFO - main.py - train - 68 - 【train】 epoch:3 2234/2980 loss:7.5780 2023-03-16 21:53:23,412 - INFO - main.py - train - 68 - 【train】 epoch:3 2235/2980 loss:4.4642 2023-03-16 21:53:24,571 - INFO - main.py - train - 68 - 【train】 epoch:3 2236/2980 loss:0.7790 2023-03-16 21:53:25,766 - INFO - main.py - train - 68 - 【train】 epoch:3 2237/2980 loss:3.6047 2023-03-16 21:53:26,931 - INFO - main.py - train - 68 - 【train】 epoch:3 2238/2980 loss:7.4725 2023-03-16 21:53:28,113 - INFO - main.py - train - 68 - 【train】 epoch:3 2239/2980 loss:6.0835 2023-03-16 21:53:29,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2240/2980 loss:2.8024 2023-03-16 21:53:30,478 - INFO - main.py - train - 68 - 【train】 epoch:3 2241/2980 loss:20.6905 2023-03-16 21:53:31,686 - INFO - main.py - train - 68 - 【train】 epoch:3 2242/2980 loss:5.9360 2023-03-16 21:53:32,851 - INFO - main.py - train - 68 - 【train】 epoch:3 2243/2980 loss:6.8396 2023-03-16 21:53:34,036 - INFO - main.py - train - 68 - 【train】 epoch:3 2244/2980 loss:0.4811 2023-03-16 21:53:35,231 - INFO - main.py - train - 68 - 【train】 epoch:3 2245/2980 loss:11.4253 2023-03-16 21:53:36,585 - INFO - main.py - train - 68 - 【train】 epoch:3 2246/2980 loss:12.4943 2023-03-16 21:53:37,847 - INFO - main.py - train - 68 - 【train】 epoch:3 2247/2980 loss:6.1755 2023-03-16 21:53:39,028 - INFO - main.py - train - 68 - 【train】 epoch:3 2248/2980 loss:8.8965 2023-03-16 21:53:40,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2249/2980 loss:0.1058 2023-03-16 21:53:41,410 - INFO - main.py - train - 68 - 【train】 epoch:3 2250/2980 loss:5.5820 2023-03-16 21:53:42,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2251/2980 loss:10.7905 2023-03-16 21:53:43,782 - INFO - main.py - train - 68 - 【train】 epoch:3 2252/2980 loss:7.7844 2023-03-16 21:53:45,312 - INFO - main.py - train - 68 - 【train】 epoch:3 2253/2980 loss:7.7521 2023-03-16 21:53:47,090 - INFO - main.py - train - 68 - 【train】 epoch:3 2254/2980 loss:2.6329 2023-03-16 21:53:48,417 - INFO - main.py - train - 68 - 【train】 epoch:3 2255/2980 loss:12.3929 2023-03-16 21:53:49,645 - INFO - main.py - train - 68 - 【train】 epoch:3 2256/2980 loss:1.2169 2023-03-16 21:53:51,037 - INFO - main.py - train - 68 - 【train】 epoch:3 2257/2980 loss:10.0666 2023-03-16 21:53:52,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2258/2980 loss:14.4938 2023-03-16 21:53:53,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2259/2980 loss:4.0052 2023-03-16 21:53:54,607 - INFO - main.py - train - 68 - 【train】 epoch:3 2260/2980 loss:1.5378 2023-03-16 21:53:55,832 - INFO - main.py - train - 68 - 【train】 epoch:3 2261/2980 loss:9.2951 2023-03-16 21:53:57,017 - INFO - main.py - train - 68 - 【train】 epoch:3 2262/2980 loss:3.7695 2023-03-16 21:53:58,232 - INFO - main.py - train - 68 - 【train】 epoch:3 2263/2980 loss:7.9646 2023-03-16 21:53:59,444 - INFO - main.py - train - 68 - 【train】 epoch:3 2264/2980 loss:0.8043 2023-03-16 21:54:00,678 - INFO - main.py - train - 68 - 【train】 epoch:3 2265/2980 loss:7.1309 2023-03-16 21:54:01,979 - INFO - main.py - train - 68 - 【train】 epoch:3 2266/2980 loss:20.3866 2023-03-16 21:54:03,214 - INFO - main.py - train - 68 - 【train】 epoch:3 2267/2980 loss:14.0381 2023-03-16 21:54:04,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2268/2980 loss:4.9230 2023-03-16 21:54:05,653 - INFO - main.py - train - 68 - 【train】 epoch:3 2269/2980 loss:3.8512 2023-03-16 21:54:06,848 - INFO - main.py - train - 68 - 【train】 epoch:3 2270/2980 loss:12.4315 2023-03-16 21:54:08,174 - INFO - main.py - train - 68 - 【train】 epoch:3 2271/2980 loss:21.5428 2023-03-16 21:54:09,404 - INFO - main.py - train - 68 - 【train】 epoch:3 2272/2980 loss:13.8162 2023-03-16 21:54:10,587 - INFO - main.py - train - 68 - 【train】 epoch:3 2273/2980 loss:4.7848 2023-03-16 21:54:11,767 - INFO - main.py - train - 68 - 【train】 epoch:3 2274/2980 loss:3.6486 2023-03-16 21:54:12,962 - INFO - main.py - train - 68 - 【train】 epoch:3 2275/2980 loss:2.8970 2023-03-16 21:54:14,162 - INFO - main.py - train - 68 - 【train】 epoch:3 2276/2980 loss:6.6760 2023-03-16 21:54:15,364 - INFO - main.py - train - 68 - 【train】 epoch:3 2277/2980 loss:11.0469 2023-03-16 21:54:16,573 - INFO - main.py - train - 68 - 【train】 epoch:3 2278/2980 loss:14.2970 2023-03-16 21:54:17,813 - INFO - main.py - train - 68 - 【train】 epoch:3 2279/2980 loss:11.5812 2023-03-16 21:54:36,082 - INFO - main.py - train - 68 - 【train】 epoch:3 2280/2980 loss:8.7079 2023-03-16 21:54:37,271 - INFO - main.py - train - 68 - 【train】 epoch:3 2281/2980 loss:3.2765 2023-03-16 21:54:38,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2282/2980 loss:14.3670 2023-03-16 21:54:39,625 - INFO - main.py - train - 68 - 【train】 epoch:3 2283/2980 loss:15.0068 2023-03-16 21:54:40,807 - INFO - main.py - train - 68 - 【train】 epoch:3 2284/2980 loss:15.5822 2023-03-16 21:54:42,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2285/2980 loss:21.5708 2023-03-16 21:54:43,183 - INFO - main.py - train - 68 - 【train】 epoch:3 2286/2980 loss:4.1654 2023-03-16 21:54:44,374 - INFO - main.py - train - 68 - 【train】 epoch:3 2287/2980 loss:5.0691 2023-03-16 21:54:45,575 - INFO - main.py - train - 68 - 【train】 epoch:3 2288/2980 loss:10.4108 2023-03-16 21:54:46,738 - INFO - main.py - train - 68 - 【train】 epoch:3 2289/2980 loss:2.2723 2023-03-16 21:54:47,943 - INFO - main.py - train - 68 - 【train】 epoch:3 2290/2980 loss:15.5380 2023-03-16 21:54:49,107 - INFO - main.py - train - 68 - 【train】 epoch:3 2291/2980 loss:1.1231 2023-03-16 21:54:50,271 - INFO - main.py - train - 68 - 【train】 epoch:3 2292/2980 loss:6.5693 2023-03-16 21:54:51,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2293/2980 loss:2.5788 2023-03-16 21:54:52,666 - INFO - main.py - train - 68 - 【train】 epoch:3 2294/2980 loss:5.9412 2023-03-16 21:54:53,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2295/2980 loss:6.1054 2023-03-16 21:54:54,967 - INFO - main.py - train - 68 - 【train】 epoch:3 2296/2980 loss:4.2172 2023-03-16 21:54:56,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2297/2980 loss:9.5686 2023-03-16 21:54:57,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2298/2980 loss:5.7407 2023-03-16 21:54:58,495 - INFO - main.py - train - 68 - 【train】 epoch:3 2299/2980 loss:2.5736 2023-03-16 21:54:59,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2300/2980 loss:6.9873 2023-03-16 21:55:00,842 - INFO - main.py - train - 68 - 【train】 epoch:3 2301/2980 loss:2.5624 2023-03-16 21:55:02,038 - INFO - main.py - train - 68 - 【train】 epoch:3 2302/2980 loss:8.4458 2023-03-16 21:55:03,199 - INFO - main.py - train - 68 - 【train】 epoch:3 2303/2980 loss:7.7494 2023-03-16 21:55:04,386 - INFO - main.py - train - 68 - 【train】 epoch:3 2304/2980 loss:5.0353 2023-03-16 21:55:05,539 - INFO - main.py - train - 68 - 【train】 epoch:3 2305/2980 loss:0.9487 2023-03-16 21:55:06,731 - INFO - main.py - train - 68 - 【train】 epoch:3 2306/2980 loss:5.6448 2023-03-16 21:55:07,946 - INFO - main.py - train - 68 - 【train】 epoch:3 2307/2980 loss:1.4849 2023-03-16 21:55:09,138 - INFO - main.py - train - 68 - 【train】 epoch:3 2308/2980 loss:8.5021 2023-03-16 21:55:10,302 - INFO - main.py - train - 68 - 【train】 epoch:3 2309/2980 loss:4.3726 2023-03-16 21:55:11,486 - INFO - main.py - train - 68 - 【train】 epoch:3 2310/2980 loss:8.2763 2023-03-16 21:55:12,657 - INFO - main.py - train - 68 - 【train】 epoch:3 2311/2980 loss:9.1586 2023-03-16 21:55:13,897 - INFO - main.py - train - 68 - 【train】 epoch:3 2312/2980 loss:7.2343 2023-03-16 21:55:15,416 - INFO - main.py - train - 68 - 【train】 epoch:3 2313/2980 loss:15.3636 2023-03-16 21:55:16,913 - INFO - main.py - train - 68 - 【train】 epoch:3 2314/2980 loss:20.9170 2023-03-16 21:55:18,561 - INFO - main.py - train - 68 - 【train】 epoch:3 2315/2980 loss:7.5117 2023-03-16 21:55:20,419 - INFO - main.py - train - 68 - 【train】 epoch:3 2316/2980 loss:7.6623 2023-03-16 21:55:22,530 - INFO - main.py - train - 68 - 【train】 epoch:3 2317/2980 loss:17.8658 2023-03-16 21:55:24,206 - INFO - main.py - train - 68 - 【train】 epoch:3 2318/2980 loss:8.9532 2023-03-16 21:55:26,336 - INFO - main.py - train - 68 - 【train】 epoch:3 2319/2980 loss:0.9621 2023-03-16 21:55:28,009 - INFO - main.py - train - 68 - 【train】 epoch:3 2320/2980 loss:10.8712 2023-03-16 21:55:29,851 - INFO - main.py - train - 68 - 【train】 epoch:3 2321/2980 loss:2.5052 2023-03-16 21:55:31,782 - INFO - main.py - train - 68 - 【train】 epoch:3 2322/2980 loss:0.9874 2023-03-16 21:55:33,554 - INFO - main.py - train - 68 - 【train】 epoch:3 2323/2980 loss:2.6620 2023-03-16 21:55:35,573 - INFO - main.py - train - 68 - 【train】 epoch:3 2324/2980 loss:7.4999 2023-03-16 21:55:37,662 - INFO - main.py - train - 68 - 【train】 epoch:3 2325/2980 loss:28.8482 2023-03-16 21:55:40,048 - INFO - main.py - train - 68 - 【train】 epoch:3 2326/2980 loss:6.0940 2023-03-16 21:55:43,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2327/2980 loss:4.1943 2023-03-16 21:55:46,280 - INFO - main.py - train - 68 - 【train】 epoch:3 2328/2980 loss:3.9247 2023-03-16 21:55:49,514 - INFO - main.py - train - 68 - 【train】 epoch:3 2329/2980 loss:5.5150 2023-03-16 21:55:52,120 - INFO - main.py - train - 68 - 【train】 epoch:3 2330/2980 loss:15.5492 2023-03-16 21:55:54,097 - INFO - main.py - train - 68 - 【train】 epoch:3 2331/2980 loss:3.0328 2023-03-16 21:55:57,137 - INFO - main.py - train - 68 - 【train】 epoch:3 2332/2980 loss:1.9298 2023-03-16 21:55:58,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2333/2980 loss:5.6623 2023-03-16 21:55:59,862 - INFO - main.py - train - 68 - 【train】 epoch:3 2334/2980 loss:4.8131 2023-03-16 21:56:01,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2335/2980 loss:4.3706 2023-03-16 21:56:02,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2336/2980 loss:12.2720 2023-03-16 21:56:03,684 - INFO - main.py - train - 68 - 【train】 epoch:3 2337/2980 loss:3.2036 2023-03-16 21:56:04,998 - INFO - main.py - train - 68 - 【train】 epoch:3 2338/2980 loss:19.9513 2023-03-16 21:56:06,328 - INFO - main.py - train - 68 - 【train】 epoch:3 2339/2980 loss:7.1602 2023-03-16 21:56:07,611 - INFO - main.py - train - 68 - 【train】 epoch:3 2340/2980 loss:1.5387 2023-03-16 21:56:09,016 - INFO - main.py - train - 68 - 【train】 epoch:3 2341/2980 loss:15.0990 2023-03-16 21:56:10,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2342/2980 loss:18.9554 2023-03-16 21:56:11,864 - INFO - main.py - train - 68 - 【train】 epoch:3 2343/2980 loss:10.2717 2023-03-16 21:56:13,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2344/2980 loss:3.1550 2023-03-16 21:56:14,579 - INFO - main.py - train - 68 - 【train】 epoch:3 2345/2980 loss:9.9683 2023-03-16 21:56:15,949 - INFO - main.py - train - 68 - 【train】 epoch:3 2346/2980 loss:4.2858 2023-03-16 21:56:17,225 - INFO - main.py - train - 68 - 【train】 epoch:3 2347/2980 loss:5.5258 2023-03-16 21:56:18,463 - INFO - main.py - train - 68 - 【train】 epoch:3 2348/2980 loss:16.5648 2023-03-16 21:56:19,757 - INFO - main.py - train - 68 - 【train】 epoch:3 2349/2980 loss:7.6458 2023-03-16 21:56:21,064 - INFO - main.py - train - 68 - 【train】 epoch:3 2350/2980 loss:14.7271 2023-03-16 21:56:22,409 - INFO - main.py - train - 68 - 【train】 epoch:3 2351/2980 loss:4.2147 2023-03-16 21:56:23,664 - INFO - main.py - train - 68 - 【train】 epoch:3 2352/2980 loss:1.1228 2023-03-16 21:56:24,901 - INFO - main.py - train - 68 - 【train】 epoch:3 2353/2980 loss:1.7866 2023-03-16 21:56:26,166 - INFO - main.py - train - 68 - 【train】 epoch:3 2354/2980 loss:0.7530 2023-03-16 21:56:27,564 - INFO - main.py - train - 68 - 【train】 epoch:3 2355/2980 loss:7.0727 2023-03-16 21:56:28,885 - INFO - main.py - train - 68 - 【train】 epoch:3 2356/2980 loss:1.4040 2023-03-16 21:56:30,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2357/2980 loss:8.6743 2023-03-16 21:56:31,497 - INFO - main.py - train - 68 - 【train】 epoch:3 2358/2980 loss:5.4928 2023-03-16 21:56:32,643 - INFO - main.py - train - 68 - 【train】 epoch:3 2359/2980 loss:0.4605 2023-03-16 21:56:33,848 - INFO - main.py - train - 68 - 【train】 epoch:3 2360/2980 loss:8.2881 2023-03-16 21:56:35,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2361/2980 loss:12.0286 2023-03-16 21:56:36,348 - INFO - main.py - train - 68 - 【train】 epoch:3 2362/2980 loss:1.0911 2023-03-16 21:56:37,533 - INFO - main.py - train - 68 - 【train】 epoch:3 2363/2980 loss:28.4987 2023-03-16 21:56:38,737 - INFO - main.py - train - 68 - 【train】 epoch:3 2364/2980 loss:35.3996 2023-03-16 21:56:39,932 - INFO - main.py - train - 68 - 【train】 epoch:3 2365/2980 loss:1.7410 2023-03-16 21:56:41,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2366/2980 loss:12.5596 2023-03-16 21:56:42,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2367/2980 loss:18.8136 2023-03-16 21:56:43,559 - INFO - main.py - train - 68 - 【train】 epoch:3 2368/2980 loss:11.9679 2023-03-16 21:56:44,759 - INFO - main.py - train - 68 - 【train】 epoch:3 2369/2980 loss:10.3065 2023-03-16 21:56:46,011 - INFO - main.py - train - 68 - 【train】 epoch:3 2370/2980 loss:5.4566 2023-03-16 21:56:47,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2371/2980 loss:4.6214 2023-03-16 21:56:48,425 - INFO - main.py - train - 68 - 【train】 epoch:3 2372/2980 loss:2.5438 2023-03-16 21:56:49,724 - INFO - main.py - train - 68 - 【train】 epoch:3 2373/2980 loss:3.1037 2023-03-16 21:56:50,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2374/2980 loss:5.1085 2023-03-16 21:56:52,224 - INFO - main.py - train - 68 - 【train】 epoch:3 2375/2980 loss:13.1856 2023-03-16 21:56:53,434 - INFO - main.py - train - 68 - 【train】 epoch:3 2376/2980 loss:3.2422 2023-03-16 21:56:54,640 - INFO - main.py - train - 68 - 【train】 epoch:3 2377/2980 loss:5.0503 2023-03-16 21:56:55,816 - INFO - main.py - train - 68 - 【train】 epoch:3 2378/2980 loss:0.7988 2023-03-16 21:56:57,060 - INFO - main.py - train - 68 - 【train】 epoch:3 2379/2980 loss:1.3597 2023-03-16 21:56:58,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2380/2980 loss:17.3126 2023-03-16 21:56:59,475 - INFO - main.py - train - 68 - 【train】 epoch:3 2381/2980 loss:6.7341 2023-03-16 21:57:00,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2382/2980 loss:4.4857 2023-03-16 21:57:01,873 - INFO - main.py - train - 68 - 【train】 epoch:3 2383/2980 loss:10.4063 2023-03-16 21:57:19,518 - INFO - main.py - train - 68 - 【train】 epoch:4 2384/2980 loss:3.7946 2023-03-16 21:57:24,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2385/2980 loss:4.5877 2023-03-16 21:57:26,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2386/2980 loss:4.1698 2023-03-16 21:57:28,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2387/2980 loss:19.0448 2023-03-16 21:57:30,136 - INFO - main.py - train - 68 - 【train】 epoch:4 2388/2980 loss:0.5276 2023-03-16 21:57:31,356 - INFO - main.py - train - 68 - 【train】 epoch:4 2389/2980 loss:11.2641 2023-03-16 21:57:32,669 - INFO - main.py - train - 68 - 【train】 epoch:4 2390/2980 loss:4.3349 2023-03-16 21:57:33,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2391/2980 loss:6.8896 2023-03-16 21:57:35,246 - INFO - main.py - train - 68 - 【train】 epoch:4 2392/2980 loss:9.2762 2023-03-16 21:57:36,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2393/2980 loss:5.4217 2023-03-16 21:57:37,640 - INFO - main.py - train - 68 - 【train】 epoch:4 2394/2980 loss:0.5178 2023-03-16 21:57:38,838 - INFO - main.py - train - 68 - 【train】 epoch:4 2395/2980 loss:7.9527 2023-03-16 21:57:40,067 - INFO - main.py - train - 68 - 【train】 epoch:4 2396/2980 loss:14.7309 2023-03-16 21:57:41,262 - INFO - main.py - train - 68 - 【train】 epoch:4 2397/2980 loss:2.9995 2023-03-16 21:57:42,433 - INFO - main.py - train - 68 - 【train】 epoch:4 2398/2980 loss:1.5846 2023-03-16 21:57:43,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2399/2980 loss:21.1471 2023-03-16 21:57:44,780 - INFO - main.py - train - 68 - 【train】 epoch:4 2400/2980 loss:3.4910 2023-03-16 21:57:45,963 - INFO - main.py - train - 68 - 【train】 epoch:4 2401/2980 loss:5.7843 2023-03-16 21:57:47,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2402/2980 loss:1.0174 2023-03-16 21:57:48,281 - INFO - main.py - train - 68 - 【train】 epoch:4 2403/2980 loss:10.7826 2023-03-16 21:57:49,475 - INFO - main.py - train - 68 - 【train】 epoch:4 2404/2980 loss:23.0015 2023-03-16 21:57:50,626 - INFO - main.py - train - 68 - 【train】 epoch:4 2405/2980 loss:4.1696 2023-03-16 21:57:51,822 - INFO - main.py - train - 68 - 【train】 epoch:4 2406/2980 loss:5.2696 2023-03-16 21:57:53,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2407/2980 loss:8.4828 2023-03-16 21:57:54,202 - INFO - main.py - train - 68 - 【train】 epoch:4 2408/2980 loss:14.7562 2023-03-16 21:57:55,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2409/2980 loss:18.6397 2023-03-16 21:57:56,554 - INFO - main.py - train - 68 - 【train】 epoch:4 2410/2980 loss:3.4422 2023-03-16 21:57:57,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2411/2980 loss:5.1592 2023-03-16 21:57:58,964 - INFO - main.py - train - 68 - 【train】 epoch:4 2412/2980 loss:6.9006 2023-03-16 21:58:00,227 - INFO - main.py - train - 68 - 【train】 epoch:4 2413/2980 loss:0.2353 2023-03-16 21:58:01,419 - INFO - main.py - train - 68 - 【train】 epoch:4 2414/2980 loss:6.7004 2023-03-16 21:58:02,882 - INFO - main.py - train - 68 - 【train】 epoch:4 2415/2980 loss:2.1496 2023-03-16 21:58:04,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2416/2980 loss:6.2101 2023-03-16 21:58:05,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2417/2980 loss:5.3059 2023-03-16 21:58:06,550 - INFO - main.py - train - 68 - 【train】 epoch:4 2418/2980 loss:6.7722 2023-03-16 21:58:07,713 - INFO - main.py - train - 68 - 【train】 epoch:4 2419/2980 loss:4.8422 2023-03-16 21:58:08,882 - INFO - main.py - train - 68 - 【train】 epoch:4 2420/2980 loss:3.3344 2023-03-16 21:58:10,072 - INFO - main.py - train - 68 - 【train】 epoch:4 2421/2980 loss:9.1411 2023-03-16 21:58:11,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2422/2980 loss:1.9151 2023-03-16 21:58:12,433 - INFO - main.py - train - 68 - 【train】 epoch:4 2423/2980 loss:8.7279 2023-03-16 21:58:13,646 - INFO - main.py - train - 68 - 【train】 epoch:4 2424/2980 loss:1.7422 2023-03-16 21:58:14,858 - INFO - main.py - train - 68 - 【train】 epoch:4 2425/2980 loss:21.0368 2023-03-16 21:58:16,097 - INFO - main.py - train - 68 - 【train】 epoch:4 2426/2980 loss:8.1207 2023-03-16 21:58:17,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2427/2980 loss:0.6170 2023-03-16 21:58:18,514 - INFO - main.py - train - 68 - 【train】 epoch:4 2428/2980 loss:1.3440 2023-03-16 21:58:19,743 - INFO - main.py - train - 68 - 【train】 epoch:4 2429/2980 loss:5.3277 2023-03-16 21:58:20,948 - INFO - main.py - train - 68 - 【train】 epoch:4 2430/2980 loss:5.1631 2023-03-16 21:58:22,223 - INFO - main.py - train - 68 - 【train】 epoch:4 2431/2980 loss:1.8176 2023-03-16 21:58:23,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2432/2980 loss:0.1838 2023-03-16 21:58:24,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2433/2980 loss:4.9519 2023-03-16 21:58:26,092 - INFO - main.py - train - 68 - 【train】 epoch:4 2434/2980 loss:4.3717 2023-03-16 21:58:27,373 - INFO - main.py - train - 68 - 【train】 epoch:4 2435/2980 loss:6.1326 2023-03-16 21:58:28,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2436/2980 loss:7.6501 2023-03-16 21:58:30,052 - INFO - main.py - train - 68 - 【train】 epoch:4 2437/2980 loss:12.1069 2023-03-16 21:58:31,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2438/2980 loss:1.5005 2023-03-16 21:58:32,763 - INFO - main.py - train - 68 - 【train】 epoch:4 2439/2980 loss:15.0573 2023-03-16 21:58:34,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2440/2980 loss:3.3348 2023-03-16 21:58:35,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2441/2980 loss:0.1319 2023-03-16 21:58:36,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2442/2980 loss:3.7132 2023-03-16 21:58:38,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2443/2980 loss:2.4886 2023-03-16 21:58:39,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2444/2980 loss:6.3386 2023-03-16 21:58:40,847 - INFO - main.py - train - 68 - 【train】 epoch:4 2445/2980 loss:3.5605 2023-03-16 21:58:42,153 - INFO - main.py - train - 68 - 【train】 epoch:4 2446/2980 loss:2.6368 2023-03-16 21:58:43,503 - INFO - main.py - train - 68 - 【train】 epoch:4 2447/2980 loss:3.9954 2023-03-16 21:58:44,824 - INFO - main.py - train - 68 - 【train】 epoch:4 2448/2980 loss:1.9797 2023-03-16 21:58:46,173 - INFO - main.py - train - 68 - 【train】 epoch:4 2449/2980 loss:1.7647 2023-03-16 21:58:47,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2450/2980 loss:22.4783 2023-03-16 21:58:48,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2451/2980 loss:1.5074 2023-03-16 21:58:50,254 - INFO - main.py - train - 68 - 【train】 epoch:4 2452/2980 loss:6.0678 2023-03-16 21:58:51,596 - INFO - main.py - train - 68 - 【train】 epoch:4 2453/2980 loss:20.1436 2023-03-16 21:58:52,917 - INFO - main.py - train - 68 - 【train】 epoch:4 2454/2980 loss:0.7919 2023-03-16 21:58:54,333 - INFO - main.py - train - 68 - 【train】 epoch:4 2455/2980 loss:5.9681 2023-03-16 21:58:55,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2456/2980 loss:4.8772 2023-03-16 21:58:56,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2457/2980 loss:8.3555 2023-03-16 21:58:58,350 - INFO - main.py - train - 68 - 【train】 epoch:4 2458/2980 loss:5.5362 2023-03-16 21:58:59,676 - INFO - main.py - train - 68 - 【train】 epoch:4 2459/2980 loss:6.2789 2023-03-16 21:59:01,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2460/2980 loss:12.7889 2023-03-16 21:59:02,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2461/2980 loss:3.5441 2023-03-16 21:59:03,718 - INFO - main.py - train - 68 - 【train】 epoch:4 2462/2980 loss:5.3305 2023-03-16 21:59:05,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2463/2980 loss:8.4334 2023-03-16 21:59:06,426 - INFO - main.py - train - 68 - 【train】 epoch:4 2464/2980 loss:3.1346 2023-03-16 21:59:07,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2465/2980 loss:3.6263 2023-03-16 21:59:09,073 - INFO - main.py - train - 68 - 【train】 epoch:4 2466/2980 loss:10.9372 2023-03-16 21:59:10,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2467/2980 loss:7.3587 2023-03-16 21:59:11,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2468/2980 loss:7.4816 2023-03-16 21:59:13,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2469/2980 loss:0.6992 2023-03-16 21:59:14,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2470/2980 loss:5.9881 2023-03-16 21:59:15,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2471/2980 loss:1.2503 2023-03-16 21:59:17,080 - INFO - main.py - train - 68 - 【train】 epoch:4 2472/2980 loss:1.5556 2023-03-16 21:59:18,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2473/2980 loss:6.1608 2023-03-16 21:59:19,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2474/2980 loss:7.5341 2023-03-16 21:59:21,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2475/2980 loss:9.1824 2023-03-16 21:59:22,622 - INFO - main.py - train - 68 - 【train】 epoch:4 2476/2980 loss:18.8884 2023-03-16 21:59:23,964 - INFO - main.py - train - 68 - 【train】 epoch:4 2477/2980 loss:7.1497 2023-03-16 21:59:25,270 - INFO - main.py - train - 68 - 【train】 epoch:4 2478/2980 loss:6.0367 2023-03-16 21:59:26,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2479/2980 loss:2.8185 2023-03-16 21:59:27,952 - INFO - main.py - train - 68 - 【train】 epoch:4 2480/2980 loss:9.4971 2023-03-16 21:59:29,295 - INFO - main.py - train - 68 - 【train】 epoch:4 2481/2980 loss:5.3712 2023-03-16 21:59:30,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2482/2980 loss:5.8705 2023-03-16 21:59:31,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2483/2980 loss:7.6073 2023-03-16 21:59:33,312 - INFO - main.py - train - 68 - 【train】 epoch:4 2484/2980 loss:1.7253 2023-03-16 21:59:34,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2485/2980 loss:5.0420 2023-03-16 21:59:36,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2486/2980 loss:4.4145 2023-03-16 21:59:37,313 - INFO - main.py - train - 68 - 【train】 epoch:4 2487/2980 loss:0.4729 2023-03-16 21:59:38,664 - INFO - main.py - train - 68 - 【train】 epoch:4 2488/2980 loss:7.7479 2023-03-16 21:59:39,981 - INFO - main.py - train - 68 - 【train】 epoch:4 2489/2980 loss:3.5576 2023-03-16 21:59:41,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2490/2980 loss:4.0934 2023-03-16 21:59:42,592 - INFO - main.py - train - 68 - 【train】 epoch:4 2491/2980 loss:2.8595 2023-03-16 21:59:43,926 - INFO - main.py - train - 68 - 【train】 epoch:4 2492/2980 loss:3.8099 2023-03-16 21:59:45,263 - INFO - main.py - train - 68 - 【train】 epoch:4 2493/2980 loss:6.5485 2023-03-16 21:59:46,734 - INFO - main.py - train - 68 - 【train】 epoch:4 2494/2980 loss:8.2138 2023-03-16 21:59:48,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2495/2980 loss:3.9292 2023-03-16 21:59:49,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2496/2980 loss:5.9166 2023-03-16 21:59:50,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2497/2980 loss:2.2163 2023-03-16 21:59:52,021 - INFO - main.py - train - 68 - 【train】 epoch:4 2498/2980 loss:3.1621 2023-03-16 21:59:53,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2499/2980 loss:3.1668 2023-03-16 21:59:54,741 - INFO - main.py - train - 68 - 【train】 epoch:4 2500/2980 loss:17.0260 2023-03-16 21:59:56,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2501/2980 loss:5.9708 2023-03-16 21:59:57,484 - INFO - main.py - train - 68 - 【train】 epoch:4 2502/2980 loss:5.2233 2023-03-16 21:59:58,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2503/2980 loss:7.0187 2023-03-16 22:00:00,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2504/2980 loss:5.8157 2023-03-16 22:00:01,581 - INFO - main.py - train - 68 - 【train】 epoch:4 2505/2980 loss:1.8179 2023-03-16 22:00:02,936 - INFO - main.py - train - 68 - 【train】 epoch:4 2506/2980 loss:6.4124 2023-03-16 22:00:04,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2507/2980 loss:3.5283 2023-03-16 22:00:05,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2508/2980 loss:5.7976 2023-03-16 22:00:06,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2509/2980 loss:1.3277 2023-03-16 22:00:08,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2510/2980 loss:11.4117 2023-03-16 22:00:09,655 - INFO - main.py - train - 68 - 【train】 epoch:4 2511/2980 loss:2.7727 2023-03-16 22:00:10,955 - INFO - main.py - train - 68 - 【train】 epoch:4 2512/2980 loss:2.8278 2023-03-16 22:00:12,373 - INFO - main.py - train - 68 - 【train】 epoch:4 2513/2980 loss:9.7751 2023-03-16 22:00:13,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2514/2980 loss:1.6276 2023-03-16 22:00:15,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2515/2980 loss:4.4977 2023-03-16 22:00:16,513 - INFO - main.py - train - 68 - 【train】 epoch:4 2516/2980 loss:1.8309 2023-03-16 22:00:17,873 - INFO - main.py - train - 68 - 【train】 epoch:4 2517/2980 loss:2.9919 2023-03-16 22:00:19,189 - INFO - main.py - train - 68 - 【train】 epoch:4 2518/2980 loss:2.4449 2023-03-16 22:00:20,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2519/2980 loss:2.6952 2023-03-16 22:00:21,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2520/2980 loss:13.6826 2023-03-16 22:00:23,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2521/2980 loss:8.7818 2023-03-16 22:00:24,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2522/2980 loss:16.6870 2023-03-16 22:00:25,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2523/2980 loss:2.1380 2023-03-16 22:00:27,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2524/2980 loss:5.1917 2023-03-16 22:00:28,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2525/2980 loss:3.1188 2023-03-16 22:00:30,035 - INFO - main.py - train - 68 - 【train】 epoch:4 2526/2980 loss:1.2992 2023-03-16 22:00:31,485 - INFO - main.py - train - 68 - 【train】 epoch:4 2527/2980 loss:6.2837 2023-03-16 22:00:32,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2528/2980 loss:5.0028 2023-03-16 22:00:34,172 - INFO - main.py - train - 68 - 【train】 epoch:4 2529/2980 loss:1.8169 2023-03-16 22:00:35,512 - INFO - main.py - train - 68 - 【train】 epoch:4 2530/2980 loss:2.1829 2023-03-16 22:00:36,841 - INFO - main.py - train - 68 - 【train】 epoch:4 2531/2980 loss:6.5795 2023-03-16 22:00:38,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2532/2980 loss:2.0736 2023-03-16 22:00:39,756 - INFO - main.py - train - 68 - 【train】 epoch:4 2533/2980 loss:2.2470 2023-03-16 22:00:41,072 - INFO - main.py - train - 68 - 【train】 epoch:4 2534/2980 loss:6.7636 2023-03-16 22:00:42,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2535/2980 loss:5.1861 2023-03-16 22:00:43,783 - INFO - main.py - train - 68 - 【train】 epoch:4 2536/2980 loss:4.3440 2023-03-16 22:00:45,266 - INFO - main.py - train - 68 - 【train】 epoch:4 2537/2980 loss:11.5551 2023-03-16 22:00:46,616 - INFO - main.py - train - 68 - 【train】 epoch:4 2538/2980 loss:7.0666 2023-03-16 22:00:47,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2539/2980 loss:17.8271 2023-03-16 22:00:49,315 - INFO - main.py - train - 68 - 【train】 epoch:4 2540/2980 loss:9.8008 2023-03-16 22:00:50,689 - INFO - main.py - train - 68 - 【train】 epoch:4 2541/2980 loss:1.2220 2023-03-16 22:00:52,034 - INFO - main.py - train - 68 - 【train】 epoch:4 2542/2980 loss:2.3628 2023-03-16 22:00:53,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2543/2980 loss:2.0108 2023-03-16 22:00:54,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2544/2980 loss:4.6852 2023-03-16 22:00:56,091 - INFO - main.py - train - 68 - 【train】 epoch:4 2545/2980 loss:2.1421 2023-03-16 22:00:57,408 - INFO - main.py - train - 68 - 【train】 epoch:4 2546/2980 loss:2.6386 2023-03-16 22:00:58,774 - INFO - main.py - train - 68 - 【train】 epoch:4 2547/2980 loss:1.9725 2023-03-16 22:01:00,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2548/2980 loss:4.9826 2023-03-16 22:01:01,492 - INFO - main.py - train - 68 - 【train】 epoch:4 2549/2980 loss:6.5082 2023-03-16 22:01:02,821 - INFO - main.py - train - 68 - 【train】 epoch:4 2550/2980 loss:0.8829 2023-03-16 22:01:04,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2551/2980 loss:25.6938 2023-03-16 22:01:05,496 - INFO - main.py - train - 68 - 【train】 epoch:4 2552/2980 loss:5.4228 2023-03-16 22:01:06,846 - INFO - main.py - train - 68 - 【train】 epoch:4 2553/2980 loss:3.1235 2023-03-16 22:01:08,145 - INFO - main.py - train - 68 - 【train】 epoch:4 2554/2980 loss:7.1514 2023-03-16 22:01:09,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2555/2980 loss:3.1330 2023-03-16 22:01:10,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2556/2980 loss:2.1899 2023-03-16 22:01:12,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2557/2980 loss:1.3086 2023-03-16 22:01:13,578 - INFO - main.py - train - 68 - 【train】 epoch:4 2558/2980 loss:19.6806 2023-03-16 22:01:14,895 - INFO - main.py - train - 68 - 【train】 epoch:4 2559/2980 loss:8.3599 2023-03-16 22:01:16,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2560/2980 loss:3.0890 2023-03-16 22:01:17,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2561/2980 loss:12.3642 2023-03-16 22:01:18,977 - INFO - main.py - train - 68 - 【train】 epoch:4 2562/2980 loss:1.4335 2023-03-16 22:01:20,316 - INFO - main.py - train - 68 - 【train】 epoch:4 2563/2980 loss:5.0586 2023-03-16 22:01:21,642 - INFO - main.py - train - 68 - 【train】 epoch:4 2564/2980 loss:10.4054 2023-03-16 22:01:22,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2565/2980 loss:7.9751 2023-03-16 22:01:24,319 - INFO - main.py - train - 68 - 【train】 epoch:4 2566/2980 loss:3.1642 2023-03-16 22:01:25,717 - INFO - main.py - train - 68 - 【train】 epoch:4 2567/2980 loss:8.5780 2023-03-16 22:01:27,044 - INFO - main.py - train - 68 - 【train】 epoch:4 2568/2980 loss:2.8848 2023-03-16 22:01:28,412 - INFO - main.py - train - 68 - 【train】 epoch:4 2569/2980 loss:6.3015 2023-03-16 22:01:29,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2570/2980 loss:5.7827 2023-03-16 22:01:31,126 - INFO - main.py - train - 68 - 【train】 epoch:4 2571/2980 loss:0.2926 2023-03-16 22:01:32,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2572/2980 loss:18.1046 2023-03-16 22:01:34,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2573/2980 loss:3.8160 2023-03-16 22:01:35,468 - INFO - main.py - train - 68 - 【train】 epoch:4 2574/2980 loss:1.7307 2023-03-16 22:01:36,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2575/2980 loss:1.0704 2023-03-16 22:01:38,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2576/2980 loss:7.8658 2023-03-16 22:01:39,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2577/2980 loss:0.3563 2023-03-16 22:01:40,807 - INFO - main.py - train - 68 - 【train】 epoch:4 2578/2980 loss:5.7507 2023-03-16 22:01:42,121 - INFO - main.py - train - 68 - 【train】 epoch:4 2579/2980 loss:15.5920 2023-03-16 22:01:43,574 - INFO - main.py - train - 68 - 【train】 epoch:4 2580/2980 loss:4.4022 2023-03-16 22:01:44,963 - INFO - main.py - train - 68 - 【train】 epoch:4 2581/2980 loss:7.0256 2023-03-16 22:01:46,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2582/2980 loss:0.2320 2023-03-16 22:01:47,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2583/2980 loss:3.4633 2023-03-16 22:01:48,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2584/2980 loss:8.3688 2023-03-16 22:01:50,328 - INFO - main.py - train - 68 - 【train】 epoch:4 2585/2980 loss:7.5657 2023-03-16 22:01:51,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2586/2980 loss:9.2768 2023-03-16 22:01:53,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2587/2980 loss:16.1619 2023-03-16 22:01:54,618 - INFO - main.py - train - 68 - 【train】 epoch:4 2588/2980 loss:10.9150 2023-03-16 22:01:55,984 - INFO - main.py - train - 68 - 【train】 epoch:4 2589/2980 loss:1.8598 2023-03-16 22:01:57,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2590/2980 loss:4.5791 2023-03-16 22:01:58,680 - INFO - main.py - train - 68 - 【train】 epoch:4 2591/2980 loss:12.4836 2023-03-16 22:02:00,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2592/2980 loss:3.3983 2023-03-16 22:02:01,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2593/2980 loss:0.6834 2023-03-16 22:02:02,750 - INFO - main.py - train - 68 - 【train】 epoch:4 2594/2980 loss:3.7768 2023-03-16 22:02:05,225 - INFO - main.py - train - 68 - 【train】 epoch:4 2595/2980 loss:1.5124 2023-03-16 22:02:06,903 - INFO - main.py - train - 68 - 【train】 epoch:4 2596/2980 loss:1.4360 2023-03-16 22:02:08,436 - INFO - main.py - train - 68 - 【train】 epoch:4 2597/2980 loss:10.6461 2023-03-16 22:02:09,936 - INFO - main.py - train - 68 - 【train】 epoch:4 2598/2980 loss:3.3354 2023-03-16 22:02:11,354 - INFO - main.py - train - 68 - 【train】 epoch:4 2599/2980 loss:9.6566 2023-03-16 22:02:12,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2600/2980 loss:0.5074 2023-03-16 22:02:14,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2601/2980 loss:3.4758 2023-03-16 22:02:15,687 - INFO - main.py - train - 68 - 【train】 epoch:4 2602/2980 loss:3.1350 2023-03-16 22:02:17,001 - INFO - main.py - train - 68 - 【train】 epoch:4 2603/2980 loss:7.4697 2023-03-16 22:02:18,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2604/2980 loss:16.1983 2023-03-16 22:02:19,663 - INFO - main.py - train - 68 - 【train】 epoch:4 2605/2980 loss:4.8063 2023-03-16 22:02:20,953 - INFO - main.py - train - 68 - 【train】 epoch:4 2606/2980 loss:13.2014 2023-03-16 22:02:22,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2607/2980 loss:1.6186 2023-03-16 22:02:23,692 - INFO - main.py - train - 68 - 【train】 epoch:4 2608/2980 loss:5.6922 2023-03-16 22:02:25,050 - INFO - main.py - train - 68 - 【train】 epoch:4 2609/2980 loss:5.3022 2023-03-16 22:02:26,366 - INFO - main.py - train - 68 - 【train】 epoch:4 2610/2980 loss:0.3413 2023-03-16 22:02:27,750 - INFO - main.py - train - 68 - 【train】 epoch:4 2611/2980 loss:11.4277 2023-03-16 22:02:29,095 - INFO - main.py - train - 68 - 【train】 epoch:4 2612/2980 loss:4.4715 2023-03-16 22:02:30,409 - INFO - main.py - train - 68 - 【train】 epoch:4 2613/2980 loss:9.4477 2023-03-16 22:02:31,732 - INFO - main.py - train - 68 - 【train】 epoch:4 2614/2980 loss:2.7446 2023-03-16 22:02:33,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2615/2980 loss:21.7171 2023-03-16 22:02:34,401 - INFO - main.py - train - 68 - 【train】 epoch:4 2616/2980 loss:12.1264 2023-03-16 22:02:35,715 - INFO - main.py - train - 68 - 【train】 epoch:4 2617/2980 loss:5.2280 2023-03-16 22:02:37,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2618/2980 loss:11.2195 2023-03-16 22:02:38,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2619/2980 loss:8.0938 2023-03-16 22:02:39,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2620/2980 loss:5.3236 2023-03-16 22:02:41,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2621/2980 loss:5.1661 2023-03-16 22:02:42,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2622/2980 loss:5.2158 2023-03-16 22:02:43,752 - INFO - main.py - train - 68 - 【train】 epoch:4 2623/2980 loss:2.0287 2023-03-16 22:02:45,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2624/2980 loss:2.7471 2023-03-16 22:02:46,502 - INFO - main.py - train - 68 - 【train】 epoch:4 2625/2980 loss:5.0058 2023-03-16 22:02:47,913 - INFO - main.py - train - 68 - 【train】 epoch:4 2626/2980 loss:2.5692 2023-03-16 22:02:49,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2627/2980 loss:3.9007 2023-03-16 22:02:50,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2628/2980 loss:6.1161 2023-03-16 22:02:51,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2629/2980 loss:1.6782 2023-03-16 22:02:53,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2630/2980 loss:6.2489 2023-03-16 22:02:54,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2631/2980 loss:7.0523 2023-03-16 22:02:56,078 - INFO - main.py - train - 68 - 【train】 epoch:4 2632/2980 loss:7.2436 2023-03-16 22:02:57,497 - INFO - main.py - train - 68 - 【train】 epoch:4 2633/2980 loss:4.7325 2023-03-16 22:02:58,895 - INFO - main.py - train - 68 - 【train】 epoch:4 2634/2980 loss:4.7745 2023-03-16 22:03:00,191 - INFO - main.py - train - 68 - 【train】 epoch:4 2635/2980 loss:10.8326 2023-03-16 22:03:01,734 - INFO - main.py - train - 68 - 【train】 epoch:4 2636/2980 loss:2.6162 2023-03-16 22:03:03,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2637/2980 loss:7.3859 2023-03-16 22:03:04,572 - INFO - main.py - train - 68 - 【train】 epoch:4 2638/2980 loss:5.4971 2023-03-16 22:03:06,112 - INFO - main.py - train - 68 - 【train】 epoch:4 2639/2980 loss:2.7488 2023-03-16 22:03:07,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2640/2980 loss:8.1105 2023-03-16 22:03:08,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2641/2980 loss:7.5060 2023-03-16 22:03:10,164 - INFO - main.py - train - 68 - 【train】 epoch:4 2642/2980 loss:3.1931 2023-03-16 22:03:11,601 - INFO - main.py - train - 68 - 【train】 epoch:4 2643/2980 loss:6.6602 2023-03-16 22:03:13,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2644/2980 loss:0.9565 2023-03-16 22:03:14,542 - INFO - main.py - train - 68 - 【train】 epoch:4 2645/2980 loss:7.4525 2023-03-16 22:03:16,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2646/2980 loss:13.3735 2023-03-16 22:03:17,891 - INFO - main.py - train - 68 - 【train】 epoch:4 2647/2980 loss:0.9547 2023-03-16 22:03:19,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2648/2980 loss:3.7598 2023-03-16 22:03:21,042 - INFO - main.py - train - 68 - 【train】 epoch:4 2649/2980 loss:8.1331 2023-03-16 22:03:22,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2650/2980 loss:1.0198 2023-03-16 22:03:23,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2651/2980 loss:2.0245 2023-03-16 22:03:25,589 - INFO - main.py - train - 68 - 【train】 epoch:4 2652/2980 loss:5.1077 2023-03-16 22:03:27,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2653/2980 loss:1.8874 2023-03-16 22:03:29,236 - INFO - main.py - train - 68 - 【train】 epoch:4 2654/2980 loss:0.5508 2023-03-16 22:03:30,733 - INFO - main.py - train - 68 - 【train】 epoch:4 2655/2980 loss:3.5434 2023-03-16 22:03:32,280 - INFO - main.py - train - 68 - 【train】 epoch:4 2656/2980 loss:1.8675 2023-03-16 22:03:34,251 - INFO - main.py - train - 68 - 【train】 epoch:4 2657/2980 loss:2.9789 2023-03-16 22:03:35,705 - INFO - main.py - train - 68 - 【train】 epoch:4 2658/2980 loss:4.4997 2023-03-16 22:03:37,113 - INFO - main.py - train - 68 - 【train】 epoch:4 2659/2980 loss:10.1894 2023-03-16 22:03:38,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2660/2980 loss:2.0839 2023-03-16 22:03:39,947 - INFO - main.py - train - 68 - 【train】 epoch:4 2661/2980 loss:0.4686 2023-03-16 22:03:41,794 - INFO - main.py - train - 68 - 【train】 epoch:4 2662/2980 loss:4.4151 2023-03-16 22:03:43,325 - INFO - main.py - train - 68 - 【train】 epoch:4 2663/2980 loss:1.8590 2023-03-16 22:03:44,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2664/2980 loss:19.0094 2023-03-16 22:03:46,262 - INFO - main.py - train - 68 - 【train】 epoch:4 2665/2980 loss:0.5665 2023-03-16 22:03:47,801 - INFO - main.py - train - 68 - 【train】 epoch:4 2666/2980 loss:8.5424 2023-03-16 22:03:49,270 - INFO - main.py - train - 68 - 【train】 epoch:4 2667/2980 loss:4.4304 2023-03-16 22:03:50,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2668/2980 loss:13.4677 2023-03-16 22:03:52,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2669/2980 loss:1.1442 2023-03-16 22:03:53,581 - INFO - main.py - train - 68 - 【train】 epoch:4 2670/2980 loss:0.2586 2023-03-16 22:03:54,944 - INFO - main.py - train - 68 - 【train】 epoch:4 2671/2980 loss:4.5369 2023-03-16 22:03:56,372 - INFO - main.py - train - 68 - 【train】 epoch:4 2672/2980 loss:6.4084 2023-03-16 22:03:57,819 - INFO - main.py - train - 68 - 【train】 epoch:4 2673/2980 loss:6.3183 2023-03-16 22:03:59,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2674/2980 loss:3.1258 2023-03-16 22:04:00,674 - INFO - main.py - train - 68 - 【train】 epoch:4 2675/2980 loss:9.3154 2023-03-16 22:04:02,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2676/2980 loss:1.1887 2023-03-16 22:04:03,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2677/2980 loss:2.6487 2023-03-16 22:04:04,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2678/2980 loss:0.6690 2023-03-16 22:04:06,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2679/2980 loss:6.2189 2023-03-16 22:04:07,818 - INFO - main.py - train - 68 - 【train】 epoch:4 2680/2980 loss:0.5304 2023-03-16 22:04:09,212 - INFO - main.py - train - 68 - 【train】 epoch:4 2681/2980 loss:8.1694 2023-03-16 22:04:10,567 - INFO - main.py - train - 68 - 【train】 epoch:4 2682/2980 loss:3.3835 2023-03-16 22:04:11,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2683/2980 loss:0.8431 2023-03-16 22:04:13,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2684/2980 loss:9.3016 2023-03-16 22:04:14,975 - INFO - main.py - train - 68 - 【train】 epoch:4 2685/2980 loss:2.4750 2023-03-16 22:04:16,472 - INFO - main.py - train - 68 - 【train】 epoch:4 2686/2980 loss:1.7056 2023-03-16 22:04:17,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2687/2980 loss:1.1060 2023-03-16 22:04:19,442 - INFO - main.py - train - 68 - 【train】 epoch:4 2688/2980 loss:1.9796 2023-03-16 22:04:21,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2689/2980 loss:11.5197 2023-03-16 22:04:22,506 - INFO - main.py - train - 68 - 【train】 epoch:4 2690/2980 loss:2.1586 2023-03-16 22:04:24,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2691/2980 loss:8.1705 2023-03-16 22:04:26,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2692/2980 loss:7.2955 2023-03-16 22:04:30,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2693/2980 loss:8.4395 2023-03-16 22:04:34,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2694/2980 loss:1.4027 2023-03-16 22:04:35,706 - INFO - main.py - train - 68 - 【train】 epoch:4 2695/2980 loss:0.6353 2023-03-16 22:04:37,296 - INFO - main.py - train - 68 - 【train】 epoch:4 2696/2980 loss:4.4564 2023-03-16 22:04:38,911 - INFO - main.py - train - 68 - 【train】 epoch:4 2697/2980 loss:3.9230 2023-03-16 22:04:40,423 - INFO - main.py - train - 68 - 【train】 epoch:4 2698/2980 loss:0.6689 2023-03-16 22:04:41,821 - INFO - main.py - train - 68 - 【train】 epoch:4 2699/2980 loss:5.1920 2023-03-16 22:04:43,212 - INFO - main.py - train - 68 - 【train】 epoch:4 2700/2980 loss:0.5245 2023-03-16 22:04:44,634 - INFO - main.py - train - 68 - 【train】 epoch:4 2701/2980 loss:16.1771 2023-03-16 22:04:46,173 - INFO - main.py - train - 68 - 【train】 epoch:4 2702/2980 loss:10.6314 2023-03-16 22:04:47,533 - INFO - main.py - train - 68 - 【train】 epoch:4 2703/2980 loss:1.7618 2023-03-16 22:04:48,872 - INFO - main.py - train - 68 - 【train】 epoch:4 2704/2980 loss:2.1718 2023-03-16 22:04:50,204 - INFO - main.py - train - 68 - 【train】 epoch:4 2705/2980 loss:1.7592 2023-03-16 22:04:51,551 - INFO - main.py - train - 68 - 【train】 epoch:4 2706/2980 loss:2.0182 2023-03-16 22:04:52,898 - INFO - main.py - train - 68 - 【train】 epoch:4 2707/2980 loss:29.0686 2023-03-16 22:04:54,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2708/2980 loss:6.2019 2023-03-16 22:04:55,722 - INFO - main.py - train - 68 - 【train】 epoch:4 2709/2980 loss:6.4201 2023-03-16 22:04:57,274 - INFO - main.py - train - 68 - 【train】 epoch:4 2710/2980 loss:10.5805 2023-03-16 22:04:58,991 - INFO - main.py - train - 68 - 【train】 epoch:4 2711/2980 loss:0.7352 2023-03-16 22:05:00,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2712/2980 loss:10.4639 2023-03-16 22:05:01,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2713/2980 loss:12.6382 2023-03-16 22:05:03,233 - INFO - main.py - train - 68 - 【train】 epoch:4 2714/2980 loss:14.9689 2023-03-16 22:05:04,526 - INFO - main.py - train - 68 - 【train】 epoch:4 2715/2980 loss:0.8075 2023-03-16 22:05:06,003 - INFO - main.py - train - 68 - 【train】 epoch:4 2716/2980 loss:0.1720 2023-03-16 22:05:07,413 - INFO - main.py - train - 68 - 【train】 epoch:4 2717/2980 loss:2.0297 2023-03-16 22:05:09,197 - INFO - main.py - train - 68 - 【train】 epoch:4 2718/2980 loss:5.4806 2023-03-16 22:05:10,962 - INFO - main.py - train - 68 - 【train】 epoch:4 2719/2980 loss:1.0854 2023-03-16 22:05:12,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2720/2980 loss:6.9931 2023-03-16 22:05:13,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2721/2980 loss:0.3075 2023-03-16 22:05:14,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2722/2980 loss:3.0513 2023-03-16 22:05:16,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2723/2980 loss:2.6967 2023-03-16 22:05:17,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2724/2980 loss:10.6345 2023-03-16 22:05:18,972 - INFO - main.py - train - 68 - 【train】 epoch:4 2725/2980 loss:3.2434 2023-03-16 22:05:20,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2726/2980 loss:6.9089 2023-03-16 22:05:22,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2727/2980 loss:2.0277 2023-03-16 22:05:24,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2728/2980 loss:8.2260 2023-03-16 22:05:26,346 - INFO - main.py - train - 68 - 【train】 epoch:4 2729/2980 loss:2.1401 2023-03-16 22:05:27,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2730/2980 loss:7.7906 2023-03-16 22:05:29,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2731/2980 loss:9.1630 2023-03-16 22:05:30,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2732/2980 loss:7.7080 2023-03-16 22:05:32,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2733/2980 loss:11.8390 2023-03-16 22:05:33,654 - INFO - main.py - train - 68 - 【train】 epoch:4 2734/2980 loss:1.0527 2023-03-16 22:05:35,285 - INFO - main.py - train - 68 - 【train】 epoch:4 2735/2980 loss:2.4244 2023-03-16 22:05:36,602 - INFO - main.py - train - 68 - 【train】 epoch:4 2736/2980 loss:6.4746 2023-03-16 22:05:37,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2737/2980 loss:1.7848 2023-03-16 22:05:39,194 - INFO - main.py - train - 68 - 【train】 epoch:4 2738/2980 loss:3.5043 2023-03-16 22:05:40,694 - INFO - main.py - train - 68 - 【train】 epoch:4 2739/2980 loss:8.9345 2023-03-16 22:05:42,674 - INFO - main.py - train - 68 - 【train】 epoch:4 2740/2980 loss:10.4074 2023-03-16 22:05:44,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2741/2980 loss:4.2774 2023-03-16 22:05:46,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2742/2980 loss:1.3251 2023-03-16 22:05:47,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2743/2980 loss:4.1335 2023-03-16 22:05:49,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2744/2980 loss:3.4042 2023-03-16 22:05:50,536 - INFO - main.py - train - 68 - 【train】 epoch:4 2745/2980 loss:4.5000 2023-03-16 22:05:51,908 - INFO - main.py - train - 68 - 【train】 epoch:4 2746/2980 loss:3.3460 2023-03-16 22:05:53,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2747/2980 loss:2.0070 2023-03-16 22:05:54,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2748/2980 loss:6.5261 2023-03-16 22:05:56,094 - INFO - main.py - train - 68 - 【train】 epoch:4 2749/2980 loss:4.6338 2023-03-16 22:05:57,735 - INFO - main.py - train - 68 - 【train】 epoch:4 2750/2980 loss:9.8199 2023-03-16 22:05:59,524 - INFO - main.py - train - 68 - 【train】 epoch:4 2751/2980 loss:3.9373 2023-03-16 22:06:01,132 - INFO - main.py - train - 68 - 【train】 epoch:4 2752/2980 loss:3.8811 2023-03-16 22:06:03,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2753/2980 loss:1.6435 2023-03-16 22:06:04,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2754/2980 loss:5.7557 2023-03-16 22:06:06,303 - INFO - main.py - train - 68 - 【train】 epoch:4 2755/2980 loss:11.4461 2023-03-16 22:06:07,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2756/2980 loss:5.1771 2023-03-16 22:06:09,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2757/2980 loss:4.0166 2023-03-16 22:06:10,432 - INFO - main.py - train - 68 - 【train】 epoch:4 2758/2980 loss:4.5960 2023-03-16 22:06:11,816 - INFO - main.py - train - 68 - 【train】 epoch:4 2759/2980 loss:0.4077 2023-03-16 22:06:13,264 - INFO - main.py - train - 68 - 【train】 epoch:4 2760/2980 loss:8.2217 2023-03-16 22:06:14,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2761/2980 loss:2.1248 2023-03-16 22:06:16,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2762/2980 loss:1.0562 2023-03-16 22:06:18,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2763/2980 loss:0.9764 2023-03-16 22:06:19,996 - INFO - main.py - train - 68 - 【train】 epoch:4 2764/2980 loss:6.1612 2023-03-16 22:06:21,471 - INFO - main.py - train - 68 - 【train】 epoch:4 2765/2980 loss:7.5995 2023-03-16 22:06:23,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2766/2980 loss:6.7399 2023-03-16 22:06:24,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2767/2980 loss:5.2913 2023-03-16 22:06:26,301 - INFO - main.py - train - 68 - 【train】 epoch:4 2768/2980 loss:4.3289 2023-03-16 22:06:27,714 - INFO - main.py - train - 68 - 【train】 epoch:4 2769/2980 loss:0.8323 2023-03-16 22:06:29,120 - INFO - main.py - train - 68 - 【train】 epoch:4 2770/2980 loss:3.1176 2023-03-16 22:06:30,521 - INFO - main.py - train - 68 - 【train】 epoch:4 2771/2980 loss:4.5713 2023-03-16 22:06:31,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2772/2980 loss:9.3115 2023-03-16 22:06:33,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2773/2980 loss:8.9372 2023-03-16 22:06:34,761 - INFO - main.py - train - 68 - 【train】 epoch:4 2774/2980 loss:10.4007 2023-03-16 22:06:36,682 - INFO - main.py - train - 68 - 【train】 epoch:4 2775/2980 loss:6.2212 2023-03-16 22:06:38,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2776/2980 loss:7.6596 2023-03-16 22:06:40,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2777/2980 loss:6.5774 2023-03-16 22:06:42,109 - INFO - main.py - train - 68 - 【train】 epoch:4 2778/2980 loss:1.5573 2023-03-16 22:06:43,451 - INFO - main.py - train - 68 - 【train】 epoch:4 2779/2980 loss:0.5546 2023-03-16 22:06:44,826 - INFO - main.py - train - 68 - 【train】 epoch:4 2780/2980 loss:8.0860 2023-03-16 22:06:46,292 - INFO - main.py - train - 68 - 【train】 epoch:4 2781/2980 loss:3.6173 2023-03-16 22:06:47,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2782/2980 loss:1.8433 2023-03-16 22:06:49,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2783/2980 loss:9.7665 2023-03-16 22:06:50,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2784/2980 loss:2.7034 2023-03-16 22:06:52,141 - INFO - main.py - train - 68 - 【train】 epoch:4 2785/2980 loss:3.6086 2023-03-16 22:06:53,534 - INFO - main.py - train - 68 - 【train】 epoch:4 2786/2980 loss:12.1684 2023-03-16 22:06:54,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2787/2980 loss:2.6155 2023-03-16 22:06:56,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2788/2980 loss:0.6360 2023-03-16 22:06:57,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2789/2980 loss:9.7793 2023-03-16 22:06:59,217 - INFO - main.py - train - 68 - 【train】 epoch:4 2790/2980 loss:5.9196 2023-03-16 22:07:00,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2791/2980 loss:1.8292 2023-03-16 22:07:02,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2792/2980 loss:9.6889 2023-03-16 22:07:03,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2793/2980 loss:3.8421 2023-03-16 22:07:04,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2794/2980 loss:1.7841 2023-03-16 22:07:06,362 - INFO - main.py - train - 68 - 【train】 epoch:4 2795/2980 loss:12.4949 2023-03-16 22:07:07,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2796/2980 loss:14.5487 2023-03-16 22:07:09,305 - INFO - main.py - train - 68 - 【train】 epoch:4 2797/2980 loss:5.7399 2023-03-16 22:07:10,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2798/2980 loss:8.7142 2023-03-16 22:07:12,271 - INFO - main.py - train - 68 - 【train】 epoch:4 2799/2980 loss:4.2286 2023-03-16 22:07:13,764 - INFO - main.py - train - 68 - 【train】 epoch:4 2800/2980 loss:3.6253 2023-03-16 22:07:15,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2801/2980 loss:1.9074 2023-03-16 22:07:16,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2802/2980 loss:8.9720 2023-03-16 22:07:18,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2803/2980 loss:4.5500 2023-03-16 22:07:19,454 - INFO - main.py - train - 68 - 【train】 epoch:4 2804/2980 loss:10.7935 2023-03-16 22:07:20,844 - INFO - main.py - train - 68 - 【train】 epoch:4 2805/2980 loss:6.5613 2023-03-16 22:07:22,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2806/2980 loss:2.7623 2023-03-16 22:07:23,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2807/2980 loss:3.0624 2023-03-16 22:07:25,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2808/2980 loss:12.0483 2023-03-16 22:07:26,492 - INFO - main.py - train - 68 - 【train】 epoch:4 2809/2980 loss:5.2565 2023-03-16 22:07:27,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2810/2980 loss:3.6978 2023-03-16 22:07:29,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2811/2980 loss:3.2770 2023-03-16 22:07:30,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2812/2980 loss:1.3322 2023-03-16 22:07:32,486 - INFO - main.py - train - 68 - 【train】 epoch:4 2813/2980 loss:8.6387 2023-03-16 22:07:34,146 - INFO - main.py - train - 68 - 【train】 epoch:4 2814/2980 loss:3.4760 2023-03-16 22:07:35,911 - INFO - main.py - train - 68 - 【train】 epoch:4 2815/2980 loss:18.2148 2023-03-16 22:07:38,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2816/2980 loss:4.7989 2023-03-16 22:07:40,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2817/2980 loss:3.0940 2023-03-16 22:07:42,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2818/2980 loss:21.9132 2023-03-16 22:07:43,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2819/2980 loss:0.2040 2023-03-16 22:07:45,272 - INFO - main.py - train - 68 - 【train】 epoch:4 2820/2980 loss:2.6069 2023-03-16 22:07:46,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2821/2980 loss:15.6512 2023-03-16 22:07:48,456 - INFO - main.py - train - 68 - 【train】 epoch:4 2822/2980 loss:0.1579 2023-03-16 22:07:50,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2823/2980 loss:1.8877 2023-03-16 22:07:52,265 - INFO - main.py - train - 68 - 【train】 epoch:4 2824/2980 loss:19.3984 2023-03-16 22:07:53,665 - INFO - main.py - train - 68 - 【train】 epoch:4 2825/2980 loss:4.5348 2023-03-16 22:07:55,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2826/2980 loss:3.7760 2023-03-16 22:07:56,444 - INFO - main.py - train - 68 - 【train】 epoch:4 2827/2980 loss:1.9100 2023-03-16 22:07:57,894 - INFO - main.py - train - 68 - 【train】 epoch:4 2828/2980 loss:5.6391 2023-03-16 22:07:59,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2829/2980 loss:3.4590 2023-03-16 22:08:00,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2830/2980 loss:0.9683 2023-03-16 22:08:02,096 - INFO - main.py - train - 68 - 【train】 epoch:4 2831/2980 loss:3.4440 2023-03-16 22:08:03,491 - INFO - main.py - train - 68 - 【train】 epoch:4 2832/2980 loss:2.7993 2023-03-16 22:08:04,813 - INFO - main.py - train - 68 - 【train】 epoch:4 2833/2980 loss:8.7506 2023-03-16 22:08:06,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2834/2980 loss:0.5705 2023-03-16 22:08:07,887 - INFO - main.py - train - 68 - 【train】 epoch:4 2835/2980 loss:12.2698 2023-03-16 22:08:09,353 - INFO - main.py - train - 68 - 【train】 epoch:4 2836/2980 loss:3.9613 2023-03-16 22:08:10,687 - INFO - main.py - train - 68 - 【train】 epoch:4 2837/2980 loss:11.4046 2023-03-16 22:08:12,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2838/2980 loss:11.1815 2023-03-16 22:08:13,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2839/2980 loss:2.8160 2023-03-16 22:08:14,813 - INFO - main.py - train - 68 - 【train】 epoch:4 2840/2980 loss:5.4375 2023-03-16 22:08:16,182 - INFO - main.py - train - 68 - 【train】 epoch:4 2841/2980 loss:6.3839 2023-03-16 22:08:17,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2842/2980 loss:17.3599 2023-03-16 22:08:18,881 - INFO - main.py - train - 68 - 【train】 epoch:4 2843/2980 loss:12.0927 2023-03-16 22:08:20,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2844/2980 loss:4.5371 2023-03-16 22:08:21,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2845/2980 loss:2.3761 2023-03-16 22:08:22,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2846/2980 loss:0.1607 2023-03-16 22:08:24,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2847/2980 loss:4.5901 2023-03-16 22:08:25,426 - INFO - main.py - train - 68 - 【train】 epoch:4 2848/2980 loss:10.8950 2023-03-16 22:08:26,732 - INFO - main.py - train - 68 - 【train】 epoch:4 2849/2980 loss:11.2784 2023-03-16 22:08:28,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2850/2980 loss:4.7578 2023-03-16 22:08:29,526 - INFO - main.py - train - 68 - 【train】 epoch:4 2851/2980 loss:0.6832 2023-03-16 22:08:31,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2852/2980 loss:2.2143 2023-03-16 22:08:33,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2853/2980 loss:3.3659 2023-03-16 22:08:34,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2854/2980 loss:7.1293 2023-03-16 22:08:36,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2855/2980 loss:7.9174 2023-03-16 22:08:38,221 - INFO - main.py - train - 68 - 【train】 epoch:4 2856/2980 loss:1.2209 2023-03-16 22:08:40,371 - INFO - main.py - train - 68 - 【train】 epoch:4 2857/2980 loss:5.3497 2023-03-16 22:08:41,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2858/2980 loss:3.1747 2023-03-16 22:08:43,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2859/2980 loss:7.3216 2023-03-16 22:08:44,632 - INFO - main.py - train - 68 - 【train】 epoch:4 2860/2980 loss:5.4642 2023-03-16 22:08:45,967 - INFO - main.py - train - 68 - 【train】 epoch:4 2861/2980 loss:11.4454 2023-03-16 22:08:47,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2862/2980 loss:7.9655 2023-03-16 22:08:48,894 - INFO - main.py - train - 68 - 【train】 epoch:4 2863/2980 loss:15.9956 2023-03-16 22:08:50,631 - INFO - main.py - train - 68 - 【train】 epoch:4 2864/2980 loss:3.4997 2023-03-16 22:08:52,421 - INFO - main.py - train - 68 - 【train】 epoch:4 2865/2980 loss:1.5096 2023-03-16 22:08:55,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2866/2980 loss:3.8271 2023-03-16 22:08:57,490 - INFO - main.py - train - 68 - 【train】 epoch:4 2867/2980 loss:8.0308 2023-03-16 22:08:59,090 - INFO - main.py - train - 68 - 【train】 epoch:4 2868/2980 loss:2.6316 2023-03-16 22:09:00,672 - INFO - main.py - train - 68 - 【train】 epoch:4 2869/2980 loss:13.8008 2023-03-16 22:09:02,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2870/2980 loss:8.8684 2023-03-16 22:09:03,454 - INFO - main.py - train - 68 - 【train】 epoch:4 2871/2980 loss:0.7504 2023-03-16 22:09:04,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2872/2980 loss:6.2065 2023-03-16 22:09:06,155 - INFO - main.py - train - 68 - 【train】 epoch:4 2873/2980 loss:4.6603 2023-03-16 22:09:07,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2874/2980 loss:2.0924 2023-03-16 22:09:08,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2875/2980 loss:1.7930 2023-03-16 22:09:10,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2876/2980 loss:3.7255 2023-03-16 22:09:11,523 - INFO - main.py - train - 68 - 【train】 epoch:4 2877/2980 loss:4.8038 2023-03-16 22:09:12,819 - INFO - main.py - train - 68 - 【train】 epoch:4 2878/2980 loss:5.3835 2023-03-16 22:09:14,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2879/2980 loss:7.9449 2023-03-16 22:09:16,702 - INFO - main.py - train - 68 - 【train】 epoch:4 2880/2980 loss:7.3636 2023-03-16 22:09:18,812 - INFO - main.py - train - 68 - 【train】 epoch:4 2881/2980 loss:7.0770 2023-03-16 22:09:20,402 - INFO - main.py - train - 68 - 【train】 epoch:4 2882/2980 loss:2.4567 2023-03-16 22:09:21,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2883/2980 loss:2.1717 2023-03-16 22:09:23,191 - INFO - main.py - train - 68 - 【train】 epoch:4 2884/2980 loss:3.9595 2023-03-16 22:09:24,582 - INFO - main.py - train - 68 - 【train】 epoch:4 2885/2980 loss:3.2127 2023-03-16 22:09:25,982 - INFO - main.py - train - 68 - 【train】 epoch:4 2886/2980 loss:1.5962 2023-03-16 22:09:27,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2887/2980 loss:15.2141 2023-03-16 22:09:28,972 - INFO - main.py - train - 68 - 【train】 epoch:4 2888/2980 loss:2.6800 2023-03-16 22:09:30,677 - INFO - main.py - train - 68 - 【train】 epoch:4 2889/2980 loss:4.5157 2023-03-16 22:09:32,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2890/2980 loss:1.3016 2023-03-16 22:09:34,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2891/2980 loss:10.7477 2023-03-16 22:09:36,132 - INFO - main.py - train - 68 - 【train】 epoch:4 2892/2980 loss:6.9673 2023-03-16 22:09:37,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2893/2980 loss:18.6512 2023-03-16 22:09:39,117 - INFO - main.py - train - 68 - 【train】 epoch:4 2894/2980 loss:6.1360 2023-03-16 22:09:40,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2895/2980 loss:5.7908 2023-03-16 22:09:41,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2896/2980 loss:4.5274 2023-03-16 22:09:43,336 - INFO - main.py - train - 68 - 【train】 epoch:4 2897/2980 loss:2.4148 2023-03-16 22:09:44,954 - INFO - main.py - train - 68 - 【train】 epoch:4 2898/2980 loss:15.0270 2023-03-16 22:09:46,559 - INFO - main.py - train - 68 - 【train】 epoch:4 2899/2980 loss:3.8321 2023-03-16 22:09:48,134 - INFO - main.py - train - 68 - 【train】 epoch:4 2900/2980 loss:6.3051 2023-03-16 22:09:50,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2901/2980 loss:7.4528 2023-03-16 22:09:51,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2902/2980 loss:1.6196 2023-03-16 22:09:52,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2903/2980 loss:3.3933 2023-03-16 22:09:54,914 - INFO - main.py - train - 68 - 【train】 epoch:4 2904/2980 loss:8.2114 2023-03-16 22:09:56,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2905/2980 loss:18.8241 2023-03-16 22:09:58,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2906/2980 loss:22.7733 2023-03-16 22:09:59,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2907/2980 loss:2.6160 2023-03-16 22:10:01,406 - INFO - main.py - train - 68 - 【train】 epoch:4 2908/2980 loss:0.3031 2023-03-16 22:10:03,284 - INFO - main.py - train - 68 - 【train】 epoch:4 2909/2980 loss:7.9827 2023-03-16 22:10:04,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2910/2980 loss:7.7344 2023-03-16 22:10:06,046 - INFO - main.py - train - 68 - 【train】 epoch:4 2911/2980 loss:10.4228 2023-03-16 22:10:07,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2912/2980 loss:1.0181 2023-03-16 22:10:08,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2913/2980 loss:3.1959 2023-03-16 22:10:10,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2914/2980 loss:2.5265 2023-03-16 22:10:11,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2915/2980 loss:3.8920 2023-03-16 22:10:13,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2916/2980 loss:3.8597 2023-03-16 22:10:14,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2917/2980 loss:0.7523 2023-03-16 22:10:15,758 - INFO - main.py - train - 68 - 【train】 epoch:4 2918/2980 loss:2.6271 2023-03-16 22:10:17,153 - INFO - main.py - train - 68 - 【train】 epoch:4 2919/2980 loss:13.0068 2023-03-16 22:10:18,533 - INFO - main.py - train - 68 - 【train】 epoch:4 2920/2980 loss:7.8462 2023-03-16 22:10:19,953 - INFO - main.py - train - 68 - 【train】 epoch:4 2921/2980 loss:5.1801 2023-03-16 22:10:21,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2922/2980 loss:3.6318 2023-03-16 22:10:22,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2923/2980 loss:1.2670 2023-03-16 22:10:24,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2924/2980 loss:0.1985 2023-03-16 22:10:25,667 - INFO - main.py - train - 68 - 【train】 epoch:4 2925/2980 loss:11.6757 2023-03-16 22:10:27,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2926/2980 loss:6.8140 2023-03-16 22:10:28,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2927/2980 loss:3.0782 2023-03-16 22:10:30,053 - INFO - main.py - train - 68 - 【train】 epoch:4 2928/2980 loss:3.5758 2023-03-16 22:10:31,601 - INFO - main.py - train - 68 - 【train】 epoch:4 2929/2980 loss:1.8125 2023-03-16 22:10:33,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2930/2980 loss:8.6923 2023-03-16 22:10:34,539 - INFO - main.py - train - 68 - 【train】 epoch:4 2931/2980 loss:3.2195 2023-03-16 22:10:36,005 - INFO - main.py - train - 68 - 【train】 epoch:4 2932/2980 loss:1.5252 2023-03-16 22:10:37,474 - INFO - main.py - train - 68 - 【train】 epoch:4 2933/2980 loss:2.6835 2023-03-16 22:10:39,362 - INFO - main.py - train - 68 - 【train】 epoch:4 2934/2980 loss:3.3306 2023-03-16 22:10:41,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2935/2980 loss:4.1506 2023-03-16 22:10:42,993 - INFO - main.py - train - 68 - 【train】 epoch:4 2936/2980 loss:2.7947 2023-03-16 22:10:44,721 - INFO - main.py - train - 68 - 【train】 epoch:4 2937/2980 loss:9.4070 2023-03-16 22:10:46,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2938/2980 loss:1.2938 2023-03-16 22:10:47,661 - INFO - main.py - train - 68 - 【train】 epoch:4 2939/2980 loss:11.1266 2023-03-16 22:10:48,931 - INFO - main.py - train - 68 - 【train】 epoch:4 2940/2980 loss:0.3608 2023-03-16 22:10:50,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2941/2980 loss:0.5928 2023-03-16 22:10:51,624 - INFO - main.py - train - 68 - 【train】 epoch:4 2942/2980 loss:6.7715 2023-03-16 22:10:52,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2943/2980 loss:4.1982 2023-03-16 22:10:54,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2944/2980 loss:1.3180 2023-03-16 22:10:55,685 - INFO - main.py - train - 68 - 【train】 epoch:4 2945/2980 loss:12.8915 2023-03-16 22:10:57,035 - INFO - main.py - train - 68 - 【train】 epoch:4 2946/2980 loss:2.4639 2023-03-16 22:10:58,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2947/2980 loss:1.6632 2023-03-16 22:10:59,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2948/2980 loss:2.0900 2023-03-16 22:11:01,231 - INFO - main.py - train - 68 - 【train】 epoch:4 2949/2980 loss:2.3983 2023-03-16 22:11:02,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2950/2980 loss:1.9277 2023-03-16 22:11:04,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2951/2980 loss:0.9764 2023-03-16 22:11:05,595 - INFO - main.py - train - 68 - 【train】 epoch:4 2952/2980 loss:4.2392 2023-03-16 22:11:07,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2953/2980 loss:11.9157 2023-03-16 22:11:08,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2954/2980 loss:1.1436 2023-03-16 22:11:10,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2955/2980 loss:9.6282 2023-03-16 22:11:11,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2956/2980 loss:6.5213 2023-03-16 22:11:12,855 - INFO - main.py - train - 68 - 【train】 epoch:4 2957/2980 loss:8.8274 2023-03-16 22:11:14,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2958/2980 loss:1.7905 2023-03-16 22:11:15,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2959/2980 loss:7.0458 2023-03-16 22:11:17,082 - INFO - main.py - train - 68 - 【train】 epoch:4 2960/2980 loss:6.3148 2023-03-16 22:11:18,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2961/2980 loss:11.4154 2023-03-16 22:11:19,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2962/2980 loss:3.9497 2023-03-16 22:11:21,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2963/2980 loss:2.8411 2023-03-16 22:11:22,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2964/2980 loss:5.5801 2023-03-16 22:11:23,798 - INFO - main.py - train - 68 - 【train】 epoch:4 2965/2980 loss:2.1789 2023-03-16 22:11:25,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2966/2980 loss:8.7305 2023-03-16 22:11:26,692 - INFO - main.py - train - 68 - 【train】 epoch:4 2967/2980 loss:5.9604 2023-03-16 22:11:28,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2968/2980 loss:2.6953 2023-03-16 22:11:29,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2969/2980 loss:6.9024 2023-03-16 22:11:30,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2970/2980 loss:2.8682 2023-03-16 22:11:32,161 - INFO - main.py - train - 68 - 【train】 epoch:4 2971/2980 loss:8.3969 2023-03-16 22:11:33,663 - INFO - main.py - train - 68 - 【train】 epoch:4 2972/2980 loss:2.9724 2023-03-16 22:11:35,197 - INFO - main.py - train - 68 - 【train】 epoch:4 2973/2980 loss:1.8177 2023-03-16 22:11:36,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2974/2980 loss:0.1093 2023-03-16 22:11:38,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2975/2980 loss:2.7382 2023-03-16 22:11:39,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2976/2980 loss:7.7669 2023-03-16 22:11:41,261 - INFO - main.py - train - 68 - 【train】 epoch:4 2977/2980 loss:13.7039 2023-03-16 22:11:42,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2978/2980 loss:1.7054 2023-03-16 22:11:44,128 - INFO - main.py - train - 68 - 【train】 epoch:4 2979/2980 loss:2.8405 2023-03-16 22:11:44,754 - INFO - trainUtils.py - save_model - 70 - Saving model checkpoint to ./checkpoints/bert_crf 2023-03-16 22:11:47,770 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2023-03-16 22:11:48,424 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2023-03-16 22:13:44,163 - INFO - main.py - - 302 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物 2023-03-16 22:13:45,606 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt 2023-03-16 22:13:46,203 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0'] 2023-03-16 22:13:46,593 - INFO - main.py - predict - 198 - [('鼓风机', 23, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('鼓风机', 76, 'subject'), ('有杂物', 80, 'object')]