1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- import argparse
- class Args:
- @staticmethod
- def parse():
- parser = argparse.ArgumentParser()
- return parser
- @staticmethod
- def initialize(parser):
- # args for path
- parser.add_argument('--output_dir', default='./checkpoints/',
- help='the output dir for model checkpoints')
- parser.add_argument('--bert_dir', default='../model_hub/bert-base-case/',
- help='bert dir for uer')
- parser.add_argument('--data_dir', default='../data/',
- help='data dir for uer')
- parser.add_argument('--log_dir', default='./logs/',
- help='log dir for uer')
- # other args
- parser.add_argument('--num_tags', default=49, type=int,
- help='number of tags')
- parser.add_argument('--seed', type=int, default=123, help='random seed')
- parser.add_argument('--gpu_ids', type=str, default='0',
- help='gpu ids to use, -1 for cpu, "0,1" for multi gpu')
- parser.add_argument('--max_seq_len', default=300, type=int)
- parser.add_argument('--eval_batch_size', default=12, type=int)
- parser.add_argument('--swa_start', default=3, type=int,
- help='the epoch when swa start')
- # train args
- parser.add_argument('--train_epochs', default=1, type=int,
- help='Max training epoch')
- parser.add_argument('--dropout_prob', default=0.1, type=float,
- help='drop out probability')
- # 2e-5
- parser.add_argument('--lr', default=3e-5, type=float,
- help='learning rate for the bert module')
- # 2e-3
- parser.add_argument('--other_lr', default=3e-4, type=float,
- help='learning rate for the module except bert')
- # 0.5
- parser.add_argument('--max_grad_norm', default=1, type=float,
- help='max grad clip')
- parser.add_argument('--warmup_proportion', default=0.1, type=float)
- parser.add_argument('--weight_decay', default=0.01, type=float)
- parser.add_argument('--adam_epsilon', default=1e-8, type=float)
- parser.add_argument('--train_batch_size', default=32, type=int)
- parser.add_argument('--eval_model', default=True, action='store_true',
- help='whether to eval model after training')
- return parser
- def get_parser(self):
- parser = self.parse()
- parser = self.initialize(parser)
- return parser.parse_args()
|