bert_config.py 2.6 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071
  1. import argparse
  2. class Args:
  3. @staticmethod
  4. def parse():
  5. parser = argparse.ArgumentParser()
  6. return parser
  7. @staticmethod
  8. def initialize(parser):
  9. # args for path
  10. parser.add_argument('--output_dir', default='./checkpoints/',
  11. help='the output dir for model checkpoints')
  12. parser.add_argument('--bert_dir', default='../model_hub/bert-base-case/',
  13. help='bert dir for uer')
  14. parser.add_argument('--data_dir', default='../data/',
  15. help='data dir for uer')
  16. parser.add_argument('--log_dir', default='./logs/',
  17. help='log dir for uer')
  18. # other args
  19. parser.add_argument('--num_tags', default=49, type=int,
  20. help='number of tags')
  21. parser.add_argument('--seed', type=int, default=123, help='random seed')
  22. parser.add_argument('--gpu_ids', type=str, default='0',
  23. help='gpu ids to use, -1 for cpu, "0,1" for multi gpu')
  24. parser.add_argument('--max_seq_len', default=300, type=int)
  25. parser.add_argument('--eval_batch_size', default=12, type=int)
  26. parser.add_argument('--swa_start', default=3, type=int,
  27. help='the epoch when swa start')
  28. # train args
  29. parser.add_argument('--train_epochs', default=1, type=int,
  30. help='Max training epoch')
  31. parser.add_argument('--dropout_prob', default=0.1, type=float,
  32. help='drop out probability')
  33. # 2e-5
  34. parser.add_argument('--lr', default=3e-5, type=float,
  35. help='learning rate for the bert module')
  36. # 2e-3
  37. parser.add_argument('--other_lr', default=3e-4, type=float,
  38. help='learning rate for the module except bert')
  39. # 0.5
  40. parser.add_argument('--max_grad_norm', default=1, type=float,
  41. help='max grad clip')
  42. parser.add_argument('--warmup_proportion', default=0.1, type=float)
  43. parser.add_argument('--weight_decay', default=0.01, type=float)
  44. parser.add_argument('--adam_epsilon', default=1e-8, type=float)
  45. parser.add_argument('--train_batch_size', default=32, type=int)
  46. parser.add_argument('--eval_model', default=True, action='store_true',
  47. help='whether to eval model after training')
  48. return parser
  49. def get_parser(self):
  50. parser = self.parse()
  51. parser = self.initialize(parser)
  52. return parser.parse_args()