bert_crf.log 703 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909
  1. 2022-11-08 23:33:48,004 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  2. 2022-11-08 23:33:48,004 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/bert-base-chinese/', crf_lr=0.03, data_dir='./data/cner/', dropout=0.3, dropout_prob=0.1, eval_batch_size=12, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=256, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=15, use_crf='True', use_lstm='True', warmup_proportion=0.1, weight_decay=0.01)
  3. 2022-11-09 11:23:29,709 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  4. 2022-11-09 11:23:29,709 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  5. 2022-11-09 11:24:41,226 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  6. 2022-11-09 11:24:41,226 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  7. 2022-11-09 11:25:11,934 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  8. 2022-11-09 11:25:11,934 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  9. 2022-11-09 11:26:41,964 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  10. 2022-11-09 11:26:41,964 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  11. 2022-11-09 11:27:50,050 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  12. 2022-11-09 11:27:50,050 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  13. 2022-11-09 11:29:09,483 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  14. 2022-11-09 11:29:09,483 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  15. 2022-11-09 11:29:21,750 - INFO - main.py - <module> - 249 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  16. 2022-11-09 11:29:21,750 - INFO - main.py - <module> - 251 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  17. 2022-11-09 16:33:06,998 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  18. 2022-11-09 16:33:06,998 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  19. 2022-11-09 16:57:39,432 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  20. 2022-11-09 16:57:39,433 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/config.json', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  21. 2022-11-09 17:36:04,479 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  22. 2022-11-09 17:36:04,480 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-bert-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  23. 2022-11-09 17:36:24,656 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  24. 2022-11-09 17:36:24,656 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  25. 2022-11-09 17:36:32,110 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  26. 2022-11-09 17:40:44,962 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  27. 2022-11-09 17:40:44,962 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  28. 2022-11-09 17:40:50,036 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  29. 2022-11-09 18:17:53,463 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  30. 2022-11-09 18:17:53,463 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=32, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=32, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  31. 2022-11-09 18:17:58,990 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  32. 2022-11-09 18:18:30,751 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  33. 2022-11-09 18:18:30,751 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=8, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=8, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  34. 2022-11-09 18:18:35,649 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  35. 2022-11-09 18:20:15,157 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  36. 2022-11-09 18:20:15,157 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  37. 2022-11-09 18:20:19,522 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  38. 2022-11-09 18:20:43,756 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  39. 2022-11-09 18:20:43,757 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=1, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=1, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  40. 2022-11-09 18:20:47,737 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  41. 2022-11-09 18:20:52,601 - INFO - main.py - train - 68 - 【train】 epoch:0 0/5960 loss:270.5590
  42. 2022-11-09 18:20:54,234 - INFO - main.py - train - 68 - 【train】 epoch:0 1/5960 loss:293.8041
  43. 2022-11-09 18:20:55,409 - INFO - main.py - train - 68 - 【train】 epoch:0 2/5960 loss:533.3459
  44. 2022-11-09 18:20:56,580 - INFO - main.py - train - 68 - 【train】 epoch:0 3/5960 loss:167.5391
  45. 2022-11-09 18:20:57,705 - INFO - main.py - train - 68 - 【train】 epoch:0 4/5960 loss:188.1563
  46. 2022-11-09 18:20:58,822 - INFO - main.py - train - 68 - 【train】 epoch:0 5/5960 loss:157.2815
  47. 2022-11-09 18:20:59,919 - INFO - main.py - train - 68 - 【train】 epoch:0 6/5960 loss:358.7325
  48. 2022-11-09 18:21:01,054 - INFO - main.py - train - 68 - 【train】 epoch:0 7/5960 loss:270.1438
  49. 2022-11-09 18:21:02,120 - INFO - main.py - train - 68 - 【train】 epoch:0 8/5960 loss:65.7982
  50. 2022-11-09 18:21:03,278 - INFO - main.py - train - 68 - 【train】 epoch:0 9/5960 loss:60.7055
  51. 2022-11-09 18:21:04,394 - INFO - main.py - train - 68 - 【train】 epoch:0 10/5960 loss:109.2479
  52. 2022-11-09 18:21:05,482 - INFO - main.py - train - 68 - 【train】 epoch:0 11/5960 loss:41.0138
  53. 2022-11-09 18:21:06,619 - INFO - main.py - train - 68 - 【train】 epoch:0 12/5960 loss:422.2743
  54. 2022-11-09 18:21:07,768 - INFO - main.py - train - 68 - 【train】 epoch:0 13/5960 loss:289.6386
  55. 2022-11-09 18:21:08,908 - INFO - main.py - train - 68 - 【train】 epoch:0 14/5960 loss:249.3521
  56. 2022-11-09 18:21:10,056 - INFO - main.py - train - 68 - 【train】 epoch:0 15/5960 loss:319.1989
  57. 2022-11-09 18:21:11,175 - INFO - main.py - train - 68 - 【train】 epoch:0 16/5960 loss:146.3364
  58. 2022-11-09 18:21:12,275 - INFO - main.py - train - 68 - 【train】 epoch:0 17/5960 loss:758.4374
  59. 2022-11-09 18:21:13,369 - INFO - main.py - train - 68 - 【train】 epoch:0 18/5960 loss:63.2237
  60. 2022-11-09 18:21:14,425 - INFO - main.py - train - 68 - 【train】 epoch:0 19/5960 loss:113.5544
  61. 2022-11-09 18:21:15,564 - INFO - main.py - train - 68 - 【train】 epoch:0 20/5960 loss:521.8570
  62. 2022-11-09 18:21:16,681 - INFO - main.py - train - 68 - 【train】 epoch:0 21/5960 loss:413.1941
  63. 2022-11-09 18:21:17,776 - INFO - main.py - train - 68 - 【train】 epoch:0 22/5960 loss:37.8984
  64. 2022-11-09 18:21:18,891 - INFO - main.py - train - 68 - 【train】 epoch:0 23/5960 loss:178.0960
  65. 2022-11-09 18:21:20,030 - INFO - main.py - train - 68 - 【train】 epoch:0 24/5960 loss:187.9926
  66. 2022-11-09 18:21:21,112 - INFO - main.py - train - 68 - 【train】 epoch:0 25/5960 loss:154.3412
  67. 2022-11-09 18:21:22,197 - INFO - main.py - train - 68 - 【train】 epoch:0 26/5960 loss:165.2894
  68. 2022-11-09 18:21:23,296 - INFO - main.py - train - 68 - 【train】 epoch:0 27/5960 loss:691.0421
  69. 2022-11-09 18:21:24,394 - INFO - main.py - train - 68 - 【train】 epoch:0 28/5960 loss:31.0667
  70. 2022-11-09 18:21:25,470 - INFO - main.py - train - 68 - 【train】 epoch:0 29/5960 loss:203.4418
  71. 2022-11-09 18:21:26,556 - INFO - main.py - train - 68 - 【train】 epoch:0 30/5960 loss:231.4055
  72. 2022-11-09 18:21:27,671 - INFO - main.py - train - 68 - 【train】 epoch:0 31/5960 loss:273.9700
  73. 2022-11-09 18:21:28,736 - INFO - main.py - train - 68 - 【train】 epoch:0 32/5960 loss:47.7574
  74. 2022-11-09 18:21:29,846 - INFO - main.py - train - 68 - 【train】 epoch:0 33/5960 loss:24.3343
  75. 2022-11-09 18:21:30,960 - INFO - main.py - train - 68 - 【train】 epoch:0 34/5960 loss:493.4245
  76. 2022-11-09 18:21:32,051 - INFO - main.py - train - 68 - 【train】 epoch:0 35/5960 loss:66.0639
  77. 2022-11-09 18:21:33,152 - INFO - main.py - train - 68 - 【train】 epoch:0 36/5960 loss:122.7962
  78. 2022-11-09 18:21:34,268 - INFO - main.py - train - 68 - 【train】 epoch:0 37/5960 loss:637.9681
  79. 2022-11-09 18:21:35,424 - INFO - main.py - train - 68 - 【train】 epoch:0 38/5960 loss:314.1795
  80. 2022-11-09 18:21:45,844 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  81. 2022-11-09 18:21:45,845 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  82. 2022-11-09 18:21:49,767 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  83. 2022-11-09 18:21:55,450 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315
  84. 2022-11-09 18:21:57,257 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413
  85. 2022-11-09 18:21:58,487 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901
  86. 2022-11-09 18:21:59,722 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670
  87. 2022-11-09 18:22:00,964 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680
  88. 2022-11-09 18:22:02,178 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757
  89. 2022-11-09 18:22:03,486 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559
  90. 2022-11-09 18:22:13,792 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  91. 2022-11-09 18:22:13,793 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  92. 2022-11-09 18:22:17,703 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  93. 2022-11-09 18:25:49,190 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  94. 2022-11-09 18:25:49,190 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  95. 2022-11-09 18:25:53,176 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  96. 2022-11-09 18:25:58,768 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315
  97. 2022-11-09 18:26:00,723 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413
  98. 2022-11-09 18:26:01,951 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901
  99. 2022-11-09 18:26:03,196 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670
  100. 2022-11-09 18:26:04,405 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680
  101. 2022-11-09 18:26:05,645 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757
  102. 2022-11-09 18:26:06,941 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559
  103. 2022-11-09 18:26:08,221 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248
  104. 2022-11-09 18:26:09,459 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745
  105. 2022-11-09 18:26:10,699 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077
  106. 2022-11-09 18:26:11,995 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821
  107. 2022-11-09 18:26:13,232 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192
  108. 2022-11-09 18:26:14,462 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898
  109. 2022-11-09 18:26:15,726 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432
  110. 2022-11-09 18:26:16,985 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201
  111. 2022-11-09 18:26:18,258 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668
  112. 2022-11-09 18:26:19,505 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642
  113. 2022-11-09 18:26:20,769 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617
  114. 2022-11-09 18:26:22,026 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012
  115. 2022-11-09 18:26:23,277 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219
  116. 2022-11-09 18:26:24,744 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239
  117. 2022-11-09 18:26:26,010 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575
  118. 2022-11-09 18:26:27,379 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067
  119. 2022-11-09 18:26:28,606 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395
  120. 2022-11-09 18:26:29,847 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719
  121. 2022-11-09 18:26:31,048 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989
  122. 2022-11-09 18:26:32,271 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708
  123. 2022-11-09 18:26:33,504 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786
  124. 2022-11-09 18:26:34,964 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072
  125. 2022-11-09 18:26:36,285 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554
  126. 2022-11-09 18:26:37,507 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401
  127. 2022-11-09 18:26:38,767 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027
  128. 2022-11-09 18:26:40,014 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473
  129. 2022-11-09 18:26:41,309 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660
  130. 2022-11-09 18:26:42,513 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551
  131. 2022-11-09 18:26:43,748 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582
  132. 2022-11-09 18:26:44,987 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044
  133. 2022-11-09 18:26:46,254 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521
  134. 2022-11-09 18:26:47,483 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970
  135. 2022-11-09 18:26:48,788 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554
  136. 2022-11-09 18:26:50,045 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222
  137. 2022-11-09 18:26:51,253 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357
  138. 2022-11-09 18:26:52,549 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285
  139. 2022-11-09 18:26:53,828 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024
  140. 2022-11-09 18:26:55,095 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651
  141. 2022-11-09 18:26:56,367 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443
  142. 2022-11-09 18:26:57,636 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032
  143. 2022-11-09 18:26:58,936 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716
  144. 2022-11-09 18:27:00,210 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475
  145. 2022-11-09 18:27:01,529 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245
  146. 2022-11-09 18:27:02,807 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590
  147. 2022-11-09 18:27:04,121 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909
  148. 2022-11-09 18:27:05,445 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710
  149. 2022-11-09 18:29:42,809 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  150. 2022-11-09 18:29:42,809 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  151. 2022-11-09 18:35:37,108 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  152. 2022-11-09 18:35:37,108 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  153. 2022-11-09 18:35:41,593 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  154. 2022-11-09 18:35:47,976 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315
  155. 2022-11-09 18:35:49,914 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413
  156. 2022-11-09 18:35:51,115 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901
  157. 2022-11-09 18:35:52,371 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670
  158. 2022-11-09 18:35:53,586 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680
  159. 2022-11-09 18:35:54,801 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757
  160. 2022-11-09 18:35:56,179 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559
  161. 2022-11-09 18:35:57,517 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248
  162. 2022-11-09 18:35:58,778 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745
  163. 2022-11-09 18:36:00,115 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077
  164. 2022-11-09 18:36:01,448 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821
  165. 2022-11-09 18:36:02,692 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192
  166. 2022-11-09 18:36:03,924 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898
  167. 2022-11-09 18:36:05,223 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432
  168. 2022-11-09 18:36:06,503 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201
  169. 2022-11-09 18:36:07,777 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668
  170. 2022-11-09 18:36:09,042 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642
  171. 2022-11-09 18:36:10,335 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617
  172. 2022-11-09 18:36:11,556 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012
  173. 2022-11-09 18:36:12,770 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219
  174. 2022-11-09 18:36:14,011 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239
  175. 2022-11-09 18:36:15,287 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575
  176. 2022-11-09 18:36:16,596 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067
  177. 2022-11-09 18:36:17,806 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395
  178. 2022-11-09 18:36:19,008 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719
  179. 2022-11-09 18:36:20,214 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989
  180. 2022-11-09 18:36:21,466 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708
  181. 2022-11-09 18:36:22,778 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786
  182. 2022-11-09 18:36:24,067 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072
  183. 2022-11-09 18:36:25,324 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554
  184. 2022-11-09 18:36:26,577 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401
  185. 2022-11-09 18:36:27,952 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027
  186. 2022-11-09 18:36:29,183 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473
  187. 2022-11-09 18:36:30,482 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660
  188. 2022-11-09 18:36:31,713 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551
  189. 2022-11-09 18:36:32,984 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582
  190. 2022-11-09 18:36:34,199 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044
  191. 2022-11-09 18:36:35,469 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521
  192. 2022-11-09 18:36:36,739 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970
  193. 2022-11-09 18:36:37,989 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554
  194. 2022-11-09 18:36:39,212 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222
  195. 2022-11-09 18:36:40,417 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357
  196. 2022-11-09 18:36:41,727 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285
  197. 2022-11-09 18:36:43,005 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024
  198. 2022-11-09 18:36:44,203 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651
  199. 2022-11-09 18:36:45,454 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443
  200. 2022-11-09 18:36:46,733 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032
  201. 2022-11-09 18:36:48,110 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716
  202. 2022-11-09 18:36:49,362 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475
  203. 2022-11-09 18:36:50,667 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245
  204. 2022-11-09 18:36:51,937 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590
  205. 2022-11-09 18:36:53,218 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909
  206. 2022-11-09 18:36:54,461 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710
  207. 2022-11-09 18:36:55,765 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058
  208. 2022-11-09 18:36:57,086 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477
  209. 2022-11-09 18:36:58,432 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559
  210. 2022-11-09 18:36:59,675 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941
  211. 2022-11-09 18:37:00,930 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007
  212. 2022-11-09 18:37:16,233 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  213. 2022-11-09 18:37:16,233 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  214. 2022-11-09 18:37:20,178 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  215. 2022-11-09 18:37:39,169 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  216. 2022-11-09 18:37:39,169 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  217. 2022-11-09 18:37:43,141 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  218. 2022-11-09 18:37:48,925 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315
  219. 2022-11-09 18:37:50,656 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413
  220. 2022-11-09 18:37:51,882 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901
  221. 2022-11-09 18:37:53,162 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670
  222. 2022-11-09 18:37:54,390 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680
  223. 2022-11-09 18:37:55,637 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757
  224. 2022-11-09 18:37:57,002 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559
  225. 2022-11-09 18:37:58,316 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248
  226. 2022-11-09 18:37:59,598 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745
  227. 2022-11-09 18:38:00,856 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077
  228. 2022-11-09 18:38:02,174 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821
  229. 2022-11-09 18:38:03,394 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192
  230. 2022-11-09 18:38:04,641 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898
  231. 2022-11-09 18:38:05,902 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432
  232. 2022-11-09 18:38:07,200 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201
  233. 2022-11-09 18:38:08,493 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668
  234. 2022-11-09 18:38:09,756 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642
  235. 2022-11-09 18:38:11,031 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617
  236. 2022-11-09 18:38:12,325 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012
  237. 2022-11-09 18:38:13,602 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219
  238. 2022-11-09 18:38:14,896 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239
  239. 2022-11-09 18:38:16,080 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575
  240. 2022-11-09 18:38:17,308 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067
  241. 2022-11-09 18:38:18,523 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395
  242. 2022-11-09 18:38:19,812 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719
  243. 2022-11-09 18:38:21,158 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989
  244. 2022-11-09 18:38:22,407 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708
  245. 2022-11-09 18:38:23,642 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786
  246. 2022-11-09 18:38:24,924 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072
  247. 2022-11-09 18:38:26,162 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554
  248. 2022-11-09 18:38:27,448 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401
  249. 2022-11-09 18:38:28,704 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027
  250. 2022-11-09 18:38:29,937 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473
  251. 2022-11-09 18:38:31,228 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660
  252. 2022-11-09 18:38:32,501 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551
  253. 2022-11-09 18:38:33,756 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582
  254. 2022-11-09 18:38:35,018 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044
  255. 2022-11-09 18:38:36,345 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521
  256. 2022-11-09 18:38:37,572 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970
  257. 2022-11-09 18:38:38,768 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554
  258. 2022-11-09 18:38:40,015 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222
  259. 2022-11-09 18:38:41,341 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357
  260. 2022-11-09 18:38:42,612 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285
  261. 2022-11-09 18:38:43,889 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024
  262. 2022-11-09 18:38:45,128 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651
  263. 2022-11-09 18:38:46,435 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443
  264. 2022-11-09 18:38:47,666 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032
  265. 2022-11-09 18:38:48,942 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716
  266. 2022-11-09 18:38:50,208 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475
  267. 2022-11-09 18:38:51,582 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245
  268. 2022-11-09 18:38:52,899 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590
  269. 2022-11-09 18:38:54,186 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909
  270. 2022-11-09 18:38:55,521 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710
  271. 2022-11-09 18:38:56,764 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058
  272. 2022-11-09 18:38:58,075 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477
  273. 2022-11-09 18:38:59,427 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559
  274. 2022-11-09 18:39:00,683 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941
  275. 2022-11-09 18:39:01,934 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007
  276. 2022-11-09 18:39:03,203 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:43.6095
  277. 2022-11-09 18:39:04,483 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:406.7163
  278. 2022-11-09 18:39:05,784 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:60.8267
  279. 2022-11-09 18:39:07,095 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:199.1176
  280. 2022-11-09 18:39:08,338 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:59.4112
  281. 2022-11-09 18:39:09,677 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:95.2976
  282. 2022-11-09 18:39:10,952 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:30.8693
  283. 2022-11-09 18:39:12,270 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:303.6538
  284. 2022-11-09 18:39:13,574 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:103.3871
  285. 2022-11-09 18:39:14,826 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:74.9780
  286. 2022-11-09 18:39:16,052 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:29.6169
  287. 2022-11-09 18:39:17,300 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:99.8470
  288. 2022-11-09 18:39:18,552 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:120.8370
  289. 2022-11-09 18:39:19,846 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:19.9152
  290. 2022-11-09 18:39:21,083 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:156.0164
  291. 2022-11-09 18:39:22,370 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:90.8173
  292. 2022-11-09 18:39:23,608 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:82.6100
  293. 2022-11-09 18:39:24,893 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:80.8683
  294. 2022-11-09 18:39:26,143 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:114.0199
  295. 2022-11-09 18:39:27,363 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:31.1001
  296. 2022-11-09 18:39:28,596 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:89.9733
  297. 2022-11-09 18:39:29,903 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:204.4708
  298. 2022-11-09 18:39:31,214 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:29.4187
  299. 2022-11-09 18:39:32,487 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:158.3213
  300. 2022-11-09 18:39:33,730 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:26.3408
  301. 2022-11-09 18:39:35,011 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:163.6489
  302. 2022-11-09 18:39:36,270 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:33.3513
  303. 2022-11-09 18:39:37,538 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:30.0256
  304. 2022-11-09 18:39:38,828 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:67.0394
  305. 2022-11-09 18:39:40,118 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:111.9282
  306. 2022-11-09 18:39:41,417 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:90.7613
  307. 2022-11-09 18:39:42,688 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:33.0127
  308. 2022-11-09 18:39:43,901 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:37.5084
  309. 2022-11-09 18:39:45,171 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:150.8694
  310. 2022-11-09 18:39:46,514 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:35.7935
  311. 2022-11-09 18:39:47,787 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:24.0617
  312. 2022-11-09 18:39:49,016 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:35.2720
  313. 2022-11-09 18:39:50,257 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:48.3293
  314. 2022-11-09 18:39:51,552 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:92.0753
  315. 2022-11-09 18:39:52,777 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:57.7539
  316. 2022-11-09 18:39:54,072 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:53.4933
  317. 2022-11-09 18:39:55,345 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:175.9615
  318. 2022-11-09 18:39:56,637 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:18.8627
  319. 2022-11-09 18:39:57,994 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:82.3581
  320. 2022-11-09 18:39:59,218 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:64.3166
  321. 2022-11-09 18:40:00,527 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:123.4606
  322. 2022-11-09 18:40:01,809 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:68.3314
  323. 2022-11-09 18:40:03,029 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:127.8958
  324. 2022-11-09 18:40:04,278 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:67.8566
  325. 2022-11-09 18:40:05,484 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:82.9919
  326. 2022-11-09 18:40:06,800 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.0667
  327. 2022-11-09 18:40:08,068 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:78.8107
  328. 2022-11-09 18:40:09,351 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:57.4205
  329. 2022-11-09 18:40:10,617 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:58.2669
  330. 2022-11-09 18:40:11,866 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:37.7122
  331. 2022-11-09 18:40:13,126 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:59.2715
  332. 2022-11-09 18:40:14,492 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:109.2859
  333. 2022-11-09 18:40:15,798 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:66.8373
  334. 2022-11-09 18:40:17,121 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:100.5893
  335. 2022-11-09 18:40:18,403 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:160.0564
  336. 2022-11-09 18:40:19,640 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:21.9086
  337. 2022-11-09 18:40:20,885 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:47.5741
  338. 2022-11-09 18:40:22,153 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:29.9038
  339. 2022-11-09 18:40:23,450 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:51.5459
  340. 2022-11-09 18:40:24,719 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:61.3329
  341. 2022-11-09 18:40:25,972 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:73.5590
  342. 2022-11-09 18:40:27,164 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:40.3231
  343. 2022-11-09 18:40:28,405 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:80.6520
  344. 2022-11-09 18:40:29,707 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:69.2301
  345. 2022-11-09 18:40:31,007 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:121.7187
  346. 2022-11-09 18:40:32,307 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:46.5610
  347. 2022-11-09 18:40:33,563 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:36.8176
  348. 2022-11-09 18:40:34,826 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:39.3850
  349. 2022-11-09 18:40:36,134 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:37.3555
  350. 2022-11-09 18:40:37,343 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:55.8957
  351. 2022-11-09 18:40:38,662 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:99.7036
  352. 2022-11-09 18:40:39,984 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:31.9459
  353. 2022-11-09 18:40:41,258 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:47.3585
  354. 2022-11-09 18:40:42,520 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:45.1459
  355. 2022-11-09 18:40:43,742 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:14.9006
  356. 2022-11-09 18:40:45,123 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:134.6276
  357. 2022-11-09 18:40:46,413 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:54.8420
  358. 2022-11-09 18:40:47,697 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:29.7027
  359. 2022-11-09 18:40:48,948 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:22.8068
  360. 2022-11-09 18:40:50,180 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:160.6334
  361. 2022-11-09 18:40:51,446 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:30.7702
  362. 2022-11-09 18:40:52,711 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:61.3411
  363. 2022-11-09 18:40:53,962 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:54.4996
  364. 2022-11-09 18:40:55,225 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:18.7288
  365. 2022-11-09 18:40:56,538 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:44.8332
  366. 2022-11-09 18:40:57,901 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:19.3201
  367. 2022-11-09 18:40:59,116 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:27.7792
  368. 2022-11-09 18:41:00,377 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:17.8810
  369. 2022-11-09 18:41:01,584 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:24.3679
  370. 2022-11-09 18:41:02,949 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:67.6738
  371. 2022-11-09 18:41:04,146 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:34.6583
  372. 2022-11-09 18:41:05,357 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:9.4772
  373. 2022-11-09 18:41:06,686 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:58.5267
  374. 2022-11-09 18:41:08,016 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:53.4738
  375. 2022-11-09 18:41:09,233 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:24.6808
  376. 2022-11-09 18:41:10,492 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:32.6800
  377. 2022-11-09 18:41:11,736 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:89.3568
  378. 2022-11-09 18:41:13,064 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:19.7398
  379. 2022-11-09 18:41:14,321 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:39.7384
  380. 2022-11-09 18:41:15,577 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:13.7301
  381. 2022-11-09 18:41:16,808 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:43.8718
  382. 2022-11-09 18:41:18,132 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:21.9532
  383. 2022-11-09 18:41:19,421 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:25.6840
  384. 2022-11-09 18:41:20,745 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:75.8519
  385. 2022-11-09 18:41:22,022 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:38.4785
  386. 2022-11-09 18:41:23,225 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:5.6793
  387. 2022-11-09 18:41:24,539 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.5726
  388. 2022-11-09 18:41:25,765 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:54.8319
  389. 2022-11-09 18:41:26,980 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:41.0339
  390. 2022-11-09 18:41:28,225 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.2866
  391. 2022-11-09 18:41:29,474 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:51.3268
  392. 2022-11-09 18:41:30,790 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:62.1816
  393. 2022-11-09 18:41:32,081 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.0496
  394. 2022-11-09 18:41:33,382 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:75.3190
  395. 2022-11-09 18:41:34,730 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:41.8338
  396. 2022-11-09 18:41:36,058 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:41.7383
  397. 2022-11-09 18:41:37,307 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:31.6100
  398. 2022-11-09 18:41:38,574 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:28.7614
  399. 2022-11-09 18:41:39,908 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:62.8120
  400. 2022-11-09 18:41:41,188 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:35.8153
  401. 2022-11-09 18:41:42,478 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:59.6051
  402. 2022-11-09 18:41:43,726 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:98.9992
  403. 2022-11-09 18:41:45,063 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:55.7362
  404. 2022-11-09 18:41:46,364 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:19.6064
  405. 2022-11-09 18:41:47,656 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:39.3520
  406. 2022-11-09 18:41:48,918 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:23.1798
  407. 2022-11-09 18:41:50,134 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:57.9983
  408. 2022-11-09 18:41:51,383 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:15.0503
  409. 2022-11-09 18:41:52,694 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:28.5482
  410. 2022-11-09 18:41:53,917 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:28.3134
  411. 2022-11-09 18:41:55,105 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:13.1558
  412. 2022-11-09 18:41:56,362 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:21.2622
  413. 2022-11-09 18:41:57,690 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:26.6583
  414. 2022-11-09 18:41:58,909 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:32.9246
  415. 2022-11-09 18:42:00,102 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:19.8522
  416. 2022-11-09 18:42:01,370 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:21.9186
  417. 2022-11-09 18:42:02,572 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:7.8291
  418. 2022-11-09 18:42:03,768 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:46.9642
  419. 2022-11-09 18:42:04,991 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:23.5077
  420. 2022-11-09 18:42:06,228 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:62.6766
  421. 2022-11-09 18:42:07,459 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:54.6998
  422. 2022-11-09 18:42:08,697 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:35.6884
  423. 2022-11-09 18:42:09,948 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:13.9762
  424. 2022-11-09 18:42:11,238 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:23.1779
  425. 2022-11-09 18:42:12,468 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:18.8497
  426. 2022-11-09 18:42:13,750 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:27.3929
  427. 2022-11-09 18:42:15,081 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:11.6609
  428. 2022-11-09 18:42:16,296 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:17.4296
  429. 2022-11-09 18:42:17,581 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:14.6435
  430. 2022-11-09 18:42:18,832 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.3514
  431. 2022-11-09 18:42:20,119 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:22.1900
  432. 2022-11-09 18:42:21,453 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:16.6185
  433. 2022-11-09 18:42:22,669 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:27.2955
  434. 2022-11-09 18:42:23,878 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:25.4574
  435. 2022-11-09 18:42:25,101 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:95.2818
  436. 2022-11-09 18:42:26,548 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:59.8647
  437. 2022-11-09 18:42:27,728 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:20.8181
  438. 2022-11-09 18:42:29,032 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:39.5670
  439. 2022-11-09 18:42:30,315 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:40.8846
  440. 2022-11-09 18:42:31,608 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:3.0876
  441. 2022-11-09 18:42:32,867 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:18.9693
  442. 2022-11-09 18:42:34,089 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:10.3815
  443. 2022-11-09 18:42:35,380 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:4.4977
  444. 2022-11-09 18:42:36,633 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:26.8075
  445. 2022-11-09 18:42:37,990 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:66.0917
  446. 2022-11-09 18:42:39,242 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:27.7529
  447. 2022-11-09 18:42:40,500 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:30.3438
  448. 2022-11-09 18:42:41,704 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:4.6632
  449. 2022-11-09 18:42:42,890 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:29.0340
  450. 2022-11-09 18:42:44,194 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:106.2216
  451. 2022-11-09 18:42:45,468 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:26.2923
  452. 2022-11-09 18:42:46,688 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:13.1122
  453. 2022-11-09 18:42:47,959 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:34.0507
  454. 2022-11-09 18:42:49,243 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:28.3456
  455. 2022-11-09 18:42:50,543 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:5.6085
  456. 2022-11-09 18:42:51,797 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:6.7618
  457. 2022-11-09 18:42:53,108 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:24.8394
  458. 2022-11-09 18:42:54,396 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:28.1028
  459. 2022-11-09 18:42:55,707 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:31.2807
  460. 2022-11-09 18:42:56,947 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:8.9886
  461. 2022-11-09 18:42:58,326 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:23.1137
  462. 2022-11-09 18:42:59,613 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:12.2010
  463. 2022-11-09 18:43:00,820 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:13.8346
  464. 2022-11-09 18:43:02,131 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:19.6365
  465. 2022-11-09 18:43:03,456 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:21.6641
  466. 2022-11-09 18:43:04,760 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:19.5260
  467. 2022-11-09 18:43:06,011 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:15.0800
  468. 2022-11-09 18:43:07,310 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:31.0788
  469. 2022-11-09 18:43:08,656 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:65.8123
  470. 2022-11-09 18:43:09,882 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:13.5526
  471. 2022-11-09 18:43:11,090 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:64.1057
  472. 2022-11-09 18:43:12,274 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:9.4639
  473. 2022-11-09 18:43:13,515 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:3.6924
  474. 2022-11-09 18:43:14,836 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:12.1447
  475. 2022-11-09 18:43:16,085 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:23.6392
  476. 2022-11-09 18:43:17,283 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:17.5400
  477. 2022-11-09 18:43:18,539 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:32.9995
  478. 2022-11-09 18:43:19,803 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:16.9070
  479. 2022-11-09 18:43:21,093 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:18.0961
  480. 2022-11-09 18:43:22,285 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:7.8411
  481. 2022-11-09 18:43:23,621 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:9.0051
  482. 2022-11-09 18:43:25,072 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:14.9643
  483. 2022-11-09 18:43:26,318 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:53.7642
  484. 2022-11-09 18:43:27,622 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:6.7710
  485. 2022-11-09 18:43:28,934 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:11.9148
  486. 2022-11-09 18:43:30,252 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:35.9298
  487. 2022-11-09 18:43:31,485 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:6.7195
  488. 2022-11-09 18:43:32,702 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:20.4171
  489. 2022-11-09 19:02:23,376 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  490. 2022-11-09 19:02:23,376 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=4, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=4, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  491. 2022-11-09 19:02:28,432 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  492. 2022-11-09 19:02:33,540 - INFO - main.py - train - 68 - 【train】 epoch:0 0/1490 loss:316.3720
  493. 2022-11-09 19:03:27,388 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  494. 2022-11-09 19:03:27,388 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  495. 2022-11-09 19:03:31,350 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  496. 2022-11-09 19:03:35,927 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:282.4315
  497. 2022-11-09 19:03:37,161 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:349.1413
  498. 2022-11-09 19:03:38,411 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:172.7901
  499. 2022-11-09 19:03:39,598 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:316.5670
  500. 2022-11-09 19:03:40,770 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:63.9680
  501. 2022-11-09 19:03:41,910 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:77.7757
  502. 2022-11-09 19:03:43,129 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:358.8559
  503. 2022-11-09 19:03:44,316 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:292.0248
  504. 2022-11-09 19:03:45,550 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:460.5745
  505. 2022-11-09 19:03:46,690 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:90.0077
  506. 2022-11-09 19:03:48,018 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:489.6821
  507. 2022-11-09 19:03:49,174 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:111.5192
  508. 2022-11-09 19:03:50,424 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:177.8898
  509. 2022-11-09 19:03:51,611 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:439.1432
  510. 2022-11-09 19:03:52,752 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:121.4201
  511. 2022-11-09 19:03:53,939 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:270.0668
  512. 2022-11-09 19:03:55,204 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:38.2642
  513. 2022-11-09 19:03:56,376 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:288.7617
  514. 2022-11-09 19:03:57,579 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:425.1012
  515. 2022-11-09 19:03:58,766 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:237.1219
  516. 2022-11-09 19:03:59,984 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:256.8239
  517. 2022-11-09 19:04:01,171 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:216.5575
  518. 2022-11-09 19:04:02,359 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:318.9067
  519. 2022-11-09 19:04:03,671 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:52.6395
  520. 2022-11-09 19:04:04,889 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:105.2719
  521. 2022-11-09 19:04:06,061 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:175.9989
  522. 2022-11-09 19:04:07,217 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:183.2708
  523. 2022-11-09 19:04:08,451 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:274.2786
  524. 2022-11-09 19:04:09,669 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:270.1072
  525. 2022-11-09 19:04:10,794 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:51.3554
  526. 2022-11-09 19:04:12,044 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:227.7401
  527. 2022-11-09 19:04:13,247 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:241.7027
  528. 2022-11-09 19:04:14,418 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:217.1473
  529. 2022-11-09 19:04:15,699 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:353.3660
  530. 2022-11-09 19:04:16,855 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:41.0551
  531. 2022-11-09 19:04:18,011 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:173.1582
  532. 2022-11-09 19:04:19,292 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:74.5044
  533. 2022-11-09 19:04:20,604 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:147.3521
  534. 2022-11-09 19:04:21,776 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:129.2970
  535. 2022-11-09 19:04:22,932 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:125.3554
  536. 2022-11-09 19:04:24,104 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:103.3222
  537. 2022-11-09 19:04:25,275 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:63.6357
  538. 2022-11-09 19:04:26,447 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:149.9285
  539. 2022-11-09 19:04:27,775 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:159.9024
  540. 2022-11-09 19:04:29,087 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:95.9651
  541. 2022-11-09 19:04:30,305 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:104.5443
  542. 2022-11-09 19:04:31,696 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:64.2032
  543. 2022-11-09 19:04:32,883 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:169.8716
  544. 2022-11-09 19:04:34,211 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:104.5475
  545. 2022-11-09 19:04:35,429 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:323.0245
  546. 2022-11-09 19:04:36,726 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:105.9590
  547. 2022-11-09 19:04:37,882 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:53.3909
  548. 2022-11-09 19:04:39,163 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:128.2710
  549. 2022-11-09 19:04:40,350 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:93.4058
  550. 2022-11-09 19:04:41,584 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:184.9477
  551. 2022-11-09 19:04:42,816 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:241.6559
  552. 2022-11-09 19:04:44,019 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:43.0941
  553. 2022-11-09 19:04:45,378 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:145.7007
  554. 2022-11-09 19:04:46,518 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:43.6095
  555. 2022-11-09 19:04:47,705 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:406.7163
  556. 2022-11-09 19:04:48,861 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:60.8267
  557. 2022-11-09 19:04:50,111 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:199.1176
  558. 2022-11-09 19:04:51,283 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:59.4112
  559. 2022-11-09 19:04:52,501 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:95.2976
  560. 2022-11-09 19:04:53,657 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:30.8693
  561. 2022-11-09 19:04:54,875 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:303.6538
  562. 2022-11-09 19:04:56,078 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:103.3871
  563. 2022-11-09 19:04:57,312 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:74.9780
  564. 2022-11-09 19:04:58,640 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:29.6169
  565. 2022-11-09 19:04:59,827 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:99.8470
  566. 2022-11-09 19:05:01,093 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:120.8370
  567. 2022-11-09 19:05:02,264 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:19.9152
  568. 2022-11-09 19:05:03,608 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:156.0164
  569. 2022-11-09 19:05:04,857 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:90.8173
  570. 2022-11-09 19:05:06,076 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:82.6100
  571. 2022-11-09 19:05:07,279 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:80.8683
  572. 2022-11-09 19:05:08,544 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:114.0199
  573. 2022-11-09 19:05:09,763 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:31.1001
  574. 2022-11-09 19:05:11,247 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:89.9733
  575. 2022-11-09 19:05:12,637 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:204.4708
  576. 2022-11-09 19:05:13,777 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:29.4187
  577. 2022-11-09 19:05:15,089 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:158.3213
  578. 2022-11-09 19:05:16,636 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:26.3408
  579. 2022-11-09 19:05:17,870 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:163.6489
  580. 2022-11-09 19:05:19,135 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:33.3513
  581. 2022-11-09 19:05:20,354 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:30.0256
  582. 2022-11-09 19:05:21,666 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:67.0394
  583. 2022-11-09 19:05:22,900 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:111.9282
  584. 2022-11-09 19:05:24,072 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:90.7613
  585. 2022-11-09 19:05:25,228 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:33.0127
  586. 2022-11-09 19:05:26,384 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:37.5084
  587. 2022-11-09 19:05:27,711 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:150.8694
  588. 2022-11-09 19:05:28,992 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:35.7935
  589. 2022-11-09 19:05:30,133 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:24.0617
  590. 2022-11-09 19:05:31,304 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:35.2720
  591. 2022-11-09 19:05:32,617 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:48.3293
  592. 2022-11-09 19:05:34,022 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:92.0753
  593. 2022-11-09 19:05:35,178 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:57.7539
  594. 2022-11-09 19:05:36,381 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:53.4933
  595. 2022-11-09 19:05:37,584 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:175.9615
  596. 2022-11-09 19:05:38,834 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:18.8627
  597. 2022-11-09 19:05:39,990 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:82.3581
  598. 2022-11-09 19:05:41,271 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:64.3166
  599. 2022-11-09 19:05:42,474 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:123.4606
  600. 2022-11-09 19:05:43,661 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:68.3314
  601. 2022-11-09 19:05:44,864 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:127.8958
  602. 2022-11-09 19:05:46,035 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:67.8566
  603. 2022-11-09 19:05:47,222 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:82.9919
  604. 2022-11-09 19:05:48,503 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.0667
  605. 2022-11-09 19:05:49,894 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:78.8107
  606. 2022-11-09 19:05:51,128 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:57.4205
  607. 2022-11-09 19:05:52,440 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:58.2669
  608. 2022-11-09 19:05:53,721 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:37.7122
  609. 2022-11-09 19:05:55,049 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:59.2715
  610. 2022-11-09 19:05:56,361 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:109.2859
  611. 2022-11-09 19:05:57,533 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:66.8373
  612. 2022-11-09 19:05:58,735 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:100.5893
  613. 2022-11-09 19:05:59,954 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:160.0564
  614. 2022-11-09 19:06:01,110 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:21.9086
  615. 2022-11-09 19:06:02,266 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:47.5741
  616. 2022-11-09 19:06:03,437 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:29.9038
  617. 2022-11-09 19:06:04,625 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:51.5459
  618. 2022-11-09 19:06:05,859 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:61.3329
  619. 2022-11-09 19:06:07,077 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:73.5590
  620. 2022-11-09 19:06:08,233 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:40.3231
  621. 2022-11-09 19:06:09,577 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:80.6520
  622. 2022-11-09 19:06:10,733 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:69.2301
  623. 2022-11-09 19:06:12,123 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:121.7187
  624. 2022-11-09 19:06:13,357 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:46.5610
  625. 2022-11-09 19:06:14,560 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:36.8176
  626. 2022-11-09 19:06:15,856 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:39.3850
  627. 2022-11-09 19:06:17,028 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:37.3555
  628. 2022-11-09 19:06:18,231 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:55.8957
  629. 2022-11-09 19:06:19,434 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:99.7036
  630. 2022-11-09 19:06:20,762 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:31.9459
  631. 2022-11-09 19:06:22,011 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:47.3585
  632. 2022-11-09 19:06:23,214 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:45.1459
  633. 2022-11-09 19:06:24,354 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:14.9006
  634. 2022-11-09 19:06:25,792 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:134.6276
  635. 2022-11-09 19:06:27,104 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:54.8420
  636. 2022-11-09 19:06:28,275 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:29.7027
  637. 2022-11-09 19:06:29,447 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:22.8068
  638. 2022-11-09 19:06:30,697 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:160.6334
  639. 2022-11-09 19:06:31,884 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:30.7702
  640. 2022-11-09 19:06:33,056 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:61.3411
  641. 2022-11-09 19:06:34,430 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:54.4996
  642. 2022-11-09 19:06:35,633 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:18.7288
  643. 2022-11-09 19:06:36,867 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:44.8332
  644. 2022-11-09 19:06:38,054 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:19.3201
  645. 2022-11-09 19:06:39,398 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:27.7792
  646. 2022-11-09 19:06:40,616 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:17.8810
  647. 2022-11-09 19:06:41,772 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:24.3679
  648. 2022-11-09 19:06:43,022 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:67.6738
  649. 2022-11-09 19:06:44,193 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:34.6583
  650. 2022-11-09 19:06:45,412 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:9.4772
  651. 2022-11-09 19:06:46,662 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:58.5267
  652. 2022-11-09 19:06:47,927 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:53.4738
  653. 2022-11-09 19:06:49,099 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:24.6808
  654. 2022-11-09 19:06:50,270 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:32.6800
  655. 2022-11-09 19:06:51,442 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:89.3568
  656. 2022-11-09 19:06:52,645 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:19.7398
  657. 2022-11-09 19:06:53,863 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:39.7384
  658. 2022-11-09 19:06:55,035 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:13.7301
  659. 2022-11-09 19:06:56,284 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:43.8718
  660. 2022-11-09 19:06:57,706 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:21.9532
  661. 2022-11-09 19:06:59,003 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:25.6840
  662. 2022-11-09 19:07:00,346 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:75.8519
  663. 2022-11-09 19:07:01,689 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:38.4785
  664. 2022-11-09 19:07:02,830 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:5.6793
  665. 2022-11-09 19:07:04,158 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.5726
  666. 2022-11-09 19:07:05,454 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:54.8319
  667. 2022-11-09 19:07:06,735 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:41.0339
  668. 2022-11-09 19:07:07,969 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.2866
  669. 2022-11-09 19:07:09,297 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:51.3268
  670. 2022-11-09 19:07:10,765 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:62.1816
  671. 2022-11-09 19:07:12,015 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.0496
  672. 2022-11-09 19:07:13,280 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:75.3190
  673. 2022-11-09 19:07:14,561 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:41.8338
  674. 2022-11-09 19:07:15,795 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:41.7383
  675. 2022-11-09 19:07:16,998 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:31.6100
  676. 2022-11-09 19:07:18,232 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:28.7614
  677. 2022-11-09 19:07:19,513 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:62.8120
  678. 2022-11-09 19:07:20,810 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:35.8153
  679. 2022-11-09 19:07:22,028 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:59.6051
  680. 2022-11-09 19:07:23,450 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:98.9992
  681. 2022-11-09 19:07:24,700 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:55.7362
  682. 2022-11-09 19:07:25,871 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:19.6064
  683. 2022-11-09 19:07:27,183 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:39.3520
  684. 2022-11-09 19:07:28,355 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:23.1798
  685. 2022-11-09 19:07:29,808 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:57.9983
  686. 2022-11-09 19:07:31,136 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:15.0503
  687. 2022-11-09 19:07:32,354 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:28.5482
  688. 2022-11-09 19:07:33,604 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:28.3134
  689. 2022-11-09 19:07:34,760 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:13.1558
  690. 2022-11-09 19:07:36,103 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:21.2622
  691. 2022-11-09 19:07:37,337 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:26.6583
  692. 2022-11-09 19:07:38,868 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:32.9246
  693. 2022-11-09 19:07:40,180 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:19.8522
  694. 2022-11-09 19:07:41,383 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:21.9186
  695. 2022-11-09 19:07:42,727 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:7.8291
  696. 2022-11-09 19:07:44,164 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:46.9642
  697. 2022-11-09 19:07:45,367 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:23.5077
  698. 2022-11-09 19:07:46,554 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:62.6766
  699. 2022-11-09 19:07:47,741 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:54.6998
  700. 2022-11-09 19:07:49,053 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:35.6884
  701. 2022-11-09 19:07:50,225 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:13.9762
  702. 2022-11-09 19:07:51,428 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:23.1779
  703. 2022-11-09 19:07:52,709 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:18.8497
  704. 2022-11-09 19:07:53,943 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:27.3929
  705. 2022-11-09 19:07:55,192 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:11.6609
  706. 2022-11-09 19:07:56,364 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:17.4296
  707. 2022-11-09 19:07:57,520 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:14.6435
  708. 2022-11-09 19:07:58,660 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.3514
  709. 2022-11-09 19:07:59,848 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:22.1900
  710. 2022-11-09 19:08:01,082 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:16.6185
  711. 2022-11-09 19:08:02,269 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:27.2955
  712. 2022-11-09 19:08:03,441 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:25.4574
  713. 2022-11-09 19:08:05,096 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:95.2818
  714. 2022-11-09 19:08:06,580 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:59.8647
  715. 2022-11-09 19:08:08,096 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:20.8181
  716. 2022-11-09 19:08:09,470 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:39.5670
  717. 2022-11-09 19:08:12,204 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:40.8846
  718. 2022-11-09 19:08:14,329 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:3.0876
  719. 2022-11-09 19:08:16,328 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:18.9693
  720. 2022-11-09 19:08:18,109 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:10.3815
  721. 2022-11-09 19:08:19,796 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:4.4977
  722. 2022-11-09 19:08:21,436 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:26.8075
  723. 2022-11-09 19:08:23,061 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:66.0917
  724. 2022-11-09 19:08:24,529 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:27.7529
  725. 2022-11-09 19:08:25,888 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:30.3438
  726. 2022-11-09 19:08:27,201 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:4.6632
  727. 2022-11-09 19:08:28,654 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:29.0340
  728. 2022-11-09 19:08:29,982 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:106.2216
  729. 2022-11-09 19:08:31,325 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:26.2923
  730. 2022-11-09 19:08:33,075 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:13.1122
  731. 2022-11-09 19:08:34,465 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:34.0507
  732. 2022-11-09 19:08:35,949 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:28.3456
  733. 2022-11-09 19:08:37,308 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:5.6085
  734. 2022-11-09 19:08:38,714 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:6.7618
  735. 2022-11-09 19:08:40,120 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:24.8394
  736. 2022-11-09 19:08:41,510 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:28.1028
  737. 2022-11-09 19:08:42,854 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:31.2807
  738. 2022-11-09 19:08:44,338 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:8.9886
  739. 2022-11-09 19:08:45,650 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:23.1137
  740. 2022-11-09 19:08:47,040 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:12.2010
  741. 2022-11-09 19:08:48,384 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:13.8346
  742. 2022-11-09 19:08:49,790 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:19.6365
  743. 2022-11-09 19:08:51,117 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:21.6641
  744. 2022-11-09 19:08:52,586 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:19.5260
  745. 2022-11-09 19:08:53,945 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:15.0800
  746. 2022-11-09 19:08:55,288 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:31.0788
  747. 2022-11-09 19:08:56,554 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:65.8123
  748. 2022-11-09 19:08:57,835 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:13.5526
  749. 2022-11-09 19:08:59,100 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:64.1057
  750. 2022-11-09 19:09:00,318 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:9.4639
  751. 2022-11-09 19:09:01,537 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:3.6924
  752. 2022-11-09 19:09:02,818 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:12.1447
  753. 2022-11-09 19:09:04,036 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:23.6392
  754. 2022-11-09 19:09:05,302 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:17.5400
  755. 2022-11-09 19:09:06,505 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:32.9995
  756. 2022-11-09 19:09:07,739 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:16.9070
  757. 2022-11-09 19:09:09,020 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:18.0961
  758. 2022-11-09 19:09:10,254 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:7.8411
  759. 2022-11-09 19:09:11,550 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:9.0051
  760. 2022-11-09 19:09:12,784 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:14.9643
  761. 2022-11-09 19:09:14,034 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:53.7642
  762. 2022-11-09 19:09:15,221 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:6.7710
  763. 2022-11-09 19:09:16,440 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:11.9148
  764. 2022-11-09 19:09:17,830 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:35.9298
  765. 2022-11-09 19:09:19,064 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:6.7195
  766. 2022-11-09 19:09:20,564 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:20.4171
  767. 2022-11-09 19:09:21,813 - INFO - main.py - train - 68 - 【train】 epoch:0 271/2980 loss:10.6901
  768. 2022-11-09 19:09:23,094 - INFO - main.py - train - 68 - 【train】 epoch:0 272/2980 loss:26.3286
  769. 2022-11-09 19:09:24,407 - INFO - main.py - train - 68 - 【train】 epoch:0 273/2980 loss:47.1486
  770. 2022-11-09 19:09:25,844 - INFO - main.py - train - 68 - 【train】 epoch:0 274/2980 loss:20.3282
  771. 2022-11-09 19:09:27,015 - INFO - main.py - train - 68 - 【train】 epoch:0 275/2980 loss:8.6622
  772. 2022-11-09 19:09:28,203 - INFO - main.py - train - 68 - 【train】 epoch:0 276/2980 loss:27.1672
  773. 2022-11-09 19:09:29,421 - INFO - main.py - train - 68 - 【train】 epoch:0 277/2980 loss:32.8950
  774. 2022-11-09 19:09:30,593 - INFO - main.py - train - 68 - 【train】 epoch:0 278/2980 loss:15.2415
  775. 2022-11-09 19:09:31,827 - INFO - main.py - train - 68 - 【train】 epoch:0 279/2980 loss:19.7918
  776. 2022-11-09 19:09:33,342 - INFO - main.py - train - 68 - 【train】 epoch:0 280/2980 loss:37.7643
  777. 2022-11-09 19:09:34,529 - INFO - main.py - train - 68 - 【train】 epoch:0 281/2980 loss:21.9559
  778. 2022-11-09 19:09:35,826 - INFO - main.py - train - 68 - 【train】 epoch:0 282/2980 loss:8.1355
  779. 2022-11-09 19:09:37,029 - INFO - main.py - train - 68 - 【train】 epoch:0 283/2980 loss:13.1856
  780. 2022-11-09 19:09:38,372 - INFO - main.py - train - 68 - 【train】 epoch:0 284/2980 loss:19.2486
  781. 2022-11-09 19:09:39,559 - INFO - main.py - train - 68 - 【train】 epoch:0 285/2980 loss:16.8071
  782. 2022-11-09 19:09:40,840 - INFO - main.py - train - 68 - 【train】 epoch:0 286/2980 loss:20.2026
  783. 2022-11-09 19:09:42,012 - INFO - main.py - train - 68 - 【train】 epoch:0 287/2980 loss:5.6094
  784. 2022-11-09 19:09:43,262 - INFO - main.py - train - 68 - 【train】 epoch:0 288/2980 loss:13.8271
  785. 2022-11-09 19:09:44,480 - INFO - main.py - train - 68 - 【train】 epoch:0 289/2980 loss:13.6637
  786. 2022-11-09 19:09:45,745 - INFO - main.py - train - 68 - 【train】 epoch:0 290/2980 loss:23.8945
  787. 2022-11-09 19:09:46,917 - INFO - main.py - train - 68 - 【train】 epoch:0 291/2980 loss:12.9386
  788. 2022-11-09 19:09:48,135 - INFO - main.py - train - 68 - 【train】 epoch:0 292/2980 loss:45.5666
  789. 2022-11-09 19:09:49,401 - INFO - main.py - train - 68 - 【train】 epoch:0 293/2980 loss:14.6907
  790. 2022-11-09 19:09:50,588 - INFO - main.py - train - 68 - 【train】 epoch:0 294/2980 loss:9.5056
  791. 2022-11-09 19:09:51,869 - INFO - main.py - train - 68 - 【train】 epoch:0 295/2980 loss:8.4211
  792. 2022-11-09 19:09:53,119 - INFO - main.py - train - 68 - 【train】 epoch:0 296/2980 loss:7.2971
  793. 2022-11-09 19:09:54,321 - INFO - main.py - train - 68 - 【train】 epoch:0 297/2980 loss:15.3591
  794. 2022-11-09 19:09:55,493 - INFO - main.py - train - 68 - 【train】 epoch:0 298/2980 loss:15.8316
  795. 2022-11-09 19:09:56,665 - INFO - main.py - train - 68 - 【train】 epoch:0 299/2980 loss:2.6025
  796. 2022-11-09 19:09:57,852 - INFO - main.py - train - 68 - 【train】 epoch:0 300/2980 loss:15.6394
  797. 2022-11-09 19:09:59,180 - INFO - main.py - train - 68 - 【train】 epoch:0 301/2980 loss:17.9007
  798. 2022-11-09 19:10:00,383 - INFO - main.py - train - 68 - 【train】 epoch:0 302/2980 loss:15.4099
  799. 2022-11-09 19:10:01,663 - INFO - main.py - train - 68 - 【train】 epoch:0 303/2980 loss:5.8337
  800. 2022-11-09 19:10:02,882 - INFO - main.py - train - 68 - 【train】 epoch:0 304/2980 loss:13.5061
  801. 2022-11-09 19:10:04,085 - INFO - main.py - train - 68 - 【train】 epoch:0 305/2980 loss:23.1606
  802. 2022-11-09 19:10:05,272 - INFO - main.py - train - 68 - 【train】 epoch:0 306/2980 loss:27.6846
  803. 2022-11-09 19:10:06,444 - INFO - main.py - train - 68 - 【train】 epoch:0 307/2980 loss:13.6456
  804. 2022-11-09 19:10:07,662 - INFO - main.py - train - 68 - 【train】 epoch:0 308/2980 loss:20.2195
  805. 2022-11-09 19:10:09,052 - INFO - main.py - train - 68 - 【train】 epoch:0 309/2980 loss:35.2267
  806. 2022-11-09 19:10:10,224 - INFO - main.py - train - 68 - 【train】 epoch:0 310/2980 loss:41.3163
  807. 2022-11-09 19:10:11,599 - INFO - main.py - train - 68 - 【train】 epoch:0 311/2980 loss:4.6452
  808. 2022-11-09 19:10:12,801 - INFO - main.py - train - 68 - 【train】 epoch:0 312/2980 loss:28.2084
  809. 2022-11-09 19:10:14,004 - INFO - main.py - train - 68 - 【train】 epoch:0 313/2980 loss:16.2523
  810. 2022-11-09 19:10:15,254 - INFO - main.py - train - 68 - 【train】 epoch:0 314/2980 loss:10.3799
  811. 2022-11-09 19:10:16,441 - INFO - main.py - train - 68 - 【train】 epoch:0 315/2980 loss:18.1922
  812. 2022-11-09 19:10:17,722 - INFO - main.py - train - 68 - 【train】 epoch:0 316/2980 loss:4.7718
  813. 2022-11-09 19:10:19,159 - INFO - main.py - train - 68 - 【train】 epoch:0 317/2980 loss:4.6680
  814. 2022-11-09 19:10:20,331 - INFO - main.py - train - 68 - 【train】 epoch:0 318/2980 loss:13.6411
  815. 2022-11-09 19:10:21,518 - INFO - main.py - train - 68 - 【train】 epoch:0 319/2980 loss:17.1746
  816. 2022-11-09 19:10:22,721 - INFO - main.py - train - 68 - 【train】 epoch:0 320/2980 loss:38.8198
  817. 2022-11-09 19:10:24,002 - INFO - main.py - train - 68 - 【train】 epoch:0 321/2980 loss:19.7372
  818. 2022-11-09 19:10:25,236 - INFO - main.py - train - 68 - 【train】 epoch:0 322/2980 loss:29.0606
  819. 2022-11-09 19:10:26,423 - INFO - main.py - train - 68 - 【train】 epoch:0 323/2980 loss:18.6552
  820. 2022-11-09 19:10:27,611 - INFO - main.py - train - 68 - 【train】 epoch:0 324/2980 loss:9.6085
  821. 2022-11-09 19:10:28,938 - INFO - main.py - train - 68 - 【train】 epoch:0 325/2980 loss:50.8322
  822. 2022-11-09 19:10:30,172 - INFO - main.py - train - 68 - 【train】 epoch:0 326/2980 loss:10.2359
  823. 2022-11-09 19:10:31,344 - INFO - main.py - train - 68 - 【train】 epoch:0 327/2980 loss:8.8737
  824. 2022-11-09 19:10:32,562 - INFO - main.py - train - 68 - 【train】 epoch:0 328/2980 loss:12.8671
  825. 2022-11-09 19:10:33,875 - INFO - main.py - train - 68 - 【train】 epoch:0 329/2980 loss:16.9284
  826. 2022-11-09 19:10:35,234 - INFO - main.py - train - 68 - 【train】 epoch:0 330/2980 loss:28.2258
  827. 2022-11-09 19:10:36,437 - INFO - main.py - train - 68 - 【train】 epoch:0 331/2980 loss:59.7146
  828. 2022-11-09 19:10:37,655 - INFO - main.py - train - 68 - 【train】 epoch:0 332/2980 loss:20.3501
  829. 2022-11-09 19:10:38,952 - INFO - main.py - train - 68 - 【train】 epoch:0 333/2980 loss:27.0053
  830. 2022-11-09 19:10:40,186 - INFO - main.py - train - 68 - 【train】 epoch:0 334/2980 loss:31.6136
  831. 2022-11-09 19:10:41,373 - INFO - main.py - train - 68 - 【train】 epoch:0 335/2980 loss:10.4056
  832. 2022-11-09 19:10:42,623 - INFO - main.py - train - 68 - 【train】 epoch:0 336/2980 loss:29.7988
  833. 2022-11-09 19:10:43,872 - INFO - main.py - train - 68 - 【train】 epoch:0 337/2980 loss:23.9821
  834. 2022-11-09 19:10:45,122 - INFO - main.py - train - 68 - 【train】 epoch:0 338/2980 loss:9.8021
  835. 2022-11-09 19:10:46,356 - INFO - main.py - train - 68 - 【train】 epoch:0 339/2980 loss:5.5470
  836. 2022-11-09 19:10:47,528 - INFO - main.py - train - 68 - 【train】 epoch:0 340/2980 loss:13.5894
  837. 2022-11-09 19:10:48,949 - INFO - main.py - train - 68 - 【train】 epoch:0 341/2980 loss:45.4608
  838. 2022-11-09 19:10:50,121 - INFO - main.py - train - 68 - 【train】 epoch:0 342/2980 loss:15.7342
  839. 2022-11-09 19:10:51,292 - INFO - main.py - train - 68 - 【train】 epoch:0 343/2980 loss:19.4502
  840. 2022-11-09 19:10:52,542 - INFO - main.py - train - 68 - 【train】 epoch:0 344/2980 loss:28.2110
  841. 2022-11-09 19:10:53,823 - INFO - main.py - train - 68 - 【train】 epoch:0 345/2980 loss:19.2324
  842. 2022-11-09 19:10:55,010 - INFO - main.py - train - 68 - 【train】 epoch:0 346/2980 loss:13.8123
  843. 2022-11-09 19:10:56,323 - INFO - main.py - train - 68 - 【train】 epoch:0 347/2980 loss:12.4725
  844. 2022-11-09 19:10:57,557 - INFO - main.py - train - 68 - 【train】 epoch:0 348/2980 loss:13.2621
  845. 2022-11-09 19:10:58,759 - INFO - main.py - train - 68 - 【train】 epoch:0 349/2980 loss:23.0961
  846. 2022-11-09 19:11:00,072 - INFO - main.py - train - 68 - 【train】 epoch:0 350/2980 loss:2.8694
  847. 2022-11-09 19:11:01,259 - INFO - main.py - train - 68 - 【train】 epoch:0 351/2980 loss:16.6821
  848. 2022-11-09 19:11:02,446 - INFO - main.py - train - 68 - 【train】 epoch:0 352/2980 loss:24.4955
  849. 2022-11-09 19:11:03,665 - INFO - main.py - train - 68 - 【train】 epoch:0 353/2980 loss:10.2516
  850. 2022-11-09 19:11:04,867 - INFO - main.py - train - 68 - 【train】 epoch:0 354/2980 loss:5.5827
  851. 2022-11-09 19:11:06,180 - INFO - main.py - train - 68 - 【train】 epoch:0 355/2980 loss:26.6975
  852. 2022-11-09 19:11:07,476 - INFO - main.py - train - 68 - 【train】 epoch:0 356/2980 loss:34.4293
  853. 2022-11-09 19:11:08,866 - INFO - main.py - train - 68 - 【train】 epoch:0 357/2980 loss:29.9112
  854. 2022-11-09 19:11:10,085 - INFO - main.py - train - 68 - 【train】 epoch:0 358/2980 loss:60.2771
  855. 2022-11-09 19:11:11,428 - INFO - main.py - train - 68 - 【train】 epoch:0 359/2980 loss:11.9978
  856. 2022-11-09 19:11:12,616 - INFO - main.py - train - 68 - 【train】 epoch:0 360/2980 loss:20.5220
  857. 2022-11-09 19:11:13,818 - INFO - main.py - train - 68 - 【train】 epoch:0 361/2980 loss:2.2819
  858. 2022-11-09 19:11:15,006 - INFO - main.py - train - 68 - 【train】 epoch:0 362/2980 loss:41.5072
  859. 2022-11-09 19:11:16,365 - INFO - main.py - train - 68 - 【train】 epoch:0 363/2980 loss:7.9676
  860. 2022-11-09 19:11:17,552 - INFO - main.py - train - 68 - 【train】 epoch:0 364/2980 loss:11.1801
  861. 2022-11-09 19:11:18,895 - INFO - main.py - train - 68 - 【train】 epoch:0 365/2980 loss:11.2722
  862. 2022-11-09 19:11:20,081 - INFO - main.py - train - 68 - 【train】 epoch:0 366/2980 loss:7.8079
  863. 2022-11-09 19:11:21,393 - INFO - main.py - train - 68 - 【train】 epoch:0 367/2980 loss:63.3143
  864. 2022-11-09 19:11:22,627 - INFO - main.py - train - 68 - 【train】 epoch:0 368/2980 loss:22.5410
  865. 2022-11-09 19:11:23,877 - INFO - main.py - train - 68 - 【train】 epoch:0 369/2980 loss:19.5503
  866. 2022-11-09 19:11:25,111 - INFO - main.py - train - 68 - 【train】 epoch:0 370/2980 loss:9.8747
  867. 2022-11-09 19:11:26,329 - INFO - main.py - train - 68 - 【train】 epoch:0 371/2980 loss:26.5924
  868. 2022-11-09 19:11:27,845 - INFO - main.py - train - 68 - 【train】 epoch:0 372/2980 loss:10.8326
  869. 2022-11-09 19:11:29,032 - INFO - main.py - train - 68 - 【train】 epoch:0 373/2980 loss:17.1841
  870. 2022-11-09 19:11:30,516 - INFO - main.py - train - 68 - 【train】 epoch:0 374/2980 loss:42.0727
  871. 2022-11-09 19:11:31,719 - INFO - main.py - train - 68 - 【train】 epoch:0 375/2980 loss:26.4326
  872. 2022-11-09 19:11:33,062 - INFO - main.py - train - 68 - 【train】 epoch:0 376/2980 loss:31.7509
  873. 2022-11-09 19:11:34,546 - INFO - main.py - train - 68 - 【train】 epoch:0 377/2980 loss:16.2639
  874. 2022-11-09 19:11:35,765 - INFO - main.py - train - 68 - 【train】 epoch:0 378/2980 loss:2.6569
  875. 2022-11-09 19:11:36,936 - INFO - main.py - train - 68 - 【train】 epoch:0 379/2980 loss:4.8989
  876. 2022-11-09 19:11:38,155 - INFO - main.py - train - 68 - 【train】 epoch:0 380/2980 loss:4.7403
  877. 2022-11-09 19:11:39,311 - INFO - main.py - train - 68 - 【train】 epoch:0 381/2980 loss:2.6233
  878. 2022-11-09 19:11:40,810 - INFO - main.py - train - 68 - 【train】 epoch:0 382/2980 loss:9.6961
  879. 2022-11-09 19:11:42,232 - INFO - main.py - train - 68 - 【train】 epoch:0 383/2980 loss:47.0598
  880. 2022-11-09 19:11:43,419 - INFO - main.py - train - 68 - 【train】 epoch:0 384/2980 loss:26.3561
  881. 2022-11-09 19:11:44,903 - INFO - main.py - train - 68 - 【train】 epoch:0 385/2980 loss:14.6687
  882. 2022-11-09 19:11:46,075 - INFO - main.py - train - 68 - 【train】 epoch:0 386/2980 loss:0.9136
  883. 2022-11-09 19:11:47,449 - INFO - main.py - train - 68 - 【train】 epoch:0 387/2980 loss:11.9993
  884. 2022-11-09 19:11:48,637 - INFO - main.py - train - 68 - 【train】 epoch:0 388/2980 loss:24.7298
  885. 2022-11-09 19:11:50,058 - INFO - main.py - train - 68 - 【train】 epoch:0 389/2980 loss:16.5880
  886. 2022-11-09 19:11:51,355 - INFO - main.py - train - 68 - 【train】 epoch:0 390/2980 loss:13.2665
  887. 2022-11-09 19:11:52,792 - INFO - main.py - train - 68 - 【train】 epoch:0 391/2980 loss:43.3391
  888. 2022-11-09 19:11:53,963 - INFO - main.py - train - 68 - 【train】 epoch:0 392/2980 loss:28.5177
  889. 2022-11-09 19:11:55,151 - INFO - main.py - train - 68 - 【train】 epoch:0 393/2980 loss:5.1394
  890. 2022-11-09 19:11:56,354 - INFO - main.py - train - 68 - 【train】 epoch:0 394/2980 loss:21.9260
  891. 2022-11-09 19:11:57,728 - INFO - main.py - train - 68 - 【train】 epoch:0 395/2980 loss:11.5004
  892. 2022-11-09 19:11:58,962 - INFO - main.py - train - 68 - 【train】 epoch:0 396/2980 loss:8.0341
  893. 2022-11-09 19:12:00,212 - INFO - main.py - train - 68 - 【train】 epoch:0 397/2980 loss:3.1563
  894. 2022-11-09 19:12:01,399 - INFO - main.py - train - 68 - 【train】 epoch:0 398/2980 loss:20.5450
  895. 2022-11-09 19:12:02,571 - INFO - main.py - train - 68 - 【train】 epoch:0 399/2980 loss:12.6033
  896. 2022-11-09 19:12:03,899 - INFO - main.py - train - 68 - 【train】 epoch:0 400/2980 loss:19.8868
  897. 2022-11-09 19:12:05,305 - INFO - main.py - train - 68 - 【train】 epoch:0 401/2980 loss:24.1830
  898. 2022-11-09 19:12:06,492 - INFO - main.py - train - 68 - 【train】 epoch:0 402/2980 loss:14.7999
  899. 2022-11-09 19:12:07,851 - INFO - main.py - train - 68 - 【train】 epoch:0 403/2980 loss:8.8363
  900. 2022-11-09 19:12:09,085 - INFO - main.py - train - 68 - 【train】 epoch:0 404/2980 loss:20.4104
  901. 2022-11-09 19:12:10,522 - INFO - main.py - train - 68 - 【train】 epoch:0 405/2980 loss:30.7651
  902. 2022-11-09 19:12:11,928 - INFO - main.py - train - 68 - 【train】 epoch:0 406/2980 loss:5.6979
  903. 2022-11-09 19:12:13,240 - INFO - main.py - train - 68 - 【train】 epoch:0 407/2980 loss:18.0504
  904. 2022-11-09 19:12:14,599 - INFO - main.py - train - 68 - 【train】 epoch:0 408/2980 loss:15.4761
  905. 2022-11-09 19:12:15,958 - INFO - main.py - train - 68 - 【train】 epoch:0 409/2980 loss:29.6396
  906. 2022-11-09 19:12:17,317 - INFO - main.py - train - 68 - 【train】 epoch:0 410/2980 loss:6.6848
  907. 2022-11-09 19:12:18,505 - INFO - main.py - train - 68 - 【train】 epoch:0 411/2980 loss:18.0417
  908. 2022-11-09 19:12:19,692 - INFO - main.py - train - 68 - 【train】 epoch:0 412/2980 loss:19.5906
  909. 2022-11-09 19:12:20,926 - INFO - main.py - train - 68 - 【train】 epoch:0 413/2980 loss:2.9956
  910. 2022-11-09 19:12:22,238 - INFO - main.py - train - 68 - 【train】 epoch:0 414/2980 loss:53.5752
  911. 2022-11-09 19:12:23,566 - INFO - main.py - train - 68 - 【train】 epoch:0 415/2980 loss:6.3333
  912. 2022-11-09 19:12:24,769 - INFO - main.py - train - 68 - 【train】 epoch:0 416/2980 loss:28.2375
  913. 2022-11-09 19:12:26,175 - INFO - main.py - train - 68 - 【train】 epoch:0 417/2980 loss:18.2013
  914. 2022-11-09 19:12:27,346 - INFO - main.py - train - 68 - 【train】 epoch:0 418/2980 loss:6.8118
  915. 2022-11-09 19:12:28,596 - INFO - main.py - train - 68 - 【train】 epoch:0 419/2980 loss:38.9618
  916. 2022-11-09 19:12:30,033 - INFO - main.py - train - 68 - 【train】 epoch:0 420/2980 loss:31.7234
  917. 2022-11-09 19:12:31,236 - INFO - main.py - train - 68 - 【train】 epoch:0 421/2980 loss:47.1120
  918. 2022-11-09 19:12:32,423 - INFO - main.py - train - 68 - 【train】 epoch:0 422/2980 loss:15.4096
  919. 2022-11-09 19:12:33,845 - INFO - main.py - train - 68 - 【train】 epoch:0 423/2980 loss:1.1637
  920. 2022-11-09 19:12:35,313 - INFO - main.py - train - 68 - 【train】 epoch:0 424/2980 loss:39.9704
  921. 2022-11-09 19:12:36,594 - INFO - main.py - train - 68 - 【train】 epoch:0 425/2980 loss:43.6809
  922. 2022-11-09 19:12:37,797 - INFO - main.py - train - 68 - 【train】 epoch:0 426/2980 loss:9.8543
  923. 2022-11-09 19:12:39,047 - INFO - main.py - train - 68 - 【train】 epoch:0 427/2980 loss:22.6666
  924. 2022-11-09 19:12:40,218 - INFO - main.py - train - 68 - 【train】 epoch:0 428/2980 loss:5.8729
  925. 2022-11-09 19:12:41,530 - INFO - main.py - train - 68 - 【train】 epoch:0 429/2980 loss:15.1942
  926. 2022-11-09 19:12:42,968 - INFO - main.py - train - 68 - 【train】 epoch:0 430/2980 loss:4.7138
  927. 2022-11-09 19:12:44,561 - INFO - main.py - train - 68 - 【train】 epoch:0 431/2980 loss:39.3617
  928. 2022-11-09 19:12:45,748 - INFO - main.py - train - 68 - 【train】 epoch:0 432/2980 loss:8.0105
  929. 2022-11-09 19:12:47,123 - INFO - main.py - train - 68 - 【train】 epoch:0 433/2980 loss:14.3325
  930. 2022-11-09 19:12:48,341 - INFO - main.py - train - 68 - 【train】 epoch:0 434/2980 loss:21.6053
  931. 2022-11-09 19:12:49,529 - INFO - main.py - train - 68 - 【train】 epoch:0 435/2980 loss:7.3831
  932. 2022-11-09 19:12:50,778 - INFO - main.py - train - 68 - 【train】 epoch:0 436/2980 loss:13.0012
  933. 2022-11-09 19:12:52,012 - INFO - main.py - train - 68 - 【train】 epoch:0 437/2980 loss:14.9192
  934. 2022-11-09 19:12:53,215 - INFO - main.py - train - 68 - 【train】 epoch:0 438/2980 loss:25.9529
  935. 2022-11-09 19:12:54,480 - INFO - main.py - train - 68 - 【train】 epoch:0 439/2980 loss:14.0497
  936. 2022-11-09 19:12:55,683 - INFO - main.py - train - 68 - 【train】 epoch:0 440/2980 loss:26.4014
  937. 2022-11-09 19:12:57,464 - INFO - main.py - train - 68 - 【train】 epoch:0 441/2980 loss:12.9228
  938. 2022-11-09 19:12:58,651 - INFO - main.py - train - 68 - 【train】 epoch:0 442/2980 loss:21.4049
  939. 2022-11-09 19:12:59,885 - INFO - main.py - train - 68 - 【train】 epoch:0 443/2980 loss:5.1731
  940. 2022-11-09 19:13:01,073 - INFO - main.py - train - 68 - 【train】 epoch:0 444/2980 loss:23.7464
  941. 2022-11-09 19:13:02,276 - INFO - main.py - train - 68 - 【train】 epoch:0 445/2980 loss:11.0882
  942. 2022-11-09 19:13:03,713 - INFO - main.py - train - 68 - 【train】 epoch:0 446/2980 loss:7.4235
  943. 2022-11-09 19:13:04,931 - INFO - main.py - train - 68 - 【train】 epoch:0 447/2980 loss:16.1383
  944. 2022-11-09 19:13:06,478 - INFO - main.py - train - 68 - 【train】 epoch:0 448/2980 loss:6.1622
  945. 2022-11-09 19:13:07,712 - INFO - main.py - train - 68 - 【train】 epoch:0 449/2980 loss:32.7150
  946. 2022-11-09 19:13:08,961 - INFO - main.py - train - 68 - 【train】 epoch:0 450/2980 loss:18.7224
  947. 2022-11-09 19:13:10,289 - INFO - main.py - train - 68 - 【train】 epoch:0 451/2980 loss:21.4449
  948. 2022-11-09 19:13:11,695 - INFO - main.py - train - 68 - 【train】 epoch:0 452/2980 loss:18.4865
  949. 2022-11-09 19:13:12,882 - INFO - main.py - train - 68 - 【train】 epoch:0 453/2980 loss:10.1730
  950. 2022-11-09 19:13:14,195 - INFO - main.py - train - 68 - 【train】 epoch:0 454/2980 loss:8.5925
  951. 2022-11-09 19:13:15,429 - INFO - main.py - train - 68 - 【train】 epoch:0 455/2980 loss:9.5609
  952. 2022-11-09 19:13:16,647 - INFO - main.py - train - 68 - 【train】 epoch:0 456/2980 loss:31.5600
  953. 2022-11-09 19:13:17,866 - INFO - main.py - train - 68 - 【train】 epoch:0 457/2980 loss:40.7327
  954. 2022-11-09 19:13:19,115 - INFO - main.py - train - 68 - 【train】 epoch:0 458/2980 loss:9.1150
  955. 2022-11-09 19:13:20,334 - INFO - main.py - train - 68 - 【train】 epoch:0 459/2980 loss:15.2203
  956. 2022-11-09 19:13:21,584 - INFO - main.py - train - 68 - 【train】 epoch:0 460/2980 loss:11.2842
  957. 2022-11-09 19:13:22,864 - INFO - main.py - train - 68 - 【train】 epoch:0 461/2980 loss:15.8119
  958. 2022-11-09 19:13:24,348 - INFO - main.py - train - 68 - 【train】 epoch:0 462/2980 loss:24.7363
  959. 2022-11-09 19:13:25,629 - INFO - main.py - train - 68 - 【train】 epoch:0 463/2980 loss:21.7762
  960. 2022-11-09 19:13:26,785 - INFO - main.py - train - 68 - 【train】 epoch:0 464/2980 loss:2.8700
  961. 2022-11-09 19:13:28,035 - INFO - main.py - train - 68 - 【train】 epoch:0 465/2980 loss:24.7919
  962. 2022-11-09 19:13:29,550 - INFO - main.py - train - 68 - 【train】 epoch:0 466/2980 loss:4.7934
  963. 2022-11-09 19:13:30,738 - INFO - main.py - train - 68 - 【train】 epoch:0 467/2980 loss:2.0986
  964. 2022-11-09 19:13:31,956 - INFO - main.py - train - 68 - 【train】 epoch:0 468/2980 loss:12.7756
  965. 2022-11-09 19:13:33,393 - INFO - main.py - train - 68 - 【train】 epoch:0 469/2980 loss:12.5638
  966. 2022-11-09 19:13:34,596 - INFO - main.py - train - 68 - 【train】 epoch:0 470/2980 loss:12.1744
  967. 2022-11-09 19:13:35,768 - INFO - main.py - train - 68 - 【train】 epoch:0 471/2980 loss:8.1110
  968. 2022-11-09 19:13:37,064 - INFO - main.py - train - 68 - 【train】 epoch:0 472/2980 loss:15.0860
  969. 2022-11-09 19:13:38,251 - INFO - main.py - train - 68 - 【train】 epoch:0 473/2980 loss:3.4037
  970. 2022-11-09 19:13:39,454 - INFO - main.py - train - 68 - 【train】 epoch:0 474/2980 loss:17.0298
  971. 2022-11-09 19:13:40,657 - INFO - main.py - train - 68 - 【train】 epoch:0 475/2980 loss:5.0986
  972. 2022-11-09 19:13:41,876 - INFO - main.py - train - 68 - 【train】 epoch:0 476/2980 loss:6.5140
  973. 2022-11-09 19:13:43,172 - INFO - main.py - train - 68 - 【train】 epoch:0 477/2980 loss:6.9128
  974. 2022-11-09 19:13:44,406 - INFO - main.py - train - 68 - 【train】 epoch:0 478/2980 loss:21.1824
  975. 2022-11-09 19:13:45,594 - INFO - main.py - train - 68 - 【train】 epoch:0 479/2980 loss:30.6331
  976. 2022-11-09 19:13:47,046 - INFO - main.py - train - 68 - 【train】 epoch:0 480/2980 loss:5.5117
  977. 2022-11-09 19:13:48,452 - INFO - main.py - train - 68 - 【train】 epoch:0 481/2980 loss:9.3698
  978. 2022-11-09 19:13:49,780 - INFO - main.py - train - 68 - 【train】 epoch:0 482/2980 loss:21.6885
  979. 2022-11-09 19:13:50,952 - INFO - main.py - train - 68 - 【train】 epoch:0 483/2980 loss:17.5134
  980. 2022-11-09 19:13:52,170 - INFO - main.py - train - 68 - 【train】 epoch:0 484/2980 loss:6.6206
  981. 2022-11-09 19:13:53,451 - INFO - main.py - train - 68 - 【train】 epoch:0 485/2980 loss:47.5785
  982. 2022-11-09 19:13:54,685 - INFO - main.py - train - 68 - 【train】 epoch:0 486/2980 loss:4.8351
  983. 2022-11-09 19:13:55,997 - INFO - main.py - train - 68 - 【train】 epoch:0 487/2980 loss:22.9914
  984. 2022-11-09 19:13:57,247 - INFO - main.py - train - 68 - 【train】 epoch:0 488/2980 loss:15.4147
  985. 2022-11-09 19:13:58,450 - INFO - main.py - train - 68 - 【train】 epoch:0 489/2980 loss:11.2715
  986. 2022-11-09 19:13:59,606 - INFO - main.py - train - 68 - 【train】 epoch:0 490/2980 loss:10.7737
  987. 2022-11-09 19:14:00,949 - INFO - main.py - train - 68 - 【train】 epoch:0 491/2980 loss:15.7190
  988. 2022-11-09 19:14:02,168 - INFO - main.py - train - 68 - 【train】 epoch:0 492/2980 loss:42.0230
  989. 2022-11-09 19:14:03,402 - INFO - main.py - train - 68 - 【train】 epoch:0 493/2980 loss:8.4792
  990. 2022-11-09 19:14:04,761 - INFO - main.py - train - 68 - 【train】 epoch:0 494/2980 loss:10.4921
  991. 2022-11-09 19:14:05,932 - INFO - main.py - train - 68 - 【train】 epoch:0 495/2980 loss:3.5481
  992. 2022-11-09 19:14:07,370 - INFO - main.py - train - 68 - 【train】 epoch:0 496/2980 loss:17.9145
  993. 2022-11-09 19:14:08,526 - INFO - main.py - train - 68 - 【train】 epoch:0 497/2980 loss:11.2604
  994. 2022-11-09 19:14:09,822 - INFO - main.py - train - 68 - 【train】 epoch:0 498/2980 loss:11.8712
  995. 2022-11-09 19:14:11,181 - INFO - main.py - train - 68 - 【train】 epoch:0 499/2980 loss:32.3993
  996. 2022-11-09 19:14:12,384 - INFO - main.py - train - 68 - 【train】 epoch:0 500/2980 loss:3.8016
  997. 2022-11-09 19:14:13,634 - INFO - main.py - train - 68 - 【train】 epoch:0 501/2980 loss:16.9943
  998. 2022-11-09 19:14:15,165 - INFO - main.py - train - 68 - 【train】 epoch:0 502/2980 loss:10.6604
  999. 2022-11-09 19:14:16,383 - INFO - main.py - train - 68 - 【train】 epoch:0 503/2980 loss:26.6849
  1000. 2022-11-09 19:14:17,602 - INFO - main.py - train - 68 - 【train】 epoch:0 504/2980 loss:7.7612
  1001. 2022-11-09 19:14:18,836 - INFO - main.py - train - 68 - 【train】 epoch:0 505/2980 loss:19.3749
  1002. 2022-11-09 19:14:20,195 - INFO - main.py - train - 68 - 【train】 epoch:0 506/2980 loss:7.0909
  1003. 2022-11-09 19:14:21,491 - INFO - main.py - train - 68 - 【train】 epoch:0 507/2980 loss:12.9745
  1004. 2022-11-09 19:14:22,850 - INFO - main.py - train - 68 - 【train】 epoch:0 508/2980 loss:8.7841
  1005. 2022-11-09 19:14:24,022 - INFO - main.py - train - 68 - 【train】 epoch:0 509/2980 loss:0.9807
  1006. 2022-11-09 19:14:25,444 - INFO - main.py - train - 68 - 【train】 epoch:0 510/2980 loss:16.0224
  1007. 2022-11-09 19:14:26,646 - INFO - main.py - train - 68 - 【train】 epoch:0 511/2980 loss:19.4607
  1008. 2022-11-09 19:14:27,865 - INFO - main.py - train - 68 - 【train】 epoch:0 512/2980 loss:5.0870
  1009. 2022-11-09 19:14:29,130 - INFO - main.py - train - 68 - 【train】 epoch:0 513/2980 loss:1.9769
  1010. 2022-11-09 19:14:30,474 - INFO - main.py - train - 68 - 【train】 epoch:0 514/2980 loss:6.6278
  1011. 2022-11-09 19:14:31,755 - INFO - main.py - train - 68 - 【train】 epoch:0 515/2980 loss:12.0646
  1012. 2022-11-09 19:14:32,989 - INFO - main.py - train - 68 - 【train】 epoch:0 516/2980 loss:4.7744
  1013. 2022-11-09 19:14:34,238 - INFO - main.py - train - 68 - 【train】 epoch:0 517/2980 loss:7.6553
  1014. 2022-11-09 19:14:35,613 - INFO - main.py - train - 68 - 【train】 epoch:0 518/2980 loss:63.1401
  1015. 2022-11-09 19:14:36,925 - INFO - main.py - train - 68 - 【train】 epoch:0 519/2980 loss:21.5630
  1016. 2022-11-09 19:14:38,175 - INFO - main.py - train - 68 - 【train】 epoch:0 520/2980 loss:23.0140
  1017. 2022-11-09 19:14:39,456 - INFO - main.py - train - 68 - 【train】 epoch:0 521/2980 loss:24.8414
  1018. 2022-11-09 19:14:40,721 - INFO - main.py - train - 68 - 【train】 epoch:0 522/2980 loss:12.7714
  1019. 2022-11-09 19:14:41,955 - INFO - main.py - train - 68 - 【train】 epoch:0 523/2980 loss:8.9592
  1020. 2022-11-09 19:14:43,314 - INFO - main.py - train - 68 - 【train】 epoch:0 524/2980 loss:17.6964
  1021. 2022-11-09 19:14:44,580 - INFO - main.py - train - 68 - 【train】 epoch:0 525/2980 loss:18.6219
  1022. 2022-11-09 19:14:45,845 - INFO - main.py - train - 68 - 【train】 epoch:0 526/2980 loss:8.4331
  1023. 2022-11-09 19:14:47,173 - INFO - main.py - train - 68 - 【train】 epoch:0 527/2980 loss:30.2038
  1024. 2022-11-09 19:14:48,641 - INFO - main.py - train - 68 - 【train】 epoch:0 528/2980 loss:28.9299
  1025. 2022-11-09 19:14:49,969 - INFO - main.py - train - 68 - 【train】 epoch:0 529/2980 loss:23.1733
  1026. 2022-11-09 19:14:51,312 - INFO - main.py - train - 68 - 【train】 epoch:0 530/2980 loss:17.7685
  1027. 2022-11-09 19:14:52,812 - INFO - main.py - train - 68 - 【train】 epoch:0 531/2980 loss:36.1402
  1028. 2022-11-09 19:14:54,187 - INFO - main.py - train - 68 - 【train】 epoch:0 532/2980 loss:1.6501
  1029. 2022-11-09 19:14:55,515 - INFO - main.py - train - 68 - 【train】 epoch:0 533/2980 loss:13.4088
  1030. 2022-11-09 19:14:56,827 - INFO - main.py - train - 68 - 【train】 epoch:0 534/2980 loss:33.7615
  1031. 2022-11-09 19:14:58,217 - INFO - main.py - train - 68 - 【train】 epoch:0 535/2980 loss:19.2225
  1032. 2022-11-09 19:14:59,576 - INFO - main.py - train - 68 - 【train】 epoch:0 536/2980 loss:24.9911
  1033. 2022-11-09 19:15:00,888 - INFO - main.py - train - 68 - 【train】 epoch:0 537/2980 loss:24.5149
  1034. 2022-11-09 19:15:02,216 - INFO - main.py - train - 68 - 【train】 epoch:0 538/2980 loss:5.4369
  1035. 2022-11-09 19:15:03,575 - INFO - main.py - train - 68 - 【train】 epoch:0 539/2980 loss:15.4594
  1036. 2022-11-09 19:15:04,903 - INFO - main.py - train - 68 - 【train】 epoch:0 540/2980 loss:27.2624
  1037. 2022-11-09 19:15:06,231 - INFO - main.py - train - 68 - 【train】 epoch:0 541/2980 loss:20.4977
  1038. 2022-11-09 19:15:07,543 - INFO - main.py - train - 68 - 【train】 epoch:0 542/2980 loss:9.9100
  1039. 2022-11-09 19:15:08,918 - INFO - main.py - train - 68 - 【train】 epoch:0 543/2980 loss:6.0687
  1040. 2022-11-09 19:15:10,355 - INFO - main.py - train - 68 - 【train】 epoch:0 544/2980 loss:20.7035
  1041. 2022-11-09 19:15:11,636 - INFO - main.py - train - 68 - 【train】 epoch:0 545/2980 loss:7.0456
  1042. 2022-11-09 19:15:12,901 - INFO - main.py - train - 68 - 【train】 epoch:0 546/2980 loss:1.5371
  1043. 2022-11-09 19:15:14,291 - INFO - main.py - train - 68 - 【train】 epoch:0 547/2980 loss:16.7745
  1044. 2022-11-09 19:15:15,650 - INFO - main.py - train - 68 - 【train】 epoch:0 548/2980 loss:23.2478
  1045. 2022-11-09 19:15:17,041 - INFO - main.py - train - 68 - 【train】 epoch:0 549/2980 loss:7.8305
  1046. 2022-11-09 19:15:18,415 - INFO - main.py - train - 68 - 【train】 epoch:0 550/2980 loss:6.0085
  1047. 2022-11-09 19:15:19,759 - INFO - main.py - train - 68 - 【train】 epoch:0 551/2980 loss:20.1843
  1048. 2022-11-09 19:15:20,946 - INFO - main.py - train - 68 - 【train】 epoch:0 552/2980 loss:7.4038
  1049. 2022-11-09 19:15:22,180 - INFO - main.py - train - 68 - 【train】 epoch:0 553/2980 loss:13.0509
  1050. 2022-11-09 19:15:23,414 - INFO - main.py - train - 68 - 【train】 epoch:0 554/2980 loss:3.5580
  1051. 2022-11-09 19:15:24,742 - INFO - main.py - train - 68 - 【train】 epoch:0 555/2980 loss:18.1365
  1052. 2022-11-09 19:15:26,226 - INFO - main.py - train - 68 - 【train】 epoch:0 556/2980 loss:27.6281
  1053. 2022-11-09 19:15:27,554 - INFO - main.py - train - 68 - 【train】 epoch:0 557/2980 loss:14.2526
  1054. 2022-11-09 19:15:28,835 - INFO - main.py - train - 68 - 【train】 epoch:0 558/2980 loss:16.9716
  1055. 2022-11-09 19:15:30,210 - INFO - main.py - train - 68 - 【train】 epoch:0 559/2980 loss:38.9159
  1056. 2022-11-09 19:15:31,537 - INFO - main.py - train - 68 - 【train】 epoch:0 560/2980 loss:20.8849
  1057. 2022-11-09 19:15:32,787 - INFO - main.py - train - 68 - 【train】 epoch:0 561/2980 loss:10.9623
  1058. 2022-11-09 19:15:34,084 - INFO - main.py - train - 68 - 【train】 epoch:0 562/2980 loss:20.2707
  1059. 2022-11-09 19:15:35,333 - INFO - main.py - train - 68 - 【train】 epoch:0 563/2980 loss:25.1510
  1060. 2022-11-09 19:15:36,661 - INFO - main.py - train - 68 - 【train】 epoch:0 564/2980 loss:17.8163
  1061. 2022-11-09 19:15:37,911 - INFO - main.py - train - 68 - 【train】 epoch:0 565/2980 loss:10.2621
  1062. 2022-11-09 19:15:39,176 - INFO - main.py - train - 68 - 【train】 epoch:0 566/2980 loss:3.8356
  1063. 2022-11-09 19:15:40,473 - INFO - main.py - train - 68 - 【train】 epoch:0 567/2980 loss:11.0072
  1064. 2022-11-09 19:15:41,707 - INFO - main.py - train - 68 - 【train】 epoch:0 568/2980 loss:9.8619
  1065. 2022-11-09 19:15:43,082 - INFO - main.py - train - 68 - 【train】 epoch:0 569/2980 loss:3.0930
  1066. 2022-11-09 19:15:44,284 - INFO - main.py - train - 68 - 【train】 epoch:0 570/2980 loss:1.6843
  1067. 2022-11-09 19:15:45,519 - INFO - main.py - train - 68 - 【train】 epoch:0 571/2980 loss:6.6696
  1068. 2022-11-09 19:15:46,706 - INFO - main.py - train - 68 - 【train】 epoch:0 572/2980 loss:12.0467
  1069. 2022-11-09 19:15:48,143 - INFO - main.py - train - 68 - 【train】 epoch:0 573/2980 loss:24.9221
  1070. 2022-11-09 19:15:49,486 - INFO - main.py - train - 68 - 【train】 epoch:0 574/2980 loss:5.6404
  1071. 2022-11-09 19:15:50,798 - INFO - main.py - train - 68 - 【train】 epoch:0 575/2980 loss:2.4011
  1072. 2022-11-09 19:15:52,001 - INFO - main.py - train - 68 - 【train】 epoch:0 576/2980 loss:12.7876
  1073. 2022-11-09 19:15:53,267 - INFO - main.py - train - 68 - 【train】 epoch:0 577/2980 loss:18.6598
  1074. 2022-11-09 19:15:54,470 - INFO - main.py - train - 68 - 【train】 epoch:0 578/2980 loss:16.0379
  1075. 2022-11-09 19:15:55,672 - INFO - main.py - train - 68 - 【train】 epoch:0 579/2980 loss:11.8385
  1076. 2022-11-09 19:15:56,922 - INFO - main.py - train - 68 - 【train】 epoch:0 580/2980 loss:12.0635
  1077. 2022-11-09 19:15:58,266 - INFO - main.py - train - 68 - 【train】 epoch:0 581/2980 loss:11.9174
  1078. 2022-11-09 19:15:59,437 - INFO - main.py - train - 68 - 【train】 epoch:0 582/2980 loss:5.2052
  1079. 2022-11-09 19:16:00,702 - INFO - main.py - train - 68 - 【train】 epoch:0 583/2980 loss:2.7217
  1080. 2022-11-09 19:16:01,968 - INFO - main.py - train - 68 - 【train】 epoch:0 584/2980 loss:10.7825
  1081. 2022-11-09 19:16:03,467 - INFO - main.py - train - 68 - 【train】 epoch:0 585/2980 loss:11.3076
  1082. 2022-11-09 19:16:04,639 - INFO - main.py - train - 68 - 【train】 epoch:0 586/2980 loss:10.2888
  1083. 2022-11-09 19:16:05,842 - INFO - main.py - train - 68 - 【train】 epoch:0 587/2980 loss:11.1969
  1084. 2022-11-09 19:16:07,029 - INFO - main.py - train - 68 - 【train】 epoch:0 588/2980 loss:1.6481
  1085. 2022-11-09 19:16:08,201 - INFO - main.py - train - 68 - 【train】 epoch:0 589/2980 loss:2.1682
  1086. 2022-11-09 19:16:09,372 - INFO - main.py - train - 68 - 【train】 epoch:0 590/2980 loss:18.1685
  1087. 2022-11-09 19:16:10,591 - INFO - main.py - train - 68 - 【train】 epoch:0 591/2980 loss:27.3570
  1088. 2022-11-09 19:16:11,919 - INFO - main.py - train - 68 - 【train】 epoch:0 592/2980 loss:11.9857
  1089. 2022-11-09 19:16:13,215 - INFO - main.py - train - 68 - 【train】 epoch:0 593/2980 loss:4.2955
  1090. 2022-11-09 19:16:14,605 - INFO - main.py - train - 68 - 【train】 epoch:0 594/2980 loss:7.3201
  1091. 2022-11-09 19:16:15,824 - INFO - main.py - train - 68 - 【train】 epoch:0 595/2980 loss:9.8807
  1092. 2022-11-09 19:16:23,838 - INFO - main.py - train - 68 - 【train】 epoch:1 596/2980 loss:7.1617
  1093. 2022-11-09 19:16:25,040 - INFO - main.py - train - 68 - 【train】 epoch:1 597/2980 loss:14.7571
  1094. 2022-11-09 19:16:26,275 - INFO - main.py - train - 68 - 【train】 epoch:1 598/2980 loss:19.8942
  1095. 2022-11-09 19:16:27,509 - INFO - main.py - train - 68 - 【train】 epoch:1 599/2980 loss:9.7976
  1096. 2022-11-09 19:16:28,852 - INFO - main.py - train - 68 - 【train】 epoch:1 600/2980 loss:6.3095
  1097. 2022-11-09 19:16:30,086 - INFO - main.py - train - 68 - 【train】 epoch:1 601/2980 loss:20.7048
  1098. 2022-11-09 19:16:31,461 - INFO - main.py - train - 68 - 【train】 epoch:1 602/2980 loss:8.2725
  1099. 2022-11-09 19:16:32,804 - INFO - main.py - train - 68 - 【train】 epoch:1 603/2980 loss:20.5405
  1100. 2022-11-09 19:16:34,054 - INFO - main.py - train - 68 - 【train】 epoch:1 604/2980 loss:8.0226
  1101. 2022-11-09 19:16:35,319 - INFO - main.py - train - 68 - 【train】 epoch:1 605/2980 loss:3.4026
  1102. 2022-11-09 19:16:36,756 - INFO - main.py - train - 68 - 【train】 epoch:1 606/2980 loss:9.8110
  1103. 2022-11-09 19:16:38,037 - INFO - main.py - train - 68 - 【train】 epoch:1 607/2980 loss:11.1690
  1104. 2022-11-09 19:16:39,350 - INFO - main.py - train - 68 - 【train】 epoch:1 608/2980 loss:26.8958
  1105. 2022-11-09 19:16:40,865 - INFO - main.py - train - 68 - 【train】 epoch:1 609/2980 loss:43.6234
  1106. 2022-11-09 19:16:42,099 - INFO - main.py - train - 68 - 【train】 epoch:1 610/2980 loss:4.7480
  1107. 2022-11-09 19:16:43,349 - INFO - main.py - train - 68 - 【train】 epoch:1 611/2980 loss:15.4429
  1108. 2022-11-09 19:16:44,598 - INFO - main.py - train - 68 - 【train】 epoch:1 612/2980 loss:16.9193
  1109. 2022-11-09 19:16:45,864 - INFO - main.py - train - 68 - 【train】 epoch:1 613/2980 loss:19.6371
  1110. 2022-11-09 19:16:47,098 - INFO - main.py - train - 68 - 【train】 epoch:1 614/2980 loss:8.2654
  1111. 2022-11-09 19:16:48,379 - INFO - main.py - train - 68 - 【train】 epoch:1 615/2980 loss:52.9720
  1112. 2022-11-09 19:16:49,738 - INFO - main.py - train - 68 - 【train】 epoch:1 616/2980 loss:13.0674
  1113. 2022-11-09 19:16:51,269 - INFO - main.py - train - 68 - 【train】 epoch:1 617/2980 loss:8.7212
  1114. 2022-11-09 19:16:52,456 - INFO - main.py - train - 68 - 【train】 epoch:1 618/2980 loss:9.2030
  1115. 2022-11-09 19:16:53,924 - INFO - main.py - train - 68 - 【train】 epoch:1 619/2980 loss:5.8737
  1116. 2022-11-09 19:16:55,143 - INFO - main.py - train - 68 - 【train】 epoch:1 620/2980 loss:5.6892
  1117. 2022-11-09 19:16:56,377 - INFO - main.py - train - 68 - 【train】 epoch:1 621/2980 loss:2.3307
  1118. 2022-11-09 19:16:57,767 - INFO - main.py - train - 68 - 【train】 epoch:1 622/2980 loss:7.7651
  1119. 2022-11-09 19:16:58,954 - INFO - main.py - train - 68 - 【train】 epoch:1 623/2980 loss:3.2147
  1120. 2022-11-09 19:17:00,220 - INFO - main.py - train - 68 - 【train】 epoch:1 624/2980 loss:17.6363
  1121. 2022-11-09 19:17:01,454 - INFO - main.py - train - 68 - 【train】 epoch:1 625/2980 loss:18.6978
  1122. 2022-11-09 19:17:02,860 - INFO - main.py - train - 68 - 【train】 epoch:1 626/2980 loss:5.8278
  1123. 2022-11-09 19:17:04,047 - INFO - main.py - train - 68 - 【train】 epoch:1 627/2980 loss:29.0020
  1124. 2022-11-09 19:17:05,422 - INFO - main.py - train - 68 - 【train】 epoch:1 628/2980 loss:33.5737
  1125. 2022-11-09 19:17:06,624 - INFO - main.py - train - 68 - 【train】 epoch:1 629/2980 loss:12.6887
  1126. 2022-11-09 19:17:08,187 - INFO - main.py - train - 68 - 【train】 epoch:1 630/2980 loss:5.1221
  1127. 2022-11-09 19:17:09,421 - INFO - main.py - train - 68 - 【train】 epoch:1 631/2980 loss:14.6172
  1128. 2022-11-09 19:17:10,733 - INFO - main.py - train - 68 - 【train】 epoch:1 632/2980 loss:5.0864
  1129. 2022-11-09 19:17:12,014 - INFO - main.py - train - 68 - 【train】 epoch:1 633/2980 loss:7.0805
  1130. 2022-11-09 19:17:13,264 - INFO - main.py - train - 68 - 【train】 epoch:1 634/2980 loss:31.6363
  1131. 2022-11-09 19:17:14,638 - INFO - main.py - train - 68 - 【train】 epoch:1 635/2980 loss:20.4922
  1132. 2022-11-09 19:17:15,888 - INFO - main.py - train - 68 - 【train】 epoch:1 636/2980 loss:11.3409
  1133. 2022-11-09 19:17:17,122 - INFO - main.py - train - 68 - 【train】 epoch:1 637/2980 loss:10.2769
  1134. 2022-11-09 19:17:18,372 - INFO - main.py - train - 68 - 【train】 epoch:1 638/2980 loss:4.8314
  1135. 2022-11-09 19:17:19,653 - INFO - main.py - train - 68 - 【train】 epoch:1 639/2980 loss:0.5058
  1136. 2022-11-09 19:17:20,855 - INFO - main.py - train - 68 - 【train】 epoch:1 640/2980 loss:2.7452
  1137. 2022-11-09 19:17:22,027 - INFO - main.py - train - 68 - 【train】 epoch:1 641/2980 loss:22.8511
  1138. 2022-11-09 19:17:23,230 - INFO - main.py - train - 68 - 【train】 epoch:1 642/2980 loss:10.7057
  1139. 2022-11-09 19:17:24,464 - INFO - main.py - train - 68 - 【train】 epoch:1 643/2980 loss:1.3148
  1140. 2022-11-09 19:17:25,839 - INFO - main.py - train - 68 - 【train】 epoch:1 644/2980 loss:1.7023
  1141. 2022-11-09 19:17:27,073 - INFO - main.py - train - 68 - 【train】 epoch:1 645/2980 loss:4.1272
  1142. 2022-11-09 19:17:28,291 - INFO - main.py - train - 68 - 【train】 epoch:1 646/2980 loss:12.9477
  1143. 2022-11-09 19:17:29,588 - INFO - main.py - train - 68 - 【train】 epoch:1 647/2980 loss:3.7182
  1144. 2022-11-09 19:17:30,900 - INFO - main.py - train - 68 - 【train】 epoch:1 648/2980 loss:8.4052
  1145. 2022-11-09 19:17:32,243 - INFO - main.py - train - 68 - 【train】 epoch:1 649/2980 loss:5.9129
  1146. 2022-11-09 19:17:33,493 - INFO - main.py - train - 68 - 【train】 epoch:1 650/2980 loss:14.0568
  1147. 2022-11-09 19:17:34,868 - INFO - main.py - train - 68 - 【train】 epoch:1 651/2980 loss:27.0335
  1148. 2022-11-09 19:17:36,180 - INFO - main.py - train - 68 - 【train】 epoch:1 652/2980 loss:6.6538
  1149. 2022-11-09 19:17:37,383 - INFO - main.py - train - 68 - 【train】 epoch:1 653/2980 loss:12.5216
  1150. 2022-11-09 19:17:38,601 - INFO - main.py - train - 68 - 【train】 epoch:1 654/2980 loss:17.1301
  1151. 2022-11-09 19:17:39,851 - INFO - main.py - train - 68 - 【train】 epoch:1 655/2980 loss:20.6865
  1152. 2022-11-09 19:17:41,038 - INFO - main.py - train - 68 - 【train】 epoch:1 656/2980 loss:4.4516
  1153. 2022-11-09 19:17:42,272 - INFO - main.py - train - 68 - 【train】 epoch:1 657/2980 loss:22.5023
  1154. 2022-11-09 19:17:43,475 - INFO - main.py - train - 68 - 【train】 epoch:1 658/2980 loss:11.5512
  1155. 2022-11-09 19:17:44,787 - INFO - main.py - train - 68 - 【train】 epoch:1 659/2980 loss:22.0769
  1156. 2022-11-09 19:17:46,021 - INFO - main.py - train - 68 - 【train】 epoch:1 660/2980 loss:43.0508
  1157. 2022-11-09 19:17:47,209 - INFO - main.py - train - 68 - 【train】 epoch:1 661/2980 loss:7.6520
  1158. 2022-11-09 19:17:48,490 - INFO - main.py - train - 68 - 【train】 epoch:1 662/2980 loss:7.7656
  1159. 2022-11-09 19:17:49,896 - INFO - main.py - train - 68 - 【train】 epoch:1 663/2980 loss:14.3255
  1160. 2022-11-09 19:17:51,192 - INFO - main.py - train - 68 - 【train】 epoch:1 664/2980 loss:17.7697
  1161. 2022-11-09 19:17:52,379 - INFO - main.py - train - 68 - 【train】 epoch:1 665/2980 loss:10.4375
  1162. 2022-11-09 19:17:53,660 - INFO - main.py - train - 68 - 【train】 epoch:1 666/2980 loss:19.3871
  1163. 2022-11-09 19:17:55,160 - INFO - main.py - train - 68 - 【train】 epoch:1 667/2980 loss:6.3831
  1164. 2022-11-09 19:17:56,457 - INFO - main.py - train - 68 - 【train】 epoch:1 668/2980 loss:16.8431
  1165. 2022-11-09 19:17:57,862 - INFO - main.py - train - 68 - 【train】 epoch:1 669/2980 loss:1.9941
  1166. 2022-11-09 19:17:59,050 - INFO - main.py - train - 68 - 【train】 epoch:1 670/2980 loss:5.8584
  1167. 2022-11-09 19:18:00,268 - INFO - main.py - train - 68 - 【train】 epoch:1 671/2980 loss:8.6204
  1168. 2022-11-09 19:18:01,549 - INFO - main.py - train - 68 - 【train】 epoch:1 672/2980 loss:10.2684
  1169. 2022-11-09 19:18:02,752 - INFO - main.py - train - 68 - 【train】 epoch:1 673/2980 loss:3.6722
  1170. 2022-11-09 19:18:03,924 - INFO - main.py - train - 68 - 【train】 epoch:1 674/2980 loss:6.2870
  1171. 2022-11-09 19:18:05,173 - INFO - main.py - train - 68 - 【train】 epoch:1 675/2980 loss:17.9536
  1172. 2022-11-09 19:18:06,345 - INFO - main.py - train - 68 - 【train】 epoch:1 676/2980 loss:2.6445
  1173. 2022-11-09 19:18:07,548 - INFO - main.py - train - 68 - 【train】 epoch:1 677/2980 loss:8.4907
  1174. 2022-11-09 19:18:08,969 - INFO - main.py - train - 68 - 【train】 epoch:1 678/2980 loss:30.3816
  1175. 2022-11-09 19:18:10,313 - INFO - main.py - train - 68 - 【train】 epoch:1 679/2980 loss:10.0875
  1176. 2022-11-09 19:18:11,640 - INFO - main.py - train - 68 - 【train】 epoch:1 680/2980 loss:18.3944
  1177. 2022-11-09 19:18:13,078 - INFO - main.py - train - 68 - 【train】 epoch:1 681/2980 loss:3.7820
  1178. 2022-11-09 19:18:14,296 - INFO - main.py - train - 68 - 【train】 epoch:1 682/2980 loss:9.9201
  1179. 2022-11-09 19:18:15,655 - INFO - main.py - train - 68 - 【train】 epoch:1 683/2980 loss:19.3508
  1180. 2022-11-09 19:18:17,170 - INFO - main.py - train - 68 - 【train】 epoch:1 684/2980 loss:7.8924
  1181. 2022-11-09 19:18:18,373 - INFO - main.py - train - 68 - 【train】 epoch:1 685/2980 loss:9.2012
  1182. 2022-11-09 19:18:19,545 - INFO - main.py - train - 68 - 【train】 epoch:1 686/2980 loss:10.1315
  1183. 2022-11-09 19:18:20,795 - INFO - main.py - train - 68 - 【train】 epoch:1 687/2980 loss:10.9224
  1184. 2022-11-09 19:18:22,138 - INFO - main.py - train - 68 - 【train】 epoch:1 688/2980 loss:15.1819
  1185. 2022-11-09 19:18:23,356 - INFO - main.py - train - 68 - 【train】 epoch:1 689/2980 loss:11.5719
  1186. 2022-11-09 19:18:24,747 - INFO - main.py - train - 68 - 【train】 epoch:1 690/2980 loss:8.1138
  1187. 2022-11-09 19:18:25,950 - INFO - main.py - train - 68 - 【train】 epoch:1 691/2980 loss:6.4877
  1188. 2022-11-09 19:18:27,137 - INFO - main.py - train - 68 - 【train】 epoch:1 692/2980 loss:4.9283
  1189. 2022-11-09 19:18:28,387 - INFO - main.py - train - 68 - 【train】 epoch:1 693/2980 loss:22.4626
  1190. 2022-11-09 19:18:29,792 - INFO - main.py - train - 68 - 【train】 epoch:1 694/2980 loss:9.1288
  1191. 2022-11-09 19:18:30,995 - INFO - main.py - train - 68 - 【train】 epoch:1 695/2980 loss:18.3772
  1192. 2022-11-09 19:18:32,261 - INFO - main.py - train - 68 - 【train】 epoch:1 696/2980 loss:26.9009
  1193. 2022-11-09 19:18:33,588 - INFO - main.py - train - 68 - 【train】 epoch:1 697/2980 loss:0.3749
  1194. 2022-11-09 19:18:34,822 - INFO - main.py - train - 68 - 【train】 epoch:1 698/2980 loss:38.8875
  1195. 2022-11-09 19:18:36,057 - INFO - main.py - train - 68 - 【train】 epoch:1 699/2980 loss:22.0200
  1196. 2022-11-09 19:18:37,259 - INFO - main.py - train - 68 - 【train】 epoch:1 700/2980 loss:11.6363
  1197. 2022-11-09 19:18:38,494 - INFO - main.py - train - 68 - 【train】 epoch:1 701/2980 loss:21.3471
  1198. 2022-11-09 19:18:39,946 - INFO - main.py - train - 68 - 【train】 epoch:1 702/2980 loss:19.3317
  1199. 2022-11-09 19:18:41,243 - INFO - main.py - train - 68 - 【train】 epoch:1 703/2980 loss:17.9133
  1200. 2022-11-09 19:18:42,461 - INFO - main.py - train - 68 - 【train】 epoch:1 704/2980 loss:2.0830
  1201. 2022-11-09 19:18:43,695 - INFO - main.py - train - 68 - 【train】 epoch:1 705/2980 loss:20.1186
  1202. 2022-11-09 19:18:44,914 - INFO - main.py - train - 68 - 【train】 epoch:1 706/2980 loss:1.7328
  1203. 2022-11-09 19:18:46,164 - INFO - main.py - train - 68 - 【train】 epoch:1 707/2980 loss:0.7716
  1204. 2022-11-09 19:18:47,382 - INFO - main.py - train - 68 - 【train】 epoch:1 708/2980 loss:19.1798
  1205. 2022-11-09 19:18:48,569 - INFO - main.py - train - 68 - 【train】 epoch:1 709/2980 loss:7.5075
  1206. 2022-11-09 19:18:49,772 - INFO - main.py - train - 68 - 【train】 epoch:1 710/2980 loss:4.2633
  1207. 2022-11-09 19:18:51,100 - INFO - main.py - train - 68 - 【train】 epoch:1 711/2980 loss:5.2147
  1208. 2022-11-09 19:18:52,365 - INFO - main.py - train - 68 - 【train】 epoch:1 712/2980 loss:15.6688
  1209. 2022-11-09 19:18:53,599 - INFO - main.py - train - 68 - 【train】 epoch:1 713/2980 loss:11.3971
  1210. 2022-11-09 19:18:54,958 - INFO - main.py - train - 68 - 【train】 epoch:1 714/2980 loss:8.8123
  1211. 2022-11-09 19:18:56,224 - INFO - main.py - train - 68 - 【train】 epoch:1 715/2980 loss:7.9037
  1212. 2022-11-09 19:18:57,536 - INFO - main.py - train - 68 - 【train】 epoch:1 716/2980 loss:45.8496
  1213. 2022-11-09 19:18:58,801 - INFO - main.py - train - 68 - 【train】 epoch:1 717/2980 loss:23.1458
  1214. 2022-11-09 19:19:00,160 - INFO - main.py - train - 68 - 【train】 epoch:1 718/2980 loss:18.8512
  1215. 2022-11-09 19:19:01,363 - INFO - main.py - train - 68 - 【train】 epoch:1 719/2980 loss:6.3817
  1216. 2022-11-09 19:19:02,582 - INFO - main.py - train - 68 - 【train】 epoch:1 720/2980 loss:6.9395
  1217. 2022-11-09 19:19:03,925 - INFO - main.py - train - 68 - 【train】 epoch:1 721/2980 loss:11.9541
  1218. 2022-11-09 19:19:05,175 - INFO - main.py - train - 68 - 【train】 epoch:1 722/2980 loss:16.3055
  1219. 2022-11-09 19:19:06,393 - INFO - main.py - train - 68 - 【train】 epoch:1 723/2980 loss:20.4999
  1220. 2022-11-09 19:19:07,659 - INFO - main.py - train - 68 - 【train】 epoch:1 724/2980 loss:8.7170
  1221. 2022-11-09 19:19:08,908 - INFO - main.py - train - 68 - 【train】 epoch:1 725/2980 loss:17.1239
  1222. 2022-11-09 19:19:10,095 - INFO - main.py - train - 68 - 【train】 epoch:1 726/2980 loss:4.7518
  1223. 2022-11-09 19:19:11,283 - INFO - main.py - train - 68 - 【train】 epoch:1 727/2980 loss:4.2664
  1224. 2022-11-09 19:19:12,532 - INFO - main.py - train - 68 - 【train】 epoch:1 728/2980 loss:33.7629
  1225. 2022-11-09 19:19:13,735 - INFO - main.py - train - 68 - 【train】 epoch:1 729/2980 loss:26.0013
  1226. 2022-11-09 19:19:14,969 - INFO - main.py - train - 68 - 【train】 epoch:1 730/2980 loss:2.9441
  1227. 2022-11-09 19:19:16,453 - INFO - main.py - train - 68 - 【train】 epoch:1 731/2980 loss:21.1308
  1228. 2022-11-09 19:19:17,672 - INFO - main.py - train - 68 - 【train】 epoch:1 732/2980 loss:9.2714
  1229. 2022-11-09 19:19:18,953 - INFO - main.py - train - 68 - 【train】 epoch:1 733/2980 loss:20.5663
  1230. 2022-11-09 19:19:20,171 - INFO - main.py - train - 68 - 【train】 epoch:1 734/2980 loss:8.3776
  1231. 2022-11-09 19:19:21,437 - INFO - main.py - train - 68 - 【train】 epoch:1 735/2980 loss:4.9592
  1232. 2022-11-09 19:19:22,655 - INFO - main.py - train - 68 - 【train】 epoch:1 736/2980 loss:3.3904
  1233. 2022-11-09 19:19:23,920 - INFO - main.py - train - 68 - 【train】 epoch:1 737/2980 loss:14.3076
  1234. 2022-11-09 19:19:25,170 - INFO - main.py - train - 68 - 【train】 epoch:1 738/2980 loss:9.4964
  1235. 2022-11-09 19:19:26,592 - INFO - main.py - train - 68 - 【train】 epoch:1 739/2980 loss:19.9015
  1236. 2022-11-09 19:19:27,841 - INFO - main.py - train - 68 - 【train】 epoch:1 740/2980 loss:10.6574
  1237. 2022-11-09 19:19:29,138 - INFO - main.py - train - 68 - 【train】 epoch:1 741/2980 loss:7.4263
  1238. 2022-11-09 19:19:30,434 - INFO - main.py - train - 68 - 【train】 epoch:1 742/2980 loss:13.5602
  1239. 2022-11-09 19:19:31,700 - INFO - main.py - train - 68 - 【train】 epoch:1 743/2980 loss:13.0283
  1240. 2022-11-09 19:19:33,059 - INFO - main.py - train - 68 - 【train】 epoch:1 744/2980 loss:16.5670
  1241. 2022-11-09 19:19:34,309 - INFO - main.py - train - 68 - 【train】 epoch:1 745/2980 loss:15.6687
  1242. 2022-11-09 19:19:35,714 - INFO - main.py - train - 68 - 【train】 epoch:1 746/2980 loss:5.7901
  1243. 2022-11-09 19:19:36,902 - INFO - main.py - train - 68 - 【train】 epoch:1 747/2980 loss:2.8163
  1244. 2022-11-09 19:19:38,136 - INFO - main.py - train - 68 - 【train】 epoch:1 748/2980 loss:12.2097
  1245. 2022-11-09 19:19:39,354 - INFO - main.py - train - 68 - 【train】 epoch:1 749/2980 loss:10.9996
  1246. 2022-11-09 19:19:40,698 - INFO - main.py - train - 68 - 【train】 epoch:1 750/2980 loss:5.3140
  1247. 2022-11-09 19:19:41,963 - INFO - main.py - train - 68 - 【train】 epoch:1 751/2980 loss:12.1342
  1248. 2022-11-09 19:19:43,197 - INFO - main.py - train - 68 - 【train】 epoch:1 752/2980 loss:6.4449
  1249. 2022-11-09 19:19:44,400 - INFO - main.py - train - 68 - 【train】 epoch:1 753/2980 loss:13.3076
  1250. 2022-11-09 19:19:45,618 - INFO - main.py - train - 68 - 【train】 epoch:1 754/2980 loss:24.7358
  1251. 2022-11-09 19:19:46,962 - INFO - main.py - train - 68 - 【train】 epoch:1 755/2980 loss:15.0059
  1252. 2022-11-09 19:19:48,227 - INFO - main.py - train - 68 - 【train】 epoch:1 756/2980 loss:13.1460
  1253. 2022-11-09 19:19:49,555 - INFO - main.py - train - 68 - 【train】 epoch:1 757/2980 loss:8.2307
  1254. 2022-11-09 19:19:50,805 - INFO - main.py - train - 68 - 【train】 epoch:1 758/2980 loss:8.1412
  1255. 2022-11-09 19:19:52,008 - INFO - main.py - train - 68 - 【train】 epoch:1 759/2980 loss:16.8845
  1256. 2022-11-09 19:19:53,288 - INFO - main.py - train - 68 - 【train】 epoch:1 760/2980 loss:2.3338
  1257. 2022-11-09 19:19:54,538 - INFO - main.py - train - 68 - 【train】 epoch:1 761/2980 loss:13.6076
  1258. 2022-11-09 19:19:55,772 - INFO - main.py - train - 68 - 【train】 epoch:1 762/2980 loss:19.4025
  1259. 2022-11-09 19:19:57,006 - INFO - main.py - train - 68 - 【train】 epoch:1 763/2980 loss:7.5139
  1260. 2022-11-09 19:19:58,287 - INFO - main.py - train - 68 - 【train】 epoch:1 764/2980 loss:7.7171
  1261. 2022-11-09 19:19:59,553 - INFO - main.py - train - 68 - 【train】 epoch:1 765/2980 loss:13.6212
  1262. 2022-11-09 19:20:00,755 - INFO - main.py - train - 68 - 【train】 epoch:1 766/2980 loss:20.9043
  1263. 2022-11-09 19:20:02,005 - INFO - main.py - train - 68 - 【train】 epoch:1 767/2980 loss:3.4063
  1264. 2022-11-09 19:20:03,270 - INFO - main.py - train - 68 - 【train】 epoch:1 768/2980 loss:19.9207
  1265. 2022-11-09 19:20:04,661 - INFO - main.py - train - 68 - 【train】 epoch:1 769/2980 loss:10.5955
  1266. 2022-11-09 19:20:05,957 - INFO - main.py - train - 68 - 【train】 epoch:1 770/2980 loss:11.7815
  1267. 2022-11-09 19:20:07,176 - INFO - main.py - train - 68 - 【train】 epoch:1 771/2980 loss:23.4478
  1268. 2022-11-09 19:20:08,660 - INFO - main.py - train - 68 - 【train】 epoch:1 772/2980 loss:6.9245
  1269. 2022-11-09 19:20:09,878 - INFO - main.py - train - 68 - 【train】 epoch:1 773/2980 loss:11.8163
  1270. 2022-11-09 19:20:11,066 - INFO - main.py - train - 68 - 【train】 epoch:1 774/2980 loss:6.4372
  1271. 2022-11-09 19:20:12,284 - INFO - main.py - train - 68 - 【train】 epoch:1 775/2980 loss:17.0273
  1272. 2022-11-09 19:20:13,565 - INFO - main.py - train - 68 - 【train】 epoch:1 776/2980 loss:5.6658
  1273. 2022-11-09 19:20:14,815 - INFO - main.py - train - 68 - 【train】 epoch:1 777/2980 loss:1.2653
  1274. 2022-11-09 19:20:16,080 - INFO - main.py - train - 68 - 【train】 epoch:1 778/2980 loss:14.0442
  1275. 2022-11-09 19:20:17,298 - INFO - main.py - train - 68 - 【train】 epoch:1 779/2980 loss:2.8102
  1276. 2022-11-09 19:20:18,533 - INFO - main.py - train - 68 - 【train】 epoch:1 780/2980 loss:1.4740
  1277. 2022-11-09 19:20:19,751 - INFO - main.py - train - 68 - 【train】 epoch:1 781/2980 loss:5.8507
  1278. 2022-11-09 19:20:21,110 - INFO - main.py - train - 68 - 【train】 epoch:1 782/2980 loss:8.6006
  1279. 2022-11-09 19:20:22,438 - INFO - main.py - train - 68 - 【train】 epoch:1 783/2980 loss:3.5950
  1280. 2022-11-09 19:20:23,641 - INFO - main.py - train - 68 - 【train】 epoch:1 784/2980 loss:8.4526
  1281. 2022-11-09 19:20:25,015 - INFO - main.py - train - 68 - 【train】 epoch:1 785/2980 loss:18.9861
  1282. 2022-11-09 19:20:26,265 - INFO - main.py - train - 68 - 【train】 epoch:1 786/2980 loss:2.6044
  1283. 2022-11-09 19:20:27,640 - INFO - main.py - train - 68 - 【train】 epoch:1 787/2980 loss:1.6687
  1284. 2022-11-09 19:20:28,889 - INFO - main.py - train - 68 - 【train】 epoch:1 788/2980 loss:16.6924
  1285. 2022-11-09 19:20:30,280 - INFO - main.py - train - 68 - 【train】 epoch:1 789/2980 loss:34.1690
  1286. 2022-11-09 19:20:31,514 - INFO - main.py - train - 68 - 【train】 epoch:1 790/2980 loss:12.0291
  1287. 2022-11-09 19:20:32,951 - INFO - main.py - train - 68 - 【train】 epoch:1 791/2980 loss:39.7116
  1288. 2022-11-09 19:20:34,388 - INFO - main.py - train - 68 - 【train】 epoch:1 792/2980 loss:7.3605
  1289. 2022-11-09 19:20:35,810 - INFO - main.py - train - 68 - 【train】 epoch:1 793/2980 loss:3.8081
  1290. 2022-11-09 19:20:37,013 - INFO - main.py - train - 68 - 【train】 epoch:1 794/2980 loss:2.6904
  1291. 2022-11-09 19:20:38,590 - INFO - main.py - train - 68 - 【train】 epoch:1 795/2980 loss:8.0943
  1292. 2022-11-09 19:20:39,887 - INFO - main.py - train - 68 - 【train】 epoch:1 796/2980 loss:7.7260
  1293. 2022-11-09 19:20:41,168 - INFO - main.py - train - 68 - 【train】 epoch:1 797/2980 loss:32.5300
  1294. 2022-11-09 19:20:42,386 - INFO - main.py - train - 68 - 【train】 epoch:1 798/2980 loss:9.0370
  1295. 2022-11-09 19:20:43,605 - INFO - main.py - train - 68 - 【train】 epoch:1 799/2980 loss:7.0569
  1296. 2022-11-09 19:20:44,870 - INFO - main.py - train - 68 - 【train】 epoch:1 800/2980 loss:4.7286
  1297. 2022-11-09 19:20:46,073 - INFO - main.py - train - 68 - 【train】 epoch:1 801/2980 loss:7.7577
  1298. 2022-11-09 19:20:47,323 - INFO - main.py - train - 68 - 【train】 epoch:1 802/2980 loss:2.5452
  1299. 2022-11-09 19:20:48,526 - INFO - main.py - train - 68 - 【train】 epoch:1 803/2980 loss:22.9030
  1300. 2022-11-09 19:20:49,713 - INFO - main.py - train - 68 - 【train】 epoch:1 804/2980 loss:1.1243
  1301. 2022-11-09 19:20:50,947 - INFO - main.py - train - 68 - 【train】 epoch:1 805/2980 loss:15.9830
  1302. 2022-11-09 19:20:52,165 - INFO - main.py - train - 68 - 【train】 epoch:1 806/2980 loss:10.3489
  1303. 2022-11-09 19:20:53,446 - INFO - main.py - train - 68 - 【train】 epoch:1 807/2980 loss:17.0022
  1304. 2022-11-09 19:20:54,758 - INFO - main.py - train - 68 - 【train】 epoch:1 808/2980 loss:8.9423
  1305. 2022-11-09 19:20:56,180 - INFO - main.py - train - 68 - 【train】 epoch:1 809/2980 loss:6.4104
  1306. 2022-11-09 19:20:57,383 - INFO - main.py - train - 68 - 【train】 epoch:1 810/2980 loss:8.7357
  1307. 2022-11-09 19:20:58,601 - INFO - main.py - train - 68 - 【train】 epoch:1 811/2980 loss:4.1731
  1308. 2022-11-09 19:20:59,913 - INFO - main.py - train - 68 - 【train】 epoch:1 812/2980 loss:13.4200
  1309. 2022-11-09 19:21:01,210 - INFO - main.py - train - 68 - 【train】 epoch:1 813/2980 loss:14.0186
  1310. 2022-11-09 19:21:02,475 - INFO - main.py - train - 68 - 【train】 epoch:1 814/2980 loss:71.1712
  1311. 2022-11-09 19:21:03,678 - INFO - main.py - train - 68 - 【train】 epoch:1 815/2980 loss:9.1395
  1312. 2022-11-09 19:21:04,897 - INFO - main.py - train - 68 - 【train】 epoch:1 816/2980 loss:5.5567
  1313. 2022-11-09 19:21:06,209 - INFO - main.py - train - 68 - 【train】 epoch:1 817/2980 loss:8.2121
  1314. 2022-11-09 19:21:07,427 - INFO - main.py - train - 68 - 【train】 epoch:1 818/2980 loss:16.2476
  1315. 2022-11-09 19:21:08,630 - INFO - main.py - train - 68 - 【train】 epoch:1 819/2980 loss:9.2333
  1316. 2022-11-09 19:21:09,895 - INFO - main.py - train - 68 - 【train】 epoch:1 820/2980 loss:0.9091
  1317. 2022-11-09 19:21:11,176 - INFO - main.py - train - 68 - 【train】 epoch:1 821/2980 loss:20.3595
  1318. 2022-11-09 19:21:12,426 - INFO - main.py - train - 68 - 【train】 epoch:1 822/2980 loss:33.7466
  1319. 2022-11-09 19:21:13,660 - INFO - main.py - train - 68 - 【train】 epoch:1 823/2980 loss:8.3166
  1320. 2022-11-09 19:21:14,879 - INFO - main.py - train - 68 - 【train】 epoch:1 824/2980 loss:5.0271
  1321. 2022-11-09 19:21:16,097 - INFO - main.py - train - 68 - 【train】 epoch:1 825/2980 loss:11.6896
  1322. 2022-11-09 19:21:17,331 - INFO - main.py - train - 68 - 【train】 epoch:1 826/2980 loss:11.5278
  1323. 2022-11-09 19:21:18,519 - INFO - main.py - train - 68 - 【train】 epoch:1 827/2980 loss:2.6345
  1324. 2022-11-09 19:21:19,924 - INFO - main.py - train - 68 - 【train】 epoch:1 828/2980 loss:13.4278
  1325. 2022-11-09 19:21:21,453 - INFO - main.py - train - 68 - 【train】 epoch:1 829/2980 loss:6.5655
  1326. 2022-11-09 19:21:22,891 - INFO - main.py - train - 68 - 【train】 epoch:1 830/2980 loss:8.5624
  1327. 2022-11-09 19:21:24,187 - INFO - main.py - train - 68 - 【train】 epoch:1 831/2980 loss:7.0936
  1328. 2022-11-09 19:21:25,421 - INFO - main.py - train - 68 - 【train】 epoch:1 832/2980 loss:8.4502
  1329. 2022-11-09 19:21:26,671 - INFO - main.py - train - 68 - 【train】 epoch:1 833/2980 loss:16.3461
  1330. 2022-11-09 19:21:27,952 - INFO - main.py - train - 68 - 【train】 epoch:1 834/2980 loss:1.0862
  1331. 2022-11-09 19:21:29,217 - INFO - main.py - train - 68 - 【train】 epoch:1 835/2980 loss:8.9530
  1332. 2022-11-09 19:21:30,451 - INFO - main.py - train - 68 - 【train】 epoch:1 836/2980 loss:9.5879
  1333. 2022-11-09 19:21:31,685 - INFO - main.py - train - 68 - 【train】 epoch:1 837/2980 loss:5.6353
  1334. 2022-11-09 19:21:32,904 - INFO - main.py - train - 68 - 【train】 epoch:1 838/2980 loss:18.7186
  1335. 2022-11-09 19:21:34,107 - INFO - main.py - train - 68 - 【train】 epoch:1 839/2980 loss:6.2652
  1336. 2022-11-09 19:21:35,310 - INFO - main.py - train - 68 - 【train】 epoch:1 840/2980 loss:8.9885
  1337. 2022-11-09 19:21:36,700 - INFO - main.py - train - 68 - 【train】 epoch:1 841/2980 loss:8.3267
  1338. 2022-11-09 19:21:38,059 - INFO - main.py - train - 68 - 【train】 epoch:1 842/2980 loss:16.7065
  1339. 2022-11-09 19:21:39,246 - INFO - main.py - train - 68 - 【train】 epoch:1 843/2980 loss:11.8355
  1340. 2022-11-09 19:21:40,433 - INFO - main.py - train - 68 - 【train】 epoch:1 844/2980 loss:3.6200
  1341. 2022-11-09 19:21:41,777 - INFO - main.py - train - 68 - 【train】 epoch:1 845/2980 loss:5.7019
  1342. 2022-11-09 19:21:43,058 - INFO - main.py - train - 68 - 【train】 epoch:1 846/2980 loss:8.6201
  1343. 2022-11-09 19:21:44,339 - INFO - main.py - train - 68 - 【train】 epoch:1 847/2980 loss:41.0244
  1344. 2022-11-09 19:21:45,557 - INFO - main.py - train - 68 - 【train】 epoch:1 848/2980 loss:11.1294
  1345. 2022-11-09 19:21:46,791 - INFO - main.py - train - 68 - 【train】 epoch:1 849/2980 loss:3.2743
  1346. 2022-11-09 19:21:48,098 - INFO - main.py - train - 68 - 【train】 epoch:1 850/2980 loss:18.7870
  1347. 2022-11-09 19:21:49,379 - INFO - main.py - train - 68 - 【train】 epoch:1 851/2980 loss:6.0730
  1348. 2022-11-09 19:21:50,660 - INFO - main.py - train - 68 - 【train】 epoch:1 852/2980 loss:15.5703
  1349. 2022-11-09 19:21:51,879 - INFO - main.py - train - 68 - 【train】 epoch:1 853/2980 loss:7.5754
  1350. 2022-11-09 19:21:53,128 - INFO - main.py - train - 68 - 【train】 epoch:1 854/2980 loss:23.7985
  1351. 2022-11-09 19:21:54,378 - INFO - main.py - train - 68 - 【train】 epoch:1 855/2980 loss:11.6424
  1352. 2022-11-09 19:21:55,597 - INFO - main.py - train - 68 - 【train】 epoch:1 856/2980 loss:5.2704
  1353. 2022-11-09 19:21:56,956 - INFO - main.py - train - 68 - 【train】 epoch:1 857/2980 loss:3.4478
  1354. 2022-11-09 19:21:58,159 - INFO - main.py - train - 68 - 【train】 epoch:1 858/2980 loss:6.1907
  1355. 2022-11-09 19:21:59,408 - INFO - main.py - train - 68 - 【train】 epoch:1 859/2980 loss:17.8577
  1356. 2022-11-09 19:22:00,689 - INFO - main.py - train - 68 - 【train】 epoch:1 860/2980 loss:6.4010
  1357. 2022-11-09 19:22:01,908 - INFO - main.py - train - 68 - 【train】 epoch:1 861/2980 loss:2.1456
  1358. 2022-11-09 19:22:03,111 - INFO - main.py - train - 68 - 【train】 epoch:1 862/2980 loss:6.1059
  1359. 2022-11-09 19:22:04,407 - INFO - main.py - train - 68 - 【train】 epoch:1 863/2980 loss:8.8482
  1360. 2022-11-09 19:22:05,594 - INFO - main.py - train - 68 - 【train】 epoch:1 864/2980 loss:1.6396
  1361. 2022-11-09 19:22:07,172 - INFO - main.py - train - 68 - 【train】 epoch:1 865/2980 loss:22.8682
  1362. 2022-11-09 19:22:08,437 - INFO - main.py - train - 68 - 【train】 epoch:1 866/2980 loss:23.3049
  1363. 2022-11-09 19:22:09,656 - INFO - main.py - train - 68 - 【train】 epoch:1 867/2980 loss:6.5217
  1364. 2022-11-09 19:22:10,937 - INFO - main.py - train - 68 - 【train】 epoch:1 868/2980 loss:8.0602
  1365. 2022-11-09 19:22:12,187 - INFO - main.py - train - 68 - 【train】 epoch:1 869/2980 loss:28.3762
  1366. 2022-11-09 19:22:13,389 - INFO - main.py - train - 68 - 【train】 epoch:1 870/2980 loss:5.1725
  1367. 2022-11-09 19:22:14,592 - INFO - main.py - train - 68 - 【train】 epoch:1 871/2980 loss:8.3473
  1368. 2022-11-09 19:22:15,842 - INFO - main.py - train - 68 - 【train】 epoch:1 872/2980 loss:6.3574
  1369. 2022-11-09 19:22:17,154 - INFO - main.py - train - 68 - 【train】 epoch:1 873/2980 loss:3.8636
  1370. 2022-11-09 19:22:18,404 - INFO - main.py - train - 68 - 【train】 epoch:1 874/2980 loss:18.5006
  1371. 2022-11-09 19:22:19,622 - INFO - main.py - train - 68 - 【train】 epoch:1 875/2980 loss:2.7517
  1372. 2022-11-09 19:22:20,966 - INFO - main.py - train - 68 - 【train】 epoch:1 876/2980 loss:4.6336
  1373. 2022-11-09 19:22:22,450 - INFO - main.py - train - 68 - 【train】 epoch:1 877/2980 loss:1.5608
  1374. 2022-11-09 19:22:23,668 - INFO - main.py - train - 68 - 【train】 epoch:1 878/2980 loss:20.2393
  1375. 2022-11-09 19:22:25,386 - INFO - main.py - train - 68 - 【train】 epoch:1 879/2980 loss:11.3746
  1376. 2022-11-09 19:22:26,605 - INFO - main.py - train - 68 - 【train】 epoch:1 880/2980 loss:11.4777
  1377. 2022-11-09 19:22:27,948 - INFO - main.py - train - 68 - 【train】 epoch:1 881/2980 loss:6.6067
  1378. 2022-11-09 19:22:29,323 - INFO - main.py - train - 68 - 【train】 epoch:1 882/2980 loss:51.0707
  1379. 2022-11-09 19:22:30,682 - INFO - main.py - train - 68 - 【train】 epoch:1 883/2980 loss:7.9418
  1380. 2022-11-09 19:22:31,885 - INFO - main.py - train - 68 - 【train】 epoch:1 884/2980 loss:8.4254
  1381. 2022-11-09 19:22:33,119 - INFO - main.py - train - 68 - 【train】 epoch:1 885/2980 loss:45.3890
  1382. 2022-11-09 19:22:34,463 - INFO - main.py - train - 68 - 【train】 epoch:1 886/2980 loss:3.3000
  1383. 2022-11-09 19:22:35,868 - INFO - main.py - train - 68 - 【train】 epoch:1 887/2980 loss:9.7854
  1384. 2022-11-09 19:22:37,181 - INFO - main.py - train - 68 - 【train】 epoch:1 888/2980 loss:3.6629
  1385. 2022-11-09 19:22:38,555 - INFO - main.py - train - 68 - 【train】 epoch:1 889/2980 loss:3.4756
  1386. 2022-11-09 19:22:39,758 - INFO - main.py - train - 68 - 【train】 epoch:1 890/2980 loss:13.8926
  1387. 2022-11-09 19:22:41,008 - INFO - main.py - train - 68 - 【train】 epoch:1 891/2980 loss:14.0238
  1388. 2022-11-09 19:22:42,367 - INFO - main.py - train - 68 - 【train】 epoch:1 892/2980 loss:7.0643
  1389. 2022-11-09 19:22:43,601 - INFO - main.py - train - 68 - 【train】 epoch:1 893/2980 loss:11.8041
  1390. 2022-11-09 19:22:44,913 - INFO - main.py - train - 68 - 【train】 epoch:1 894/2980 loss:6.0897
  1391. 2022-11-09 19:22:46,319 - INFO - main.py - train - 68 - 【train】 epoch:1 895/2980 loss:12.0890
  1392. 2022-11-09 19:22:47,538 - INFO - main.py - train - 68 - 【train】 epoch:1 896/2980 loss:6.5347
  1393. 2022-11-09 19:22:48,975 - INFO - main.py - train - 68 - 【train】 epoch:1 897/2980 loss:12.8087
  1394. 2022-11-09 19:22:50,303 - INFO - main.py - train - 68 - 【train】 epoch:1 898/2980 loss:10.6810
  1395. 2022-11-09 19:22:51,537 - INFO - main.py - train - 68 - 【train】 epoch:1 899/2980 loss:4.1339
  1396. 2022-11-09 19:22:52,849 - INFO - main.py - train - 68 - 【train】 epoch:1 900/2980 loss:21.2322
  1397. 2022-11-09 19:22:54,083 - INFO - main.py - train - 68 - 【train】 epoch:1 901/2980 loss:14.2655
  1398. 2022-11-09 19:22:55,270 - INFO - main.py - train - 68 - 【train】 epoch:1 902/2980 loss:8.0336
  1399. 2022-11-09 19:22:56,582 - INFO - main.py - train - 68 - 【train】 epoch:1 903/2980 loss:11.6675
  1400. 2022-11-09 19:22:57,879 - INFO - main.py - train - 68 - 【train】 epoch:1 904/2980 loss:10.7296
  1401. 2022-11-09 19:22:59,129 - INFO - main.py - train - 68 - 【train】 epoch:1 905/2980 loss:12.8472
  1402. 2022-11-09 19:23:00,644 - INFO - main.py - train - 68 - 【train】 epoch:1 906/2980 loss:3.8343
  1403. 2022-11-09 19:23:02,019 - INFO - main.py - train - 68 - 【train】 epoch:1 907/2980 loss:8.7310
  1404. 2022-11-09 19:23:03,221 - INFO - main.py - train - 68 - 【train】 epoch:1 908/2980 loss:8.6463
  1405. 2022-11-09 19:23:04,502 - INFO - main.py - train - 68 - 【train】 epoch:1 909/2980 loss:11.7485
  1406. 2022-11-09 19:23:05,705 - INFO - main.py - train - 68 - 【train】 epoch:1 910/2980 loss:8.0022
  1407. 2022-11-09 19:23:06,955 - INFO - main.py - train - 68 - 【train】 epoch:1 911/2980 loss:16.9227
  1408. 2022-11-09 19:23:08,236 - INFO - main.py - train - 68 - 【train】 epoch:1 912/2980 loss:5.7459
  1409. 2022-11-09 19:23:09,486 - INFO - main.py - train - 68 - 【train】 epoch:1 913/2980 loss:3.0978
  1410. 2022-11-09 19:23:10,923 - INFO - main.py - train - 68 - 【train】 epoch:1 914/2980 loss:3.3440
  1411. 2022-11-09 19:23:12,126 - INFO - main.py - train - 68 - 【train】 epoch:1 915/2980 loss:7.9480
  1412. 2022-11-09 19:23:13,813 - INFO - main.py - train - 68 - 【train】 epoch:1 916/2980 loss:25.6769
  1413. 2022-11-09 19:23:15,094 - INFO - main.py - train - 68 - 【train】 epoch:1 917/2980 loss:13.6869
  1414. 2022-11-09 19:23:16,500 - INFO - main.py - train - 68 - 【train】 epoch:1 918/2980 loss:3.3981
  1415. 2022-11-09 19:23:17,687 - INFO - main.py - train - 68 - 【train】 epoch:1 919/2980 loss:2.4727
  1416. 2022-11-09 19:23:19,140 - INFO - main.py - train - 68 - 【train】 epoch:1 920/2980 loss:16.5579
  1417. 2022-11-09 19:23:20,342 - INFO - main.py - train - 68 - 【train】 epoch:1 921/2980 loss:5.9269
  1418. 2022-11-09 19:23:21,748 - INFO - main.py - train - 68 - 【train】 epoch:1 922/2980 loss:31.4579
  1419. 2022-11-09 19:23:22,982 - INFO - main.py - train - 68 - 【train】 epoch:1 923/2980 loss:7.9827
  1420. 2022-11-09 19:23:24,185 - INFO - main.py - train - 68 - 【train】 epoch:1 924/2980 loss:3.2818
  1421. 2022-11-09 19:23:25,560 - INFO - main.py - train - 68 - 【train】 epoch:1 925/2980 loss:13.1354
  1422. 2022-11-09 19:23:26,794 - INFO - main.py - train - 68 - 【train】 epoch:1 926/2980 loss:14.5516
  1423. 2022-11-09 19:23:28,137 - INFO - main.py - train - 68 - 【train】 epoch:1 927/2980 loss:1.5940
  1424. 2022-11-09 19:23:29,559 - INFO - main.py - train - 68 - 【train】 epoch:1 928/2980 loss:0.2022
  1425. 2022-11-09 19:23:31,043 - INFO - main.py - train - 68 - 【train】 epoch:1 929/2980 loss:12.0408
  1426. 2022-11-09 19:23:32,277 - INFO - main.py - train - 68 - 【train】 epoch:1 930/2980 loss:8.3221
  1427. 2022-11-09 19:23:33,605 - INFO - main.py - train - 68 - 【train】 epoch:1 931/2980 loss:25.6993
  1428. 2022-11-09 19:23:34,823 - INFO - main.py - train - 68 - 【train】 epoch:1 932/2980 loss:6.1966
  1429. 2022-11-09 19:23:36,089 - INFO - main.py - train - 68 - 【train】 epoch:1 933/2980 loss:12.3935
  1430. 2022-11-09 19:23:37,401 - INFO - main.py - train - 68 - 【train】 epoch:1 934/2980 loss:6.9745
  1431. 2022-11-09 19:23:38,713 - INFO - main.py - train - 68 - 【train】 epoch:1 935/2980 loss:4.2238
  1432. 2022-11-09 19:23:39,916 - INFO - main.py - train - 68 - 【train】 epoch:1 936/2980 loss:11.5205
  1433. 2022-11-09 19:23:41,587 - INFO - main.py - train - 68 - 【train】 epoch:1 937/2980 loss:26.4675
  1434. 2022-11-09 19:23:42,900 - INFO - main.py - train - 68 - 【train】 epoch:1 938/2980 loss:14.5001
  1435. 2022-11-09 19:23:44,165 - INFO - main.py - train - 68 - 【train】 epoch:1 939/2980 loss:6.7071
  1436. 2022-11-09 19:23:45,571 - INFO - main.py - train - 68 - 【train】 epoch:1 940/2980 loss:5.8171
  1437. 2022-11-09 19:23:46,946 - INFO - main.py - train - 68 - 【train】 epoch:1 941/2980 loss:12.8470
  1438. 2022-11-09 19:23:48,226 - INFO - main.py - train - 68 - 【train】 epoch:1 942/2980 loss:4.7248
  1439. 2022-11-09 19:23:49,476 - INFO - main.py - train - 68 - 【train】 epoch:1 943/2980 loss:16.8215
  1440. 2022-11-09 19:23:50,710 - INFO - main.py - train - 68 - 【train】 epoch:1 944/2980 loss:10.6816
  1441. 2022-11-09 19:23:51,960 - INFO - main.py - train - 68 - 【train】 epoch:1 945/2980 loss:2.9182
  1442. 2022-11-09 19:23:53,272 - INFO - main.py - train - 68 - 【train】 epoch:1 946/2980 loss:17.5761
  1443. 2022-11-09 19:23:54,491 - INFO - main.py - train - 68 - 【train】 epoch:1 947/2980 loss:2.2417
  1444. 2022-11-09 19:23:55,693 - INFO - main.py - train - 68 - 【train】 epoch:1 948/2980 loss:41.5622
  1445. 2022-11-09 19:23:57,037 - INFO - main.py - train - 68 - 【train】 epoch:1 949/2980 loss:25.4352
  1446. 2022-11-09 19:23:58,287 - INFO - main.py - train - 68 - 【train】 epoch:1 950/2980 loss:12.5034
  1447. 2022-11-09 19:23:59,552 - INFO - main.py - train - 68 - 【train】 epoch:1 951/2980 loss:5.1109
  1448. 2022-11-09 19:24:01,005 - INFO - main.py - train - 68 - 【train】 epoch:1 952/2980 loss:9.1519
  1449. 2022-11-09 19:24:02,176 - INFO - main.py - train - 68 - 【train】 epoch:1 953/2980 loss:7.1905
  1450. 2022-11-09 19:24:03,410 - INFO - main.py - train - 68 - 【train】 epoch:1 954/2980 loss:22.9547
  1451. 2022-11-09 19:24:04,629 - INFO - main.py - train - 68 - 【train】 epoch:1 955/2980 loss:9.7188
  1452. 2022-11-09 19:24:05,910 - INFO - main.py - train - 68 - 【train】 epoch:1 956/2980 loss:13.2275
  1453. 2022-11-09 19:24:07,144 - INFO - main.py - train - 68 - 【train】 epoch:1 957/2980 loss:6.0255
  1454. 2022-11-09 19:24:08,440 - INFO - main.py - train - 68 - 【train】 epoch:1 958/2980 loss:7.6552
  1455. 2022-11-09 19:24:09,846 - INFO - main.py - train - 68 - 【train】 epoch:1 959/2980 loss:4.6330
  1456. 2022-11-09 19:24:11,127 - INFO - main.py - train - 68 - 【train】 epoch:1 960/2980 loss:4.2734
  1457. 2022-11-09 19:24:12,486 - INFO - main.py - train - 68 - 【train】 epoch:1 961/2980 loss:28.0870
  1458. 2022-11-09 19:24:13,814 - INFO - main.py - train - 68 - 【train】 epoch:1 962/2980 loss:30.7786
  1459. 2022-11-09 19:24:15,080 - INFO - main.py - train - 68 - 【train】 epoch:1 963/2980 loss:12.5662
  1460. 2022-11-09 19:24:16,282 - INFO - main.py - train - 68 - 【train】 epoch:1 964/2980 loss:16.3999
  1461. 2022-11-09 19:24:17,876 - INFO - main.py - train - 68 - 【train】 epoch:1 965/2980 loss:8.5984
  1462. 2022-11-09 19:24:19,157 - INFO - main.py - train - 68 - 【train】 epoch:1 966/2980 loss:9.3793
  1463. 2022-11-09 19:24:20,375 - INFO - main.py - train - 68 - 【train】 epoch:1 967/2980 loss:4.6440
  1464. 2022-11-09 19:24:22,000 - INFO - main.py - train - 68 - 【train】 epoch:1 968/2980 loss:5.5898
  1465. 2022-11-09 19:24:23,390 - INFO - main.py - train - 68 - 【train】 epoch:1 969/2980 loss:4.4801
  1466. 2022-11-09 19:24:24,827 - INFO - main.py - train - 68 - 【train】 epoch:1 970/2980 loss:12.1069
  1467. 2022-11-09 19:24:26,093 - INFO - main.py - train - 68 - 【train】 epoch:1 971/2980 loss:17.1982
  1468. 2022-11-09 19:24:27,342 - INFO - main.py - train - 68 - 【train】 epoch:1 972/2980 loss:11.6995
  1469. 2022-11-09 19:24:28,576 - INFO - main.py - train - 68 - 【train】 epoch:1 973/2980 loss:17.1827
  1470. 2022-11-09 19:24:29,967 - INFO - main.py - train - 68 - 【train】 epoch:1 974/2980 loss:15.2523
  1471. 2022-11-09 19:24:31,341 - INFO - main.py - train - 68 - 【train】 epoch:1 975/2980 loss:3.1503
  1472. 2022-11-09 19:24:32,654 - INFO - main.py - train - 68 - 【train】 epoch:1 976/2980 loss:7.7131
  1473. 2022-11-09 19:24:33,981 - INFO - main.py - train - 68 - 【train】 epoch:1 977/2980 loss:26.8074
  1474. 2022-11-09 19:24:35,403 - INFO - main.py - train - 68 - 【train】 epoch:1 978/2980 loss:10.2899
  1475. 2022-11-09 19:24:36,653 - INFO - main.py - train - 68 - 【train】 epoch:1 979/2980 loss:11.6049
  1476. 2022-11-09 19:24:37,855 - INFO - main.py - train - 68 - 【train】 epoch:1 980/2980 loss:10.3455
  1477. 2022-11-09 19:24:39,058 - INFO - main.py - train - 68 - 【train】 epoch:1 981/2980 loss:0.3707
  1478. 2022-11-09 19:24:40,292 - INFO - main.py - train - 68 - 【train】 epoch:1 982/2980 loss:0.7706
  1479. 2022-11-09 19:24:41,683 - INFO - main.py - train - 68 - 【train】 epoch:1 983/2980 loss:1.1401
  1480. 2022-11-09 19:24:42,870 - INFO - main.py - train - 68 - 【train】 epoch:1 984/2980 loss:4.1321
  1481. 2022-11-09 19:24:44,120 - INFO - main.py - train - 68 - 【train】 epoch:1 985/2980 loss:7.4753
  1482. 2022-11-09 19:24:45,385 - INFO - main.py - train - 68 - 【train】 epoch:1 986/2980 loss:9.9120
  1483. 2022-11-09 19:24:46,783 - INFO - main.py - train - 68 - 【train】 epoch:1 987/2980 loss:6.6775
  1484. 2022-11-09 19:24:48,048 - INFO - main.py - train - 68 - 【train】 epoch:1 988/2980 loss:14.0884
  1485. 2022-11-09 19:24:49,845 - INFO - main.py - train - 68 - 【train】 epoch:1 989/2980 loss:9.5311
  1486. 2022-11-09 19:24:51,047 - INFO - main.py - train - 68 - 【train】 epoch:1 990/2980 loss:7.7634
  1487. 2022-11-09 19:24:52,282 - INFO - main.py - train - 68 - 【train】 epoch:1 991/2980 loss:10.1512
  1488. 2022-11-09 19:24:53,578 - INFO - main.py - train - 68 - 【train】 epoch:1 992/2980 loss:0.8114
  1489. 2022-11-09 19:24:54,937 - INFO - main.py - train - 68 - 【train】 epoch:1 993/2980 loss:5.4784
  1490. 2022-11-09 19:24:56,327 - INFO - main.py - train - 68 - 【train】 epoch:1 994/2980 loss:1.2686
  1491. 2022-11-09 19:24:57,530 - INFO - main.py - train - 68 - 【train】 epoch:1 995/2980 loss:1.6239
  1492. 2022-11-09 19:24:58,749 - INFO - main.py - train - 68 - 【train】 epoch:1 996/2980 loss:13.3472
  1493. 2022-11-09 19:25:00,373 - INFO - main.py - train - 68 - 【train】 epoch:1 997/2980 loss:6.1109
  1494. 2022-11-09 19:25:01,607 - INFO - main.py - train - 68 - 【train】 epoch:1 998/2980 loss:18.7407
  1495. 2022-11-09 19:25:02,795 - INFO - main.py - train - 68 - 【train】 epoch:1 999/2980 loss:3.9205
  1496. 2022-11-09 19:25:04,247 - INFO - main.py - train - 68 - 【train】 epoch:1 1000/2980 loss:9.3895
  1497. 2022-11-09 19:25:05,450 - INFO - main.py - train - 68 - 【train】 epoch:1 1001/2980 loss:4.9154
  1498. 2022-11-09 19:25:06,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1002/2980 loss:3.9290
  1499. 2022-11-09 19:25:08,278 - INFO - main.py - train - 68 - 【train】 epoch:1 1003/2980 loss:8.8142
  1500. 2022-11-09 19:25:09,777 - INFO - main.py - train - 68 - 【train】 epoch:1 1004/2980 loss:25.2054
  1501. 2022-11-09 19:25:11,152 - INFO - main.py - train - 68 - 【train】 epoch:1 1005/2980 loss:14.7895
  1502. 2022-11-09 19:25:12,558 - INFO - main.py - train - 68 - 【train】 epoch:1 1006/2980 loss:10.1668
  1503. 2022-11-09 19:25:13,761 - INFO - main.py - train - 68 - 【train】 epoch:1 1007/2980 loss:22.6615
  1504. 2022-11-09 19:25:15,167 - INFO - main.py - train - 68 - 【train】 epoch:1 1008/2980 loss:26.2800
  1505. 2022-11-09 19:25:16,416 - INFO - main.py - train - 68 - 【train】 epoch:1 1009/2980 loss:9.8442
  1506. 2022-11-09 19:25:17,651 - INFO - main.py - train - 68 - 【train】 epoch:1 1010/2980 loss:10.6412
  1507. 2022-11-09 19:25:18,947 - INFO - main.py - train - 68 - 【train】 epoch:1 1011/2980 loss:8.1007
  1508. 2022-11-09 19:25:20,166 - INFO - main.py - train - 68 - 【train】 epoch:1 1012/2980 loss:8.4580
  1509. 2022-11-09 19:25:21,415 - INFO - main.py - train - 68 - 【train】 epoch:1 1013/2980 loss:20.1312
  1510. 2022-11-09 19:25:22,899 - INFO - main.py - train - 68 - 【train】 epoch:1 1014/2980 loss:21.3305
  1511. 2022-11-09 19:25:24,149 - INFO - main.py - train - 68 - 【train】 epoch:1 1015/2980 loss:0.9938
  1512. 2022-11-09 19:25:25,399 - INFO - main.py - train - 68 - 【train】 epoch:1 1016/2980 loss:9.5907
  1513. 2022-11-09 19:25:26,711 - INFO - main.py - train - 68 - 【train】 epoch:1 1017/2980 loss:5.9076
  1514. 2022-11-09 19:25:27,914 - INFO - main.py - train - 68 - 【train】 epoch:1 1018/2980 loss:20.2133
  1515. 2022-11-09 19:25:29,398 - INFO - main.py - train - 68 - 【train】 epoch:1 1019/2980 loss:19.3834
  1516. 2022-11-09 19:25:30,616 - INFO - main.py - train - 68 - 【train】 epoch:1 1020/2980 loss:22.4818
  1517. 2022-11-09 19:25:31,913 - INFO - main.py - train - 68 - 【train】 epoch:1 1021/2980 loss:6.6624
  1518. 2022-11-09 19:25:33,241 - INFO - main.py - train - 68 - 【train】 epoch:1 1022/2980 loss:6.7862
  1519. 2022-11-09 19:25:34,537 - INFO - main.py - train - 68 - 【train】 epoch:1 1023/2980 loss:7.2648
  1520. 2022-11-09 19:25:35,771 - INFO - main.py - train - 68 - 【train】 epoch:1 1024/2980 loss:8.5652
  1521. 2022-11-09 19:25:37,068 - INFO - main.py - train - 68 - 【train】 epoch:1 1025/2980 loss:4.5263
  1522. 2022-11-09 19:25:38,536 - INFO - main.py - train - 68 - 【train】 epoch:1 1026/2980 loss:4.0087
  1523. 2022-11-09 19:25:39,755 - INFO - main.py - train - 68 - 【train】 epoch:1 1027/2980 loss:5.4438
  1524. 2022-11-09 19:25:41,036 - INFO - main.py - train - 68 - 【train】 epoch:1 1028/2980 loss:4.4680
  1525. 2022-11-09 19:25:42,754 - INFO - main.py - train - 68 - 【train】 epoch:1 1029/2980 loss:4.1107
  1526. 2022-11-09 19:25:43,957 - INFO - main.py - train - 68 - 【train】 epoch:1 1030/2980 loss:4.9934
  1527. 2022-11-09 19:25:45,175 - INFO - main.py - train - 68 - 【train】 epoch:1 1031/2980 loss:15.6807
  1528. 2022-11-09 19:25:46,691 - INFO - main.py - train - 68 - 【train】 epoch:1 1032/2980 loss:6.0825
  1529. 2022-11-09 19:25:47,940 - INFO - main.py - train - 68 - 【train】 epoch:1 1033/2980 loss:9.6429
  1530. 2022-11-09 19:25:49,174 - INFO - main.py - train - 68 - 【train】 epoch:1 1034/2980 loss:8.9120
  1531. 2022-11-09 19:25:50,440 - INFO - main.py - train - 68 - 【train】 epoch:1 1035/2980 loss:11.8177
  1532. 2022-11-09 19:25:51,658 - INFO - main.py - train - 68 - 【train】 epoch:1 1036/2980 loss:22.2524
  1533. 2022-11-09 19:25:52,845 - INFO - main.py - train - 68 - 【train】 epoch:1 1037/2980 loss:4.9980
  1534. 2022-11-09 19:25:54,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1038/2980 loss:12.2012
  1535. 2022-11-09 19:25:55,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1039/2980 loss:15.2086
  1536. 2022-11-09 19:25:56,704 - INFO - main.py - train - 68 - 【train】 epoch:1 1040/2980 loss:18.6521
  1537. 2022-11-09 19:25:57,954 - INFO - main.py - train - 68 - 【train】 epoch:1 1041/2980 loss:2.0149
  1538. 2022-11-09 19:25:59,438 - INFO - main.py - train - 68 - 【train】 epoch:1 1042/2980 loss:13.3363
  1539. 2022-11-09 19:26:00,656 - INFO - main.py - train - 68 - 【train】 epoch:1 1043/2980 loss:1.9957
  1540. 2022-11-09 19:26:01,875 - INFO - main.py - train - 68 - 【train】 epoch:1 1044/2980 loss:7.9954
  1541. 2022-11-09 19:26:03,499 - INFO - main.py - train - 68 - 【train】 epoch:1 1045/2980 loss:20.6829
  1542. 2022-11-09 19:26:04,796 - INFO - main.py - train - 68 - 【train】 epoch:1 1046/2980 loss:4.1753
  1543. 2022-11-09 19:26:06,186 - INFO - main.py - train - 68 - 【train】 epoch:1 1047/2980 loss:3.3975
  1544. 2022-11-09 19:26:07,451 - INFO - main.py - train - 68 - 【train】 epoch:1 1048/2980 loss:2.2007
  1545. 2022-11-09 19:26:08,639 - INFO - main.py - train - 68 - 【train】 epoch:1 1049/2980 loss:3.5119
  1546. 2022-11-09 19:26:09,888 - INFO - main.py - train - 68 - 【train】 epoch:1 1050/2980 loss:5.3834
  1547. 2022-11-09 19:26:11,325 - INFO - main.py - train - 68 - 【train】 epoch:1 1051/2980 loss:6.3615
  1548. 2022-11-09 19:26:12,716 - INFO - main.py - train - 68 - 【train】 epoch:1 1052/2980 loss:4.7635
  1549. 2022-11-09 19:26:13,950 - INFO - main.py - train - 68 - 【train】 epoch:1 1053/2980 loss:6.1989
  1550. 2022-11-09 19:26:15,231 - INFO - main.py - train - 68 - 【train】 epoch:1 1054/2980 loss:10.8073
  1551. 2022-11-09 19:26:16,449 - INFO - main.py - train - 68 - 【train】 epoch:1 1055/2980 loss:11.5276
  1552. 2022-11-09 19:26:18,011 - INFO - main.py - train - 68 - 【train】 epoch:1 1056/2980 loss:4.8633
  1553. 2022-11-09 19:26:19,199 - INFO - main.py - train - 68 - 【train】 epoch:1 1057/2980 loss:5.0773
  1554. 2022-11-09 19:26:20,542 - INFO - main.py - train - 68 - 【train】 epoch:1 1058/2980 loss:9.4993
  1555. 2022-11-09 19:26:21,792 - INFO - main.py - train - 68 - 【train】 epoch:1 1059/2980 loss:21.5765
  1556. 2022-11-09 19:26:23,010 - INFO - main.py - train - 68 - 【train】 epoch:1 1060/2980 loss:4.0365
  1557. 2022-11-09 19:26:24,401 - INFO - main.py - train - 68 - 【train】 epoch:1 1061/2980 loss:2.5065
  1558. 2022-11-09 19:26:25,619 - INFO - main.py - train - 68 - 【train】 epoch:1 1062/2980 loss:3.1360
  1559. 2022-11-09 19:26:26,822 - INFO - main.py - train - 68 - 【train】 epoch:1 1063/2980 loss:7.6761
  1560. 2022-11-09 19:26:28,118 - INFO - main.py - train - 68 - 【train】 epoch:1 1064/2980 loss:8.9882
  1561. 2022-11-09 19:26:29,415 - INFO - main.py - train - 68 - 【train】 epoch:1 1065/2980 loss:1.6476
  1562. 2022-11-09 19:26:30,774 - INFO - main.py - train - 68 - 【train】 epoch:1 1066/2980 loss:16.6879
  1563. 2022-11-09 19:26:31,993 - INFO - main.py - train - 68 - 【train】 epoch:1 1067/2980 loss:5.3940
  1564. 2022-11-09 19:26:33,461 - INFO - main.py - train - 68 - 【train】 epoch:1 1068/2980 loss:19.6579
  1565. 2022-11-09 19:26:34,679 - INFO - main.py - train - 68 - 【train】 epoch:1 1069/2980 loss:14.2421
  1566. 2022-11-09 19:26:35,945 - INFO - main.py - train - 68 - 【train】 epoch:1 1070/2980 loss:2.7627
  1567. 2022-11-09 19:26:37,179 - INFO - main.py - train - 68 - 【train】 epoch:1 1071/2980 loss:7.7115
  1568. 2022-11-09 19:26:38,366 - INFO - main.py - train - 68 - 【train】 epoch:1 1072/2980 loss:9.9180
  1569. 2022-11-09 19:26:39,647 - INFO - main.py - train - 68 - 【train】 epoch:1 1073/2980 loss:11.9397
  1570. 2022-11-09 19:26:40,959 - INFO - main.py - train - 68 - 【train】 epoch:1 1074/2980 loss:2.3427
  1571. 2022-11-09 19:26:42,162 - INFO - main.py - train - 68 - 【train】 epoch:1 1075/2980 loss:13.1314
  1572. 2022-11-09 19:26:43,490 - INFO - main.py - train - 68 - 【train】 epoch:1 1076/2980 loss:12.9195
  1573. 2022-11-09 19:26:44,989 - INFO - main.py - train - 68 - 【train】 epoch:1 1077/2980 loss:7.5304
  1574. 2022-11-09 19:26:46,255 - INFO - main.py - train - 68 - 【train】 epoch:1 1078/2980 loss:12.7341
  1575. 2022-11-09 19:26:47,598 - INFO - main.py - train - 68 - 【train】 epoch:1 1079/2980 loss:20.2626
  1576. 2022-11-09 19:26:49,035 - INFO - main.py - train - 68 - 【train】 epoch:1 1080/2980 loss:27.6249
  1577. 2022-11-09 19:26:50,441 - INFO - main.py - train - 68 - 【train】 epoch:1 1081/2980 loss:26.4278
  1578. 2022-11-09 19:26:52,019 - INFO - main.py - train - 68 - 【train】 epoch:1 1082/2980 loss:20.0259
  1579. 2022-11-09 19:26:53,347 - INFO - main.py - train - 68 - 【train】 epoch:1 1083/2980 loss:15.7004
  1580. 2022-11-09 19:26:54,800 - INFO - main.py - train - 68 - 【train】 epoch:1 1084/2980 loss:9.8219
  1581. 2022-11-09 19:26:56,034 - INFO - main.py - train - 68 - 【train】 epoch:1 1085/2980 loss:12.1918
  1582. 2022-11-09 19:26:57,643 - INFO - main.py - train - 68 - 【train】 epoch:1 1086/2980 loss:18.4264
  1583. 2022-11-09 19:26:59,220 - INFO - main.py - train - 68 - 【train】 epoch:1 1087/2980 loss:13.3307
  1584. 2022-11-09 19:27:00,455 - INFO - main.py - train - 68 - 【train】 epoch:1 1088/2980 loss:2.2517
  1585. 2022-11-09 19:27:01,845 - INFO - main.py - train - 68 - 【train】 epoch:1 1089/2980 loss:15.3607
  1586. 2022-11-09 19:27:03,360 - INFO - main.py - train - 68 - 【train】 epoch:1 1090/2980 loss:8.2730
  1587. 2022-11-09 19:27:04,766 - INFO - main.py - train - 68 - 【train】 epoch:1 1091/2980 loss:29.9637
  1588. 2022-11-09 19:27:06,156 - INFO - main.py - train - 68 - 【train】 epoch:1 1092/2980 loss:7.2467
  1589. 2022-11-09 19:27:07,453 - INFO - main.py - train - 68 - 【train】 epoch:1 1093/2980 loss:2.2733
  1590. 2022-11-09 19:27:08,828 - INFO - main.py - train - 68 - 【train】 epoch:1 1094/2980 loss:18.5029
  1591. 2022-11-09 19:27:10,077 - INFO - main.py - train - 68 - 【train】 epoch:1 1095/2980 loss:5.3554
  1592. 2022-11-09 19:27:11,546 - INFO - main.py - train - 68 - 【train】 epoch:1 1096/2980 loss:8.3989
  1593. 2022-11-09 19:27:12,952 - INFO - main.py - train - 68 - 【train】 epoch:1 1097/2980 loss:15.8151
  1594. 2022-11-09 19:27:14,404 - INFO - main.py - train - 68 - 【train】 epoch:1 1098/2980 loss:10.5382
  1595. 2022-11-09 19:27:15,607 - INFO - main.py - train - 68 - 【train】 epoch:1 1099/2980 loss:10.4130
  1596. 2022-11-09 19:27:17,497 - INFO - main.py - train - 68 - 【train】 epoch:1 1100/2980 loss:3.8703
  1597. 2022-11-09 19:27:18,732 - INFO - main.py - train - 68 - 【train】 epoch:1 1101/2980 loss:7.9366
  1598. 2022-11-09 19:27:20,137 - INFO - main.py - train - 68 - 【train】 epoch:1 1102/2980 loss:18.3127
  1599. 2022-11-09 19:27:21,512 - INFO - main.py - train - 68 - 【train】 epoch:1 1103/2980 loss:23.4215
  1600. 2022-11-09 19:27:22,949 - INFO - main.py - train - 68 - 【train】 epoch:1 1104/2980 loss:10.5717
  1601. 2022-11-09 19:27:24,152 - INFO - main.py - train - 68 - 【train】 epoch:1 1105/2980 loss:9.8636
  1602. 2022-11-09 19:27:25,339 - INFO - main.py - train - 68 - 【train】 epoch:1 1106/2980 loss:11.6966
  1603. 2022-11-09 19:27:26,620 - INFO - main.py - train - 68 - 【train】 epoch:1 1107/2980 loss:10.2719
  1604. 2022-11-09 19:27:28,011 - INFO - main.py - train - 68 - 【train】 epoch:1 1108/2980 loss:12.2258
  1605. 2022-11-09 19:27:29,276 - INFO - main.py - train - 68 - 【train】 epoch:1 1109/2980 loss:18.3887
  1606. 2022-11-09 19:27:30,838 - INFO - main.py - train - 68 - 【train】 epoch:1 1110/2980 loss:38.7695
  1607. 2022-11-09 19:27:32,057 - INFO - main.py - train - 68 - 【train】 epoch:1 1111/2980 loss:3.1267
  1608. 2022-11-09 19:27:33,462 - INFO - main.py - train - 68 - 【train】 epoch:1 1112/2980 loss:11.3574
  1609. 2022-11-09 19:27:34,712 - INFO - main.py - train - 68 - 【train】 epoch:1 1113/2980 loss:15.5102
  1610. 2022-11-09 19:27:35,993 - INFO - main.py - train - 68 - 【train】 epoch:1 1114/2980 loss:2.0789
  1611. 2022-11-09 19:27:37,180 - INFO - main.py - train - 68 - 【train】 epoch:1 1115/2980 loss:2.7797
  1612. 2022-11-09 19:27:38,446 - INFO - main.py - train - 68 - 【train】 epoch:1 1116/2980 loss:23.5745
  1613. 2022-11-09 19:27:39,664 - INFO - main.py - train - 68 - 【train】 epoch:1 1117/2980 loss:16.7361
  1614. 2022-11-09 19:27:41,023 - INFO - main.py - train - 68 - 【train】 epoch:1 1118/2980 loss:7.7123
  1615. 2022-11-09 19:27:42,382 - INFO - main.py - train - 68 - 【train】 epoch:1 1119/2980 loss:13.5116
  1616. 2022-11-09 19:27:43,819 - INFO - main.py - train - 68 - 【train】 epoch:1 1120/2980 loss:8.4412
  1617. 2022-11-09 19:27:45,038 - INFO - main.py - train - 68 - 【train】 epoch:1 1121/2980 loss:15.0331
  1618. 2022-11-09 19:27:46,225 - INFO - main.py - train - 68 - 【train】 epoch:1 1122/2980 loss:4.7430
  1619. 2022-11-09 19:27:47,662 - INFO - main.py - train - 68 - 【train】 epoch:1 1123/2980 loss:11.1311
  1620. 2022-11-09 19:27:49,037 - INFO - main.py - train - 68 - 【train】 epoch:1 1124/2980 loss:6.8563
  1621. 2022-11-09 19:27:50,505 - INFO - main.py - train - 68 - 【train】 epoch:1 1125/2980 loss:5.6798
  1622. 2022-11-09 19:27:51,818 - INFO - main.py - train - 68 - 【train】 epoch:1 1126/2980 loss:9.8034
  1623. 2022-11-09 19:27:53,380 - INFO - main.py - train - 68 - 【train】 epoch:1 1127/2980 loss:7.5378
  1624. 2022-11-09 19:27:54,864 - INFO - main.py - train - 68 - 【train】 epoch:1 1128/2980 loss:6.3706
  1625. 2022-11-09 19:27:56,207 - INFO - main.py - train - 68 - 【train】 epoch:1 1129/2980 loss:2.4588
  1626. 2022-11-09 19:27:57,488 - INFO - main.py - train - 68 - 【train】 epoch:1 1130/2980 loss:11.6378
  1627. 2022-11-09 19:27:58,847 - INFO - main.py - train - 68 - 【train】 epoch:1 1131/2980 loss:31.6859
  1628. 2022-11-09 19:28:00,284 - INFO - main.py - train - 68 - 【train】 epoch:1 1132/2980 loss:3.6792
  1629. 2022-11-09 19:28:01,534 - INFO - main.py - train - 68 - 【train】 epoch:1 1133/2980 loss:2.5789
  1630. 2022-11-09 19:28:02,737 - INFO - main.py - train - 68 - 【train】 epoch:1 1134/2980 loss:16.1003
  1631. 2022-11-09 19:28:03,940 - INFO - main.py - train - 68 - 【train】 epoch:1 1135/2980 loss:7.1980
  1632. 2022-11-09 19:28:05,299 - INFO - main.py - train - 68 - 【train】 epoch:1 1136/2980 loss:14.2225
  1633. 2022-11-09 19:28:06,939 - INFO - main.py - train - 68 - 【train】 epoch:1 1137/2980 loss:26.5985
  1634. 2022-11-09 19:28:08,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1138/2980 loss:13.1967
  1635. 2022-11-09 19:28:09,735 - INFO - main.py - train - 68 - 【train】 epoch:1 1139/2980 loss:4.8948
  1636. 2022-11-09 19:28:11,063 - INFO - main.py - train - 68 - 【train】 epoch:1 1140/2980 loss:16.1298
  1637. 2022-11-09 19:28:12,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1141/2980 loss:6.1751
  1638. 2022-11-09 19:28:13,594 - INFO - main.py - train - 68 - 【train】 epoch:1 1142/2980 loss:17.1040
  1639. 2022-11-09 19:28:14,812 - INFO - main.py - train - 68 - 【train】 epoch:1 1143/2980 loss:8.6583
  1640. 2022-11-09 19:28:16,015 - INFO - main.py - train - 68 - 【train】 epoch:1 1144/2980 loss:12.7346
  1641. 2022-11-09 19:28:17,343 - INFO - main.py - train - 68 - 【train】 epoch:1 1145/2980 loss:7.2559
  1642. 2022-11-09 19:28:18,561 - INFO - main.py - train - 68 - 【train】 epoch:1 1146/2980 loss:3.4705
  1643. 2022-11-09 19:28:19,967 - INFO - main.py - train - 68 - 【train】 epoch:1 1147/2980 loss:7.8344
  1644. 2022-11-09 19:28:21,420 - INFO - main.py - train - 68 - 【train】 epoch:1 1148/2980 loss:7.4361
  1645. 2022-11-09 19:28:22,826 - INFO - main.py - train - 68 - 【train】 epoch:1 1149/2980 loss:20.7975
  1646. 2022-11-09 19:28:24,279 - INFO - main.py - train - 68 - 【train】 epoch:1 1150/2980 loss:3.8787
  1647. 2022-11-09 19:28:25,482 - INFO - main.py - train - 68 - 【train】 epoch:1 1151/2980 loss:26.9503
  1648. 2022-11-09 19:28:26,747 - INFO - main.py - train - 68 - 【train】 epoch:1 1152/2980 loss:6.5833
  1649. 2022-11-09 19:28:27,997 - INFO - main.py - train - 68 - 【train】 epoch:1 1153/2980 loss:18.6551
  1650. 2022-11-09 19:28:29,246 - INFO - main.py - train - 68 - 【train】 epoch:1 1154/2980 loss:10.7973
  1651. 2022-11-09 19:28:30,449 - INFO - main.py - train - 68 - 【train】 epoch:1 1155/2980 loss:5.7823
  1652. 2022-11-09 19:28:31,714 - INFO - main.py - train - 68 - 【train】 epoch:1 1156/2980 loss:5.4180
  1653. 2022-11-09 19:28:32,949 - INFO - main.py - train - 68 - 【train】 epoch:1 1157/2980 loss:10.3670
  1654. 2022-11-09 19:28:34,433 - INFO - main.py - train - 68 - 【train】 epoch:1 1158/2980 loss:11.9582
  1655. 2022-11-09 19:28:35,651 - INFO - main.py - train - 68 - 【train】 epoch:1 1159/2980 loss:12.5801
  1656. 2022-11-09 19:28:37,026 - INFO - main.py - train - 68 - 【train】 epoch:1 1160/2980 loss:12.4812
  1657. 2022-11-09 19:28:38,244 - INFO - main.py - train - 68 - 【train】 epoch:1 1161/2980 loss:13.6296
  1658. 2022-11-09 19:28:39,447 - INFO - main.py - train - 68 - 【train】 epoch:1 1162/2980 loss:4.4591
  1659. 2022-11-09 19:28:40,790 - INFO - main.py - train - 68 - 【train】 epoch:1 1163/2980 loss:11.0720
  1660. 2022-11-09 19:28:42,368 - INFO - main.py - train - 68 - 【train】 epoch:1 1164/2980 loss:7.7031
  1661. 2022-11-09 19:28:43,618 - INFO - main.py - train - 68 - 【train】 epoch:1 1165/2980 loss:12.3201
  1662. 2022-11-09 19:28:45,367 - INFO - main.py - train - 68 - 【train】 epoch:1 1166/2980 loss:11.2918
  1663. 2022-11-09 19:28:46,789 - INFO - main.py - train - 68 - 【train】 epoch:1 1167/2980 loss:10.6639
  1664. 2022-11-09 19:28:47,976 - INFO - main.py - train - 68 - 【train】 epoch:1 1168/2980 loss:2.6936
  1665. 2022-11-09 19:28:49,304 - INFO - main.py - train - 68 - 【train】 epoch:1 1169/2980 loss:41.1356
  1666. 2022-11-09 19:28:50,757 - INFO - main.py - train - 68 - 【train】 epoch:1 1170/2980 loss:1.2310
  1667. 2022-11-09 19:28:52,007 - INFO - main.py - train - 68 - 【train】 epoch:1 1171/2980 loss:12.0690
  1668. 2022-11-09 19:28:53,256 - INFO - main.py - train - 68 - 【train】 epoch:1 1172/2980 loss:4.8254
  1669. 2022-11-09 19:28:54,553 - INFO - main.py - train - 68 - 【train】 epoch:1 1173/2980 loss:11.1647
  1670. 2022-11-09 19:28:55,771 - INFO - main.py - train - 68 - 【train】 epoch:1 1174/2980 loss:8.6579
  1671. 2022-11-09 19:28:56,959 - INFO - main.py - train - 68 - 【train】 epoch:1 1175/2980 loss:1.2878
  1672. 2022-11-09 19:28:58,255 - INFO - main.py - train - 68 - 【train】 epoch:1 1176/2980 loss:0.4050
  1673. 2022-11-09 19:28:59,442 - INFO - main.py - train - 68 - 【train】 epoch:1 1177/2980 loss:1.0231
  1674. 2022-11-09 19:29:00,786 - INFO - main.py - train - 68 - 【train】 epoch:1 1178/2980 loss:22.5190
  1675. 2022-11-09 19:29:02,004 - INFO - main.py - train - 68 - 【train】 epoch:1 1179/2980 loss:6.2317
  1676. 2022-11-09 19:29:03,332 - INFO - main.py - train - 68 - 【train】 epoch:1 1180/2980 loss:23.4619
  1677. 2022-11-09 19:29:04,519 - INFO - main.py - train - 68 - 【train】 epoch:1 1181/2980 loss:26.3393
  1678. 2022-11-09 19:29:05,941 - INFO - main.py - train - 68 - 【train】 epoch:1 1182/2980 loss:4.2402
  1679. 2022-11-09 19:29:07,222 - INFO - main.py - train - 68 - 【train】 epoch:1 1183/2980 loss:5.5948
  1680. 2022-11-09 19:29:08,503 - INFO - main.py - train - 68 - 【train】 epoch:1 1184/2980 loss:5.2040
  1681. 2022-11-09 19:29:09,737 - INFO - main.py - train - 68 - 【train】 epoch:1 1185/2980 loss:11.0268
  1682. 2022-11-09 19:29:11,002 - INFO - main.py - train - 68 - 【train】 epoch:1 1186/2980 loss:6.2717
  1683. 2022-11-09 19:29:12,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1187/2980 loss:10.6066
  1684. 2022-11-09 19:29:13,455 - INFO - main.py - train - 68 - 【train】 epoch:1 1188/2980 loss:13.4137
  1685. 2022-11-09 19:29:14,720 - INFO - main.py - train - 68 - 【train】 epoch:1 1189/2980 loss:16.4662
  1686. 2022-11-09 19:29:16,048 - INFO - main.py - train - 68 - 【train】 epoch:1 1190/2980 loss:7.5184
  1687. 2022-11-09 19:29:17,251 - INFO - main.py - train - 68 - 【train】 epoch:1 1191/2980 loss:7.4271
  1688. 2022-11-09 19:29:21,859 - INFO - main.py - train - 68 - 【train】 epoch:2 1192/2980 loss:5.9312
  1689. 2022-11-09 19:29:23,077 - INFO - main.py - train - 68 - 【train】 epoch:2 1193/2980 loss:14.9066
  1690. 2022-11-09 19:29:24,686 - INFO - main.py - train - 68 - 【train】 epoch:2 1194/2980 loss:1.6103
  1691. 2022-11-09 19:29:26,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1195/2980 loss:3.4713
  1692. 2022-11-09 19:29:27,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1196/2980 loss:11.8361
  1693. 2022-11-09 19:29:28,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1197/2980 loss:31.2257
  1694. 2022-11-09 19:29:30,107 - INFO - main.py - train - 68 - 【train】 epoch:2 1198/2980 loss:5.3805
  1695. 2022-11-09 19:29:31,404 - INFO - main.py - train - 68 - 【train】 epoch:2 1199/2980 loss:7.4820
  1696. 2022-11-09 19:29:32,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1200/2980 loss:7.2189
  1697. 2022-11-09 19:29:34,137 - INFO - main.py - train - 68 - 【train】 epoch:2 1201/2980 loss:11.8843
  1698. 2022-11-09 19:29:35,653 - INFO - main.py - train - 68 - 【train】 epoch:2 1202/2980 loss:5.1297
  1699. 2022-11-09 19:29:36,902 - INFO - main.py - train - 68 - 【train】 epoch:2 1203/2980 loss:14.9018
  1700. 2022-11-09 19:29:38,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1204/2980 loss:21.9160
  1701. 2022-11-09 19:29:39,558 - INFO - main.py - train - 68 - 【train】 epoch:2 1205/2980 loss:13.7391
  1702. 2022-11-09 19:29:40,792 - INFO - main.py - train - 68 - 【train】 epoch:2 1206/2980 loss:21.7070
  1703. 2022-11-09 19:29:42,198 - INFO - main.py - train - 68 - 【train】 epoch:2 1207/2980 loss:31.7543
  1704. 2022-11-09 19:29:43,541 - INFO - main.py - train - 68 - 【train】 epoch:2 1208/2980 loss:1.5070
  1705. 2022-11-09 19:29:44,807 - INFO - main.py - train - 68 - 【train】 epoch:2 1209/2980 loss:2.2591
  1706. 2022-11-09 19:29:46,134 - INFO - main.py - train - 68 - 【train】 epoch:2 1210/2980 loss:4.9962
  1707. 2022-11-09 19:29:47,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1211/2980 loss:8.4591
  1708. 2022-11-09 19:29:48,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1212/2980 loss:6.1013
  1709. 2022-11-09 19:29:49,930 - INFO - main.py - train - 68 - 【train】 epoch:2 1213/2980 loss:2.9235
  1710. 2022-11-09 19:29:51,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1214/2980 loss:14.2195
  1711. 2022-11-09 19:29:52,492 - INFO - main.py - train - 68 - 【train】 epoch:2 1215/2980 loss:2.6164
  1712. 2022-11-09 19:29:53,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1216/2980 loss:2.3886
  1713. 2022-11-09 19:29:54,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1217/2980 loss:3.6908
  1714. 2022-11-09 19:29:56,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1218/2980 loss:4.7959
  1715. 2022-11-09 19:29:57,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1219/2980 loss:4.8749
  1716. 2022-11-09 19:29:58,694 - INFO - main.py - train - 68 - 【train】 epoch:2 1220/2980 loss:11.1700
  1717. 2022-11-09 19:29:59,913 - INFO - main.py - train - 68 - 【train】 epoch:2 1221/2980 loss:4.6760
  1718. 2022-11-09 19:30:01,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1222/2980 loss:2.7570
  1719. 2022-11-09 19:30:02,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1223/2980 loss:6.9388
  1720. 2022-11-09 19:30:03,787 - INFO - main.py - train - 68 - 【train】 epoch:2 1224/2980 loss:4.4132
  1721. 2022-11-09 19:30:05,005 - INFO - main.py - train - 68 - 【train】 epoch:2 1225/2980 loss:3.0387
  1722. 2022-11-09 19:30:06,255 - INFO - main.py - train - 68 - 【train】 epoch:2 1226/2980 loss:26.4326
  1723. 2022-11-09 19:30:07,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1227/2980 loss:3.5595
  1724. 2022-11-09 19:30:08,864 - INFO - main.py - train - 68 - 【train】 epoch:2 1228/2980 loss:7.2112
  1725. 2022-11-09 19:30:10,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1229/2980 loss:1.1943
  1726. 2022-11-09 19:30:11,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1230/2980 loss:3.6567
  1727. 2022-11-09 19:30:12,738 - INFO - main.py - train - 68 - 【train】 epoch:2 1231/2980 loss:6.6868
  1728. 2022-11-09 19:30:13,940 - INFO - main.py - train - 68 - 【train】 epoch:2 1232/2980 loss:5.1006
  1729. 2022-11-09 19:30:15,143 - INFO - main.py - train - 68 - 【train】 epoch:2 1233/2980 loss:1.6994
  1730. 2022-11-09 19:30:16,346 - INFO - main.py - train - 68 - 【train】 epoch:2 1234/2980 loss:3.2330
  1731. 2022-11-09 19:30:17,674 - INFO - main.py - train - 68 - 【train】 epoch:2 1235/2980 loss:11.8045
  1732. 2022-11-09 19:30:19,158 - INFO - main.py - train - 68 - 【train】 epoch:2 1236/2980 loss:21.6766
  1733. 2022-11-09 19:30:20,376 - INFO - main.py - train - 68 - 【train】 epoch:2 1237/2980 loss:19.6778
  1734. 2022-11-09 19:30:21,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1238/2980 loss:0.4269
  1735. 2022-11-09 19:30:22,970 - INFO - main.py - train - 68 - 【train】 epoch:2 1239/2980 loss:5.4500
  1736. 2022-11-09 19:30:24,204 - INFO - main.py - train - 68 - 【train】 epoch:2 1240/2980 loss:5.0252
  1737. 2022-11-09 19:30:25,422 - INFO - main.py - train - 68 - 【train】 epoch:2 1241/2980 loss:10.8799
  1738. 2022-11-09 19:30:26,844 - INFO - main.py - train - 68 - 【train】 epoch:2 1242/2980 loss:10.9295
  1739. 2022-11-09 19:30:28,156 - INFO - main.py - train - 68 - 【train】 epoch:2 1243/2980 loss:11.9329
  1740. 2022-11-09 19:30:29,406 - INFO - main.py - train - 68 - 【train】 epoch:2 1244/2980 loss:11.7753
  1741. 2022-11-09 19:30:30,843 - INFO - main.py - train - 68 - 【train】 epoch:2 1245/2980 loss:14.0070
  1742. 2022-11-09 19:30:32,264 - INFO - main.py - train - 68 - 【train】 epoch:2 1246/2980 loss:13.3033
  1743. 2022-11-09 19:30:33,592 - INFO - main.py - train - 68 - 【train】 epoch:2 1247/2980 loss:10.3868
  1744. 2022-11-09 19:30:34,779 - INFO - main.py - train - 68 - 【train】 epoch:2 1248/2980 loss:8.1032
  1745. 2022-11-09 19:30:35,998 - INFO - main.py - train - 68 - 【train】 epoch:2 1249/2980 loss:2.9177
  1746. 2022-11-09 19:30:37,310 - INFO - main.py - train - 68 - 【train】 epoch:2 1250/2980 loss:7.6028
  1747. 2022-11-09 19:30:38,528 - INFO - main.py - train - 68 - 【train】 epoch:2 1251/2980 loss:7.1977
  1748. 2022-11-09 19:30:39,919 - INFO - main.py - train - 68 - 【train】 epoch:2 1252/2980 loss:15.9074
  1749. 2022-11-09 19:30:41,106 - INFO - main.py - train - 68 - 【train】 epoch:2 1253/2980 loss:9.3073
  1750. 2022-11-09 19:30:42,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1254/2980 loss:6.3658
  1751. 2022-11-09 19:30:43,744 - INFO - main.py - train - 68 - 【train】 epoch:2 1255/2980 loss:18.4804
  1752. 2022-11-09 19:30:44,994 - INFO - main.py - train - 68 - 【train】 epoch:2 1256/2980 loss:6.7843
  1753. 2022-11-09 19:30:46,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1257/2980 loss:1.2896
  1754. 2022-11-09 19:30:47,555 - INFO - main.py - train - 68 - 【train】 epoch:2 1258/2980 loss:10.6856
  1755. 2022-11-09 19:30:48,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1259/2980 loss:38.9316
  1756. 2022-11-09 19:30:50,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1260/2980 loss:4.0998
  1757. 2022-11-09 19:30:51,336 - INFO - main.py - train - 68 - 【train】 epoch:2 1261/2980 loss:57.3672
  1758. 2022-11-09 19:30:52,570 - INFO - main.py - train - 68 - 【train】 epoch:2 1262/2980 loss:2.8280
  1759. 2022-11-09 19:30:54,195 - INFO - main.py - train - 68 - 【train】 epoch:2 1263/2980 loss:11.6053
  1760. 2022-11-09 19:30:55,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1264/2980 loss:8.5794
  1761. 2022-11-09 19:30:56,678 - INFO - main.py - train - 68 - 【train】 epoch:2 1265/2980 loss:15.8244
  1762. 2022-11-09 19:30:57,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1266/2980 loss:6.8546
  1763. 2022-11-09 19:30:59,162 - INFO - main.py - train - 68 - 【train】 epoch:2 1267/2980 loss:2.8527
  1764. 2022-11-09 19:31:00,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1268/2980 loss:5.7488
  1765. 2022-11-09 19:31:01,615 - INFO - main.py - train - 68 - 【train】 epoch:2 1269/2980 loss:9.4413
  1766. 2022-11-09 19:31:02,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1270/2980 loss:23.8679
  1767. 2022-11-09 19:31:04,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1271/2980 loss:1.7474
  1768. 2022-11-09 19:31:05,286 - INFO - main.py - train - 68 - 【train】 epoch:2 1272/2980 loss:1.7946
  1769. 2022-11-09 19:31:06,504 - INFO - main.py - train - 68 - 【train】 epoch:2 1273/2980 loss:3.6684
  1770. 2022-11-09 19:31:07,707 - INFO - main.py - train - 68 - 【train】 epoch:2 1274/2980 loss:5.7138
  1771. 2022-11-09 19:31:09,175 - INFO - main.py - train - 68 - 【train】 epoch:2 1275/2980 loss:6.1098
  1772. 2022-11-09 19:31:10,503 - INFO - main.py - train - 68 - 【train】 epoch:2 1276/2980 loss:0.5116
  1773. 2022-11-09 19:31:11,831 - INFO - main.py - train - 68 - 【train】 epoch:2 1277/2980 loss:8.3896
  1774. 2022-11-09 19:31:13,065 - INFO - main.py - train - 68 - 【train】 epoch:2 1278/2980 loss:11.5561
  1775. 2022-11-09 19:31:14,440 - INFO - main.py - train - 68 - 【train】 epoch:2 1279/2980 loss:3.1819
  1776. 2022-11-09 19:31:15,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1280/2980 loss:2.5992
  1777. 2022-11-09 19:31:17,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1281/2980 loss:2.1632
  1778. 2022-11-09 19:31:18,361 - INFO - main.py - train - 68 - 【train】 epoch:2 1282/2980 loss:3.8535
  1779. 2022-11-09 19:31:19,751 - INFO - main.py - train - 68 - 【train】 epoch:2 1283/2980 loss:12.7827
  1780. 2022-11-09 19:31:20,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1284/2980 loss:4.3655
  1781. 2022-11-09 19:31:22,280 - INFO - main.py - train - 68 - 【train】 epoch:2 1285/2980 loss:3.4868
  1782. 2022-11-09 19:31:23,530 - INFO - main.py - train - 68 - 【train】 epoch:2 1286/2980 loss:5.8757
  1783. 2022-11-09 19:31:24,748 - INFO - main.py - train - 68 - 【train】 epoch:2 1287/2980 loss:14.7995
  1784. 2022-11-09 19:31:25,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1288/2980 loss:7.3600
  1785. 2022-11-09 19:31:27,279 - INFO - main.py - train - 68 - 【train】 epoch:2 1289/2980 loss:2.8638
  1786. 2022-11-09 19:31:28,607 - INFO - main.py - train - 68 - 【train】 epoch:2 1290/2980 loss:13.6230
  1787. 2022-11-09 19:31:30,044 - INFO - main.py - train - 68 - 【train】 epoch:2 1291/2980 loss:10.4500
  1788. 2022-11-09 19:31:31,387 - INFO - main.py - train - 68 - 【train】 epoch:2 1292/2980 loss:2.7633
  1789. 2022-11-09 19:31:32,700 - INFO - main.py - train - 68 - 【train】 epoch:2 1293/2980 loss:13.5237
  1790. 2022-11-09 19:31:33,918 - INFO - main.py - train - 68 - 【train】 epoch:2 1294/2980 loss:8.4180
  1791. 2022-11-09 19:31:35,184 - INFO - main.py - train - 68 - 【train】 epoch:2 1295/2980 loss:4.9642
  1792. 2022-11-09 19:31:36,449 - INFO - main.py - train - 68 - 【train】 epoch:2 1296/2980 loss:12.7438
  1793. 2022-11-09 19:31:37,683 - INFO - main.py - train - 68 - 【train】 epoch:2 1297/2980 loss:2.0078
  1794. 2022-11-09 19:31:38,901 - INFO - main.py - train - 68 - 【train】 epoch:2 1298/2980 loss:7.5930
  1795. 2022-11-09 19:31:40,214 - INFO - main.py - train - 68 - 【train】 epoch:2 1299/2980 loss:1.4884
  1796. 2022-11-09 19:31:41,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1300/2980 loss:9.6438
  1797. 2022-11-09 19:31:42,791 - INFO - main.py - train - 68 - 【train】 epoch:2 1301/2980 loss:8.6119
  1798. 2022-11-09 19:31:44,134 - INFO - main.py - train - 68 - 【train】 epoch:2 1302/2980 loss:9.2808
  1799. 2022-11-09 19:31:45,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1303/2980 loss:2.6145
  1800. 2022-11-09 19:31:46,603 - INFO - main.py - train - 68 - 【train】 epoch:2 1304/2980 loss:1.9866
  1801. 2022-11-09 19:31:47,946 - INFO - main.py - train - 68 - 【train】 epoch:2 1305/2980 loss:6.5210
  1802. 2022-11-09 19:31:49,321 - INFO - main.py - train - 68 - 【train】 epoch:2 1306/2980 loss:8.1370
  1803. 2022-11-09 19:31:50,695 - INFO - main.py - train - 68 - 【train】 epoch:2 1307/2980 loss:0.5876
  1804. 2022-11-09 19:31:51,961 - INFO - main.py - train - 68 - 【train】 epoch:2 1308/2980 loss:16.5477
  1805. 2022-11-09 19:31:53,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1309/2980 loss:2.3536
  1806. 2022-11-09 19:31:54,445 - INFO - main.py - train - 68 - 【train】 epoch:2 1310/2980 loss:6.2584
  1807. 2022-11-09 19:31:55,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1311/2980 loss:12.1786
  1808. 2022-11-09 19:31:57,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1312/2980 loss:14.9160
  1809. 2022-11-09 19:31:58,366 - INFO - main.py - train - 68 - 【train】 epoch:2 1313/2980 loss:15.9308
  1810. 2022-11-09 19:31:59,584 - INFO - main.py - train - 68 - 【train】 epoch:2 1314/2980 loss:1.0346
  1811. 2022-11-09 19:32:00,865 - INFO - main.py - train - 68 - 【train】 epoch:2 1315/2980 loss:4.4991
  1812. 2022-11-09 19:32:02,099 - INFO - main.py - train - 68 - 【train】 epoch:2 1316/2980 loss:3.6086
  1813. 2022-11-09 19:32:03,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1317/2980 loss:12.1863
  1814. 2022-11-09 19:32:04,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1318/2980 loss:7.7448
  1815. 2022-11-09 19:32:06,114 - INFO - main.py - train - 68 - 【train】 epoch:2 1319/2980 loss:14.1663
  1816. 2022-11-09 19:32:07,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1320/2980 loss:5.9250
  1817. 2022-11-09 19:32:08,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1321/2980 loss:4.9702
  1818. 2022-11-09 19:32:10,207 - INFO - main.py - train - 68 - 【train】 epoch:2 1322/2980 loss:5.1589
  1819. 2022-11-09 19:32:11,534 - INFO - main.py - train - 68 - 【train】 epoch:2 1323/2980 loss:7.8822
  1820. 2022-11-09 19:32:12,768 - INFO - main.py - train - 68 - 【train】 epoch:2 1324/2980 loss:22.6576
  1821. 2022-11-09 19:32:14,034 - INFO - main.py - train - 68 - 【train】 epoch:2 1325/2980 loss:4.9422
  1822. 2022-11-09 19:32:15,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1326/2980 loss:4.4571
  1823. 2022-11-09 19:32:16,689 - INFO - main.py - train - 68 - 【train】 epoch:2 1327/2980 loss:3.5363
  1824. 2022-11-09 19:32:18,002 - INFO - main.py - train - 68 - 【train】 epoch:2 1328/2980 loss:8.8940
  1825. 2022-11-09 19:32:19,298 - INFO - main.py - train - 68 - 【train】 epoch:2 1329/2980 loss:3.0458
  1826. 2022-11-09 19:32:20,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1330/2980 loss:26.7973
  1827. 2022-11-09 19:32:21,969 - INFO - main.py - train - 68 - 【train】 epoch:2 1331/2980 loss:11.0334
  1828. 2022-11-09 19:32:23,219 - INFO - main.py - train - 68 - 【train】 epoch:2 1332/2980 loss:1.3341
  1829. 2022-11-09 19:32:24,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1333/2980 loss:10.8333
  1830. 2022-11-09 19:32:25,672 - INFO - main.py - train - 68 - 【train】 epoch:2 1334/2980 loss:0.2948
  1831. 2022-11-09 19:32:26,921 - INFO - main.py - train - 68 - 【train】 epoch:2 1335/2980 loss:10.5924
  1832. 2022-11-09 19:32:28,171 - INFO - main.py - train - 68 - 【train】 epoch:2 1336/2980 loss:21.9603
  1833. 2022-11-09 19:32:29,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1337/2980 loss:3.8861
  1834. 2022-11-09 19:32:30,827 - INFO - main.py - train - 68 - 【train】 epoch:2 1338/2980 loss:10.2856
  1835. 2022-11-09 19:32:32,030 - INFO - main.py - train - 68 - 【train】 epoch:2 1339/2980 loss:4.6755
  1836. 2022-11-09 19:32:33,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1340/2980 loss:4.1412
  1837. 2022-11-09 19:32:34,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1341/2980 loss:0.6902
  1838. 2022-11-09 19:32:35,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1342/2980 loss:3.9085
  1839. 2022-11-09 19:32:36,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1343/2980 loss:5.4741
  1840. 2022-11-09 19:32:38,247 - INFO - main.py - train - 68 - 【train】 epoch:2 1344/2980 loss:20.8293
  1841. 2022-11-09 19:32:39,497 - INFO - main.py - train - 68 - 【train】 epoch:2 1345/2980 loss:5.2336
  1842. 2022-11-09 19:32:40,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1346/2980 loss:25.2069
  1843. 2022-11-09 19:32:42,074 - INFO - main.py - train - 68 - 【train】 epoch:2 1347/2980 loss:6.1646
  1844. 2022-11-09 19:32:43,386 - INFO - main.py - train - 68 - 【train】 epoch:2 1348/2980 loss:3.5639
  1845. 2022-11-09 19:32:44,620 - INFO - main.py - train - 68 - 【train】 epoch:2 1349/2980 loss:1.6796
  1846. 2022-11-09 19:32:45,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1350/2980 loss:3.1485
  1847. 2022-11-09 19:32:47,151 - INFO - main.py - train - 68 - 【train】 epoch:2 1351/2980 loss:5.6238
  1848. 2022-11-09 19:32:48,416 - INFO - main.py - train - 68 - 【train】 epoch:2 1352/2980 loss:8.1730
  1849. 2022-11-09 19:32:49,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1353/2980 loss:30.0854
  1850. 2022-11-09 19:32:51,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1354/2980 loss:15.1083
  1851. 2022-11-09 19:32:52,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1355/2980 loss:8.9187
  1852. 2022-11-09 19:32:53,603 - INFO - main.py - train - 68 - 【train】 epoch:2 1356/2980 loss:3.4447
  1853. 2022-11-09 19:32:54,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1357/2980 loss:13.2064
  1854. 2022-11-09 19:32:56,352 - INFO - main.py - train - 68 - 【train】 epoch:2 1358/2980 loss:5.8092
  1855. 2022-11-09 19:32:57,539 - INFO - main.py - train - 68 - 【train】 epoch:2 1359/2980 loss:12.4419
  1856. 2022-11-09 19:32:58,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1360/2980 loss:3.8046
  1857. 2022-11-09 19:33:00,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1361/2980 loss:3.4921
  1858. 2022-11-09 19:33:01,304 - INFO - main.py - train - 68 - 【train】 epoch:2 1362/2980 loss:2.5405
  1859. 2022-11-09 19:33:02,507 - INFO - main.py - train - 68 - 【train】 epoch:2 1363/2980 loss:0.9950
  1860. 2022-11-09 19:33:03,850 - INFO - main.py - train - 68 - 【train】 epoch:2 1364/2980 loss:27.3466
  1861. 2022-11-09 19:33:05,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1365/2980 loss:4.2244
  1862. 2022-11-09 19:33:06,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1366/2980 loss:34.9261
  1863. 2022-11-09 19:33:07,631 - INFO - main.py - train - 68 - 【train】 epoch:2 1367/2980 loss:8.9894
  1864. 2022-11-09 19:33:08,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1368/2980 loss:4.1724
  1865. 2022-11-09 19:33:10,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1369/2980 loss:4.6279
  1866. 2022-11-09 19:33:11,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1370/2980 loss:2.8110
  1867. 2022-11-09 19:33:12,676 - INFO - main.py - train - 68 - 【train】 epoch:2 1371/2980 loss:27.5466
  1868. 2022-11-09 19:33:14,004 - INFO - main.py - train - 68 - 【train】 epoch:2 1372/2980 loss:5.2144
  1869. 2022-11-09 19:33:15,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1373/2980 loss:4.0916
  1870. 2022-11-09 19:33:16,472 - INFO - main.py - train - 68 - 【train】 epoch:2 1374/2980 loss:4.4027
  1871. 2022-11-09 19:33:17,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1375/2980 loss:3.3075
  1872. 2022-11-09 19:33:18,847 - INFO - main.py - train - 68 - 【train】 epoch:2 1376/2980 loss:0.5565
  1873. 2022-11-09 19:33:20,050 - INFO - main.py - train - 68 - 【train】 epoch:2 1377/2980 loss:7.9671
  1874. 2022-11-09 19:33:21,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1378/2980 loss:6.8863
  1875. 2022-11-09 19:33:22,549 - INFO - main.py - train - 68 - 【train】 epoch:2 1379/2980 loss:3.5868
  1876. 2022-11-09 19:33:23,767 - INFO - main.py - train - 68 - 【train】 epoch:2 1380/2980 loss:12.2752
  1877. 2022-11-09 19:33:25,033 - INFO - main.py - train - 68 - 【train】 epoch:2 1381/2980 loss:29.8150
  1878. 2022-11-09 19:33:26,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1382/2980 loss:5.3303
  1879. 2022-11-09 19:33:27,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1383/2980 loss:12.2962
  1880. 2022-11-09 19:33:28,766 - INFO - main.py - train - 68 - 【train】 epoch:2 1384/2980 loss:8.0055
  1881. 2022-11-09 19:33:30,250 - INFO - main.py - train - 68 - 【train】 epoch:2 1385/2980 loss:1.8210
  1882. 2022-11-09 19:33:31,437 - INFO - main.py - train - 68 - 【train】 epoch:2 1386/2980 loss:5.4918
  1883. 2022-11-09 19:33:32,703 - INFO - main.py - train - 68 - 【train】 epoch:2 1387/2980 loss:5.8735
  1884. 2022-11-09 19:33:33,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1388/2980 loss:10.9118
  1885. 2022-11-09 19:33:35,327 - INFO - main.py - train - 68 - 【train】 epoch:2 1389/2980 loss:5.9297
  1886. 2022-11-09 19:33:36,561 - INFO - main.py - train - 68 - 【train】 epoch:2 1390/2980 loss:9.8435
  1887. 2022-11-09 19:33:37,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1391/2980 loss:10.2826
  1888. 2022-11-09 19:33:39,326 - INFO - main.py - train - 68 - 【train】 epoch:2 1392/2980 loss:5.8807
  1889. 2022-11-09 19:33:40,779 - INFO - main.py - train - 68 - 【train】 epoch:2 1393/2980 loss:6.9847
  1890. 2022-11-09 19:33:42,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1394/2980 loss:19.1031
  1891. 2022-11-09 19:33:43,216 - INFO - main.py - train - 68 - 【train】 epoch:2 1395/2980 loss:2.5260
  1892. 2022-11-09 19:33:44,434 - INFO - main.py - train - 68 - 【train】 epoch:2 1396/2980 loss:5.8065
  1893. 2022-11-09 19:33:45,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1397/2980 loss:25.4089
  1894. 2022-11-09 19:33:47,012 - INFO - main.py - train - 68 - 【train】 epoch:2 1398/2980 loss:4.8739
  1895. 2022-11-09 19:33:48,512 - INFO - main.py - train - 68 - 【train】 epoch:2 1399/2980 loss:10.1784
  1896. 2022-11-09 19:33:49,808 - INFO - main.py - train - 68 - 【train】 epoch:2 1400/2980 loss:2.7370
  1897. 2022-11-09 19:33:51,027 - INFO - main.py - train - 68 - 【train】 epoch:2 1401/2980 loss:7.4138
  1898. 2022-11-09 19:33:52,448 - INFO - main.py - train - 68 - 【train】 epoch:2 1402/2980 loss:0.7709
  1899. 2022-11-09 19:33:53,854 - INFO - main.py - train - 68 - 【train】 epoch:2 1403/2980 loss:5.1997
  1900. 2022-11-09 19:33:55,041 - INFO - main.py - train - 68 - 【train】 epoch:2 1404/2980 loss:1.8866
  1901. 2022-11-09 19:33:56,338 - INFO - main.py - train - 68 - 【train】 epoch:2 1405/2980 loss:13.4097
  1902. 2022-11-09 19:33:57,588 - INFO - main.py - train - 68 - 【train】 epoch:2 1406/2980 loss:19.3980
  1903. 2022-11-09 19:33:59,103 - INFO - main.py - train - 68 - 【train】 epoch:2 1407/2980 loss:12.6040
  1904. 2022-11-09 19:34:00,399 - INFO - main.py - train - 68 - 【train】 epoch:2 1408/2980 loss:3.7399
  1905. 2022-11-09 19:34:01,649 - INFO - main.py - train - 68 - 【train】 epoch:2 1409/2980 loss:34.2876
  1906. 2022-11-09 19:34:02,993 - INFO - main.py - train - 68 - 【train】 epoch:2 1410/2980 loss:14.5999
  1907. 2022-11-09 19:34:04,289 - INFO - main.py - train - 68 - 【train】 epoch:2 1411/2980 loss:4.8123
  1908. 2022-11-09 19:34:05,539 - INFO - main.py - train - 68 - 【train】 epoch:2 1412/2980 loss:8.1095
  1909. 2022-11-09 19:34:07,335 - INFO - main.py - train - 68 - 【train】 epoch:2 1413/2980 loss:5.0064
  1910. 2022-11-09 19:34:08,569 - INFO - main.py - train - 68 - 【train】 epoch:2 1414/2980 loss:9.1827
  1911. 2022-11-09 19:34:09,975 - INFO - main.py - train - 68 - 【train】 epoch:2 1415/2980 loss:4.7550
  1912. 2022-11-09 19:34:11,194 - INFO - main.py - train - 68 - 【train】 epoch:2 1416/2980 loss:10.0007
  1913. 2022-11-09 19:34:12,459 - INFO - main.py - train - 68 - 【train】 epoch:2 1417/2980 loss:3.9620
  1914. 2022-11-09 19:34:13,709 - INFO - main.py - train - 68 - 【train】 epoch:2 1418/2980 loss:14.1954
  1915. 2022-11-09 19:34:15,162 - INFO - main.py - train - 68 - 【train】 epoch:2 1419/2980 loss:7.4727
  1916. 2022-11-09 19:34:16,505 - INFO - main.py - train - 68 - 【train】 epoch:2 1420/2980 loss:10.0565
  1917. 2022-11-09 19:34:17,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1421/2980 loss:1.5366
  1918. 2022-11-09 19:34:18,973 - INFO - main.py - train - 68 - 【train】 epoch:2 1422/2980 loss:11.3370
  1919. 2022-11-09 19:34:20,192 - INFO - main.py - train - 68 - 【train】 epoch:2 1423/2980 loss:12.1651
  1920. 2022-11-09 19:34:21,598 - INFO - main.py - train - 68 - 【train】 epoch:2 1424/2980 loss:5.0861
  1921. 2022-11-09 19:34:22,832 - INFO - main.py - train - 68 - 【train】 epoch:2 1425/2980 loss:6.6476
  1922. 2022-11-09 19:34:24,066 - INFO - main.py - train - 68 - 【train】 epoch:2 1426/2980 loss:6.4626
  1923. 2022-11-09 19:34:25,315 - INFO - main.py - train - 68 - 【train】 epoch:2 1427/2980 loss:16.5489
  1924. 2022-11-09 19:34:26,550 - INFO - main.py - train - 68 - 【train】 epoch:2 1428/2980 loss:2.9310
  1925. 2022-11-09 19:34:27,971 - INFO - main.py - train - 68 - 【train】 epoch:2 1429/2980 loss:8.6891
  1926. 2022-11-09 19:34:29,205 - INFO - main.py - train - 68 - 【train】 epoch:2 1430/2980 loss:19.2483
  1927. 2022-11-09 19:34:30,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1431/2980 loss:11.9820
  1928. 2022-11-09 19:34:31,736 - INFO - main.py - train - 68 - 【train】 epoch:2 1432/2980 loss:8.4160
  1929. 2022-11-09 19:34:32,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1433/2980 loss:10.6018
  1930. 2022-11-09 19:34:34,298 - INFO - main.py - train - 68 - 【train】 epoch:2 1434/2980 loss:2.4559
  1931. 2022-11-09 19:34:35,782 - INFO - main.py - train - 68 - 【train】 epoch:2 1435/2980 loss:7.8031
  1932. 2022-11-09 19:34:37,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1436/2980 loss:3.8948
  1933. 2022-11-09 19:34:38,594 - INFO - main.py - train - 68 - 【train】 epoch:2 1437/2980 loss:12.8610
  1934. 2022-11-09 19:34:39,859 - INFO - main.py - train - 68 - 【train】 epoch:2 1438/2980 loss:4.7644
  1935. 2022-11-09 19:34:41,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1439/2980 loss:1.9598
  1936. 2022-11-09 19:34:42,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1440/2980 loss:4.4245
  1937. 2022-11-09 19:34:43,733 - INFO - main.py - train - 68 - 【train】 epoch:2 1441/2980 loss:22.4370
  1938. 2022-11-09 19:34:45,061 - INFO - main.py - train - 68 - 【train】 epoch:2 1442/2980 loss:27.3944
  1939. 2022-11-09 19:34:46,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1443/2980 loss:9.7435
  1940. 2022-11-09 19:34:47,670 - INFO - main.py - train - 68 - 【train】 epoch:2 1444/2980 loss:5.3622
  1941. 2022-11-09 19:34:48,951 - INFO - main.py - train - 68 - 【train】 epoch:2 1445/2980 loss:10.3976
  1942. 2022-11-09 19:34:50,169 - INFO - main.py - train - 68 - 【train】 epoch:2 1446/2980 loss:3.8487
  1943. 2022-11-09 19:34:51,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1447/2980 loss:7.0968
  1944. 2022-11-09 19:34:52,871 - INFO - main.py - train - 68 - 【train】 epoch:2 1448/2980 loss:40.0502
  1945. 2022-11-09 19:34:54,074 - INFO - main.py - train - 68 - 【train】 epoch:2 1449/2980 loss:1.2778
  1946. 2022-11-09 19:34:55,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1450/2980 loss:12.2727
  1947. 2022-11-09 19:34:56,543 - INFO - main.py - train - 68 - 【train】 epoch:2 1451/2980 loss:16.3309
  1948. 2022-11-09 19:34:57,886 - INFO - main.py - train - 68 - 【train】 epoch:2 1452/2980 loss:17.9988
  1949. 2022-11-09 19:34:59,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1453/2980 loss:11.2233
  1950. 2022-11-09 19:35:00,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1454/2980 loss:7.4649
  1951. 2022-11-09 19:35:01,729 - INFO - main.py - train - 68 - 【train】 epoch:2 1455/2980 loss:6.6373
  1952. 2022-11-09 19:35:02,947 - INFO - main.py - train - 68 - 【train】 epoch:2 1456/2980 loss:6.8683
  1953. 2022-11-09 19:35:04,322 - INFO - main.py - train - 68 - 【train】 epoch:2 1457/2980 loss:14.4820
  1954. 2022-11-09 19:35:05,556 - INFO - main.py - train - 68 - 【train】 epoch:2 1458/2980 loss:9.0817
  1955. 2022-11-09 19:35:06,743 - INFO - main.py - train - 68 - 【train】 epoch:2 1459/2980 loss:5.9819
  1956. 2022-11-09 19:35:07,977 - INFO - main.py - train - 68 - 【train】 epoch:2 1460/2980 loss:11.0450
  1957. 2022-11-09 19:35:09,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1461/2980 loss:13.9271
  1958. 2022-11-09 19:35:10,992 - INFO - main.py - train - 68 - 【train】 epoch:2 1462/2980 loss:11.5690
  1959. 2022-11-09 19:35:12,195 - INFO - main.py - train - 68 - 【train】 epoch:2 1463/2980 loss:5.4278
  1960. 2022-11-09 19:35:13,476 - INFO - main.py - train - 68 - 【train】 epoch:2 1464/2980 loss:13.1121
  1961. 2022-11-09 19:35:14,960 - INFO - main.py - train - 68 - 【train】 epoch:2 1465/2980 loss:3.3740
  1962. 2022-11-09 19:35:16,147 - INFO - main.py - train - 68 - 【train】 epoch:2 1466/2980 loss:4.8523
  1963. 2022-11-09 19:35:17,647 - INFO - main.py - train - 68 - 【train】 epoch:2 1467/2980 loss:11.3373
  1964. 2022-11-09 19:35:18,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1468/2980 loss:16.0160
  1965. 2022-11-09 19:35:20,318 - INFO - main.py - train - 68 - 【train】 epoch:2 1469/2980 loss:4.3045
  1966. 2022-11-09 19:35:21,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1470/2980 loss:1.9194
  1967. 2022-11-09 19:35:23,474 - INFO - main.py - train - 68 - 【train】 epoch:2 1471/2980 loss:1.6973
  1968. 2022-11-09 19:35:24,692 - INFO - main.py - train - 68 - 【train】 epoch:2 1472/2980 loss:6.6070
  1969. 2022-11-09 19:35:26,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1473/2980 loss:8.4987
  1970. 2022-11-09 19:35:27,363 - INFO - main.py - train - 68 - 【train】 epoch:2 1474/2980 loss:4.7264
  1971. 2022-11-09 19:35:28,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1475/2980 loss:8.7861
  1972. 2022-11-09 19:35:30,222 - INFO - main.py - train - 68 - 【train】 epoch:2 1476/2980 loss:4.1533
  1973. 2022-11-09 19:35:31,441 - INFO - main.py - train - 68 - 【train】 epoch:2 1477/2980 loss:8.3600
  1974. 2022-11-09 19:35:33,003 - INFO - main.py - train - 68 - 【train】 epoch:2 1478/2980 loss:2.8061
  1975. 2022-11-09 19:35:34,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1479/2980 loss:17.2079
  1976. 2022-11-09 19:35:35,768 - INFO - main.py - train - 68 - 【train】 epoch:2 1480/2980 loss:1.9800
  1977. 2022-11-09 19:35:37,002 - INFO - main.py - train - 68 - 【train】 epoch:2 1481/2980 loss:8.1095
  1978. 2022-11-09 19:35:38,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1482/2980 loss:3.5472
  1979. 2022-11-09 19:35:39,611 - INFO - main.py - train - 68 - 【train】 epoch:2 1483/2980 loss:5.8529
  1980. 2022-11-09 19:35:41,423 - INFO - main.py - train - 68 - 【train】 epoch:2 1484/2980 loss:16.1329
  1981. 2022-11-09 19:35:42,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1485/2980 loss:2.7484
  1982. 2022-11-09 19:35:44,078 - INFO - main.py - train - 68 - 【train】 epoch:2 1486/2980 loss:1.4459
  1983. 2022-11-09 19:35:45,578 - INFO - main.py - train - 68 - 【train】 epoch:2 1487/2980 loss:12.3500
  1984. 2022-11-09 19:35:46,953 - INFO - main.py - train - 68 - 【train】 epoch:2 1488/2980 loss:7.1447
  1985. 2022-11-09 19:35:48,171 - INFO - main.py - train - 68 - 【train】 epoch:2 1489/2980 loss:3.1824
  1986. 2022-11-09 19:35:49,436 - INFO - main.py - train - 68 - 【train】 epoch:2 1490/2980 loss:22.1362
  1987. 2022-11-09 19:35:50,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1491/2980 loss:5.1268
  1988. 2022-11-09 19:35:52,092 - INFO - main.py - train - 68 - 【train】 epoch:2 1492/2980 loss:11.9422
  1989. 2022-11-09 19:35:53,513 - INFO - main.py - train - 68 - 【train】 epoch:2 1493/2980 loss:4.3029
  1990. 2022-11-09 19:35:55,279 - INFO - main.py - train - 68 - 【train】 epoch:2 1494/2980 loss:3.8279
  1991. 2022-11-09 19:35:56,482 - INFO - main.py - train - 68 - 【train】 epoch:2 1495/2980 loss:6.0278
  1992. 2022-11-09 19:35:57,700 - INFO - main.py - train - 68 - 【train】 epoch:2 1496/2980 loss:4.7884
  1993. 2022-11-09 19:35:59,247 - INFO - main.py - train - 68 - 【train】 epoch:2 1497/2980 loss:8.3655
  1994. 2022-11-09 19:36:00,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1498/2980 loss:11.3722
  1995. 2022-11-09 19:36:01,762 - INFO - main.py - train - 68 - 【train】 epoch:2 1499/2980 loss:4.9509
  1996. 2022-11-09 19:36:03,027 - INFO - main.py - train - 68 - 【train】 epoch:2 1500/2980 loss:6.9220
  1997. 2022-11-09 19:36:04,323 - INFO - main.py - train - 68 - 【train】 epoch:2 1501/2980 loss:30.1602
  1998. 2022-11-09 19:36:05,495 - INFO - main.py - train - 68 - 【train】 epoch:2 1502/2980 loss:1.4575
  1999. 2022-11-09 19:36:06,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1503/2980 loss:6.2479
  2000. 2022-11-09 19:36:08,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1504/2980 loss:11.7579
  2001. 2022-11-09 19:36:10,010 - INFO - main.py - train - 68 - 【train】 epoch:2 1505/2980 loss:3.3624
  2002. 2022-11-09 19:36:11,228 - INFO - main.py - train - 68 - 【train】 epoch:2 1506/2980 loss:9.2679
  2003. 2022-11-09 19:36:12,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1507/2980 loss:7.4666
  2004. 2022-11-09 19:36:13,852 - INFO - main.py - train - 68 - 【train】 epoch:2 1508/2980 loss:3.1688
  2005. 2022-11-09 19:36:15,133 - INFO - main.py - train - 68 - 【train】 epoch:2 1509/2980 loss:6.2498
  2006. 2022-11-09 19:36:16,336 - INFO - main.py - train - 68 - 【train】 epoch:2 1510/2980 loss:6.4912
  2007. 2022-11-09 19:36:17,602 - INFO - main.py - train - 68 - 【train】 epoch:2 1511/2980 loss:1.1950
  2008. 2022-11-09 19:36:19,148 - INFO - main.py - train - 68 - 【train】 epoch:2 1512/2980 loss:5.4696
  2009. 2022-11-09 19:36:20,382 - INFO - main.py - train - 68 - 【train】 epoch:2 1513/2980 loss:18.7745
  2010. 2022-11-09 19:36:21,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1514/2980 loss:2.7113
  2011. 2022-11-09 19:36:22,975 - INFO - main.py - train - 68 - 【train】 epoch:2 1515/2980 loss:7.2943
  2012. 2022-11-09 19:36:24,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1516/2980 loss:10.4109
  2013. 2022-11-09 19:36:25,428 - INFO - main.py - train - 68 - 【train】 epoch:2 1517/2980 loss:1.6450
  2014. 2022-11-09 19:36:26,678 - INFO - main.py - train - 68 - 【train】 epoch:2 1518/2980 loss:2.4336
  2015. 2022-11-09 19:36:27,927 - INFO - main.py - train - 68 - 【train】 epoch:2 1519/2980 loss:1.4648
  2016. 2022-11-09 19:36:29,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1520/2980 loss:3.6874
  2017. 2022-11-09 19:36:30,942 - INFO - main.py - train - 68 - 【train】 epoch:2 1521/2980 loss:3.8806
  2018. 2022-11-09 19:36:32,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1522/2980 loss:1.6294
  2019. 2022-11-09 19:36:33,817 - INFO - main.py - train - 68 - 【train】 epoch:2 1523/2980 loss:0.7809
  2020. 2022-11-09 19:36:35,051 - INFO - main.py - train - 68 - 【train】 epoch:2 1524/2980 loss:3.9964
  2021. 2022-11-09 19:36:36,253 - INFO - main.py - train - 68 - 【train】 epoch:2 1525/2980 loss:5.6733
  2022. 2022-11-09 19:36:37,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1526/2980 loss:2.5758
  2023. 2022-11-09 19:36:39,081 - INFO - main.py - train - 68 - 【train】 epoch:2 1527/2980 loss:9.5719
  2024. 2022-11-09 19:36:40,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1528/2980 loss:4.1550
  2025. 2022-11-09 19:36:41,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1529/2980 loss:8.3913
  2026. 2022-11-09 19:36:43,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1530/2980 loss:3.8897
  2027. 2022-11-09 19:36:44,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1531/2980 loss:4.5290
  2028. 2022-11-09 19:36:45,916 - INFO - main.py - train - 68 - 【train】 epoch:2 1532/2980 loss:10.7979
  2029. 2022-11-09 19:36:47,353 - INFO - main.py - train - 68 - 【train】 epoch:2 1533/2980 loss:7.0484
  2030. 2022-11-09 19:36:48,571 - INFO - main.py - train - 68 - 【train】 epoch:2 1534/2980 loss:5.0957
  2031. 2022-11-09 19:36:49,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1535/2980 loss:4.5475
  2032. 2022-11-09 19:36:51,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1536/2980 loss:11.0533
  2033. 2022-11-09 19:36:52,555 - INFO - main.py - train - 68 - 【train】 epoch:2 1537/2980 loss:12.1459
  2034. 2022-11-09 19:36:53,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1538/2980 loss:9.4324
  2035. 2022-11-09 19:36:55,164 - INFO - main.py - train - 68 - 【train】 epoch:2 1539/2980 loss:1.7077
  2036. 2022-11-09 19:36:56,585 - INFO - main.py - train - 68 - 【train】 epoch:2 1540/2980 loss:8.8502
  2037. 2022-11-09 19:36:57,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1541/2980 loss:14.9248
  2038. 2022-11-09 19:36:59,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1542/2980 loss:1.3760
  2039. 2022-11-09 19:37:00,584 - INFO - main.py - train - 68 - 【train】 epoch:2 1543/2980 loss:16.1577
  2040. 2022-11-09 19:37:01,756 - INFO - main.py - train - 68 - 【train】 epoch:2 1544/2980 loss:0.4490
  2041. 2022-11-09 19:37:02,974 - INFO - main.py - train - 68 - 【train】 epoch:2 1545/2980 loss:6.1854
  2042. 2022-11-09 19:37:04,208 - INFO - main.py - train - 68 - 【train】 epoch:2 1546/2980 loss:1.5579
  2043. 2022-11-09 19:37:05,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1547/2980 loss:13.4670
  2044. 2022-11-09 19:37:06,817 - INFO - main.py - train - 68 - 【train】 epoch:2 1548/2980 loss:12.2180
  2045. 2022-11-09 19:37:08,082 - INFO - main.py - train - 68 - 【train】 epoch:2 1549/2980 loss:12.6025
  2046. 2022-11-09 19:37:09,301 - INFO - main.py - train - 68 - 【train】 epoch:2 1550/2980 loss:11.3885
  2047. 2022-11-09 19:37:10,551 - INFO - main.py - train - 68 - 【train】 epoch:2 1551/2980 loss:6.6250
  2048. 2022-11-09 19:37:11,832 - INFO - main.py - train - 68 - 【train】 epoch:2 1552/2980 loss:7.3215
  2049. 2022-11-09 19:37:13,019 - INFO - main.py - train - 68 - 【train】 epoch:2 1553/2980 loss:2.3705
  2050. 2022-11-09 19:37:14,237 - INFO - main.py - train - 68 - 【train】 epoch:2 1554/2980 loss:15.4381
  2051. 2022-11-09 19:37:15,440 - INFO - main.py - train - 68 - 【train】 epoch:2 1555/2980 loss:2.7182
  2052. 2022-11-09 19:37:16,659 - INFO - main.py - train - 68 - 【train】 epoch:2 1556/2980 loss:16.5300
  2053. 2022-11-09 19:37:17,955 - INFO - main.py - train - 68 - 【train】 epoch:2 1557/2980 loss:9.5238
  2054. 2022-11-09 19:37:19,267 - INFO - main.py - train - 68 - 【train】 epoch:2 1558/2980 loss:4.2491
  2055. 2022-11-09 19:37:20,455 - INFO - main.py - train - 68 - 【train】 epoch:2 1559/2980 loss:5.1103
  2056. 2022-11-09 19:37:21,720 - INFO - main.py - train - 68 - 【train】 epoch:2 1560/2980 loss:0.3819
  2057. 2022-11-09 19:37:22,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1561/2980 loss:14.8600
  2058. 2022-11-09 19:37:24,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1562/2980 loss:11.9108
  2059. 2022-11-09 19:37:25,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1563/2980 loss:3.2090
  2060. 2022-11-09 19:37:26,922 - INFO - main.py - train - 68 - 【train】 epoch:2 1564/2980 loss:17.9613
  2061. 2022-11-09 19:37:28,156 - INFO - main.py - train - 68 - 【train】 epoch:2 1565/2980 loss:6.7761
  2062. 2022-11-09 19:37:29,452 - INFO - main.py - train - 68 - 【train】 epoch:2 1566/2980 loss:3.2298
  2063. 2022-11-09 19:37:30,655 - INFO - main.py - train - 68 - 【train】 epoch:2 1567/2980 loss:3.5609
  2064. 2022-11-09 19:37:31,952 - INFO - main.py - train - 68 - 【train】 epoch:2 1568/2980 loss:13.3151
  2065. 2022-11-09 19:37:33,170 - INFO - main.py - train - 68 - 【train】 epoch:2 1569/2980 loss:0.4172
  2066. 2022-11-09 19:37:34,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1570/2980 loss:23.5598
  2067. 2022-11-09 19:37:35,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1571/2980 loss:27.8597
  2068. 2022-11-09 19:37:37,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1572/2980 loss:2.1358
  2069. 2022-11-09 19:37:38,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1573/2980 loss:15.3207
  2070. 2022-11-09 19:37:39,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1574/2980 loss:0.6016
  2071. 2022-11-09 19:37:40,903 - INFO - main.py - train - 68 - 【train】 epoch:2 1575/2980 loss:6.5639
  2072. 2022-11-09 19:37:42,715 - INFO - main.py - train - 68 - 【train】 epoch:2 1576/2980 loss:3.6579
  2073. 2022-11-09 19:37:43,933 - INFO - main.py - train - 68 - 【train】 epoch:2 1577/2980 loss:4.7820
  2074. 2022-11-09 19:37:45,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1578/2980 loss:2.0977
  2075. 2022-11-09 19:37:46,417 - INFO - main.py - train - 68 - 【train】 epoch:2 1579/2980 loss:6.2633
  2076. 2022-11-09 19:37:47,761 - INFO - main.py - train - 68 - 【train】 epoch:2 1580/2980 loss:10.6429
  2077. 2022-11-09 19:37:49,120 - INFO - main.py - train - 68 - 【train】 epoch:2 1581/2980 loss:13.7162
  2078. 2022-11-09 19:37:50,338 - INFO - main.py - train - 68 - 【train】 epoch:2 1582/2980 loss:7.7870
  2079. 2022-11-09 19:37:51,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1583/2980 loss:13.0133
  2080. 2022-11-09 19:37:52,838 - INFO - main.py - train - 68 - 【train】 epoch:2 1584/2980 loss:8.1330
  2081. 2022-11-09 19:37:54,150 - INFO - main.py - train - 68 - 【train】 epoch:2 1585/2980 loss:13.8452
  2082. 2022-11-09 19:37:55,431 - INFO - main.py - train - 68 - 【train】 epoch:2 1586/2980 loss:5.9103
  2083. 2022-11-09 19:37:56,665 - INFO - main.py - train - 68 - 【train】 epoch:2 1587/2980 loss:4.7986
  2084. 2022-11-09 19:37:57,914 - INFO - main.py - train - 68 - 【train】 epoch:2 1588/2980 loss:6.8932
  2085. 2022-11-09 19:37:59,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1589/2980 loss:7.5110
  2086. 2022-11-09 19:38:00,508 - INFO - main.py - train - 68 - 【train】 epoch:2 1590/2980 loss:13.0655
  2087. 2022-11-09 19:38:01,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1591/2980 loss:2.8706
  2088. 2022-11-09 19:38:03,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1592/2980 loss:15.4536
  2089. 2022-11-09 19:38:04,335 - INFO - main.py - train - 68 - 【train】 epoch:2 1593/2980 loss:11.0938
  2090. 2022-11-09 19:38:05,600 - INFO - main.py - train - 68 - 【train】 epoch:2 1594/2980 loss:4.8637
  2091. 2022-11-09 19:38:06,803 - INFO - main.py - train - 68 - 【train】 epoch:2 1595/2980 loss:0.8563
  2092. 2022-11-09 19:38:08,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1596/2980 loss:23.2700
  2093. 2022-11-09 19:38:09,912 - INFO - main.py - train - 68 - 【train】 epoch:2 1597/2980 loss:20.5530
  2094. 2022-11-09 19:38:11,396 - INFO - main.py - train - 68 - 【train】 epoch:2 1598/2980 loss:4.1632
  2095. 2022-11-09 19:38:12,802 - INFO - main.py - train - 68 - 【train】 epoch:2 1599/2980 loss:8.9677
  2096. 2022-11-09 19:38:14,129 - INFO - main.py - train - 68 - 【train】 epoch:2 1600/2980 loss:9.8652
  2097. 2022-11-09 19:38:15,613 - INFO - main.py - train - 68 - 【train】 epoch:2 1601/2980 loss:2.8466
  2098. 2022-11-09 19:38:16,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1602/2980 loss:8.8157
  2099. 2022-11-09 19:38:18,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1603/2980 loss:0.7183
  2100. 2022-11-09 19:38:19,597 - INFO - main.py - train - 68 - 【train】 epoch:2 1604/2980 loss:0.6484
  2101. 2022-11-09 19:38:21,175 - INFO - main.py - train - 68 - 【train】 epoch:2 1605/2980 loss:10.5781
  2102. 2022-11-09 19:38:22,502 - INFO - main.py - train - 68 - 【train】 epoch:2 1606/2980 loss:6.7119
  2103. 2022-11-09 19:38:23,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1607/2980 loss:10.1706
  2104. 2022-11-09 19:38:25,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1608/2980 loss:9.6469
  2105. 2022-11-09 19:38:26,673 - INFO - main.py - train - 68 - 【train】 epoch:2 1609/2980 loss:21.8677
  2106. 2022-11-09 19:38:28,126 - INFO - main.py - train - 68 - 【train】 epoch:2 1610/2980 loss:7.6371
  2107. 2022-11-09 19:38:29,423 - INFO - main.py - train - 68 - 【train】 epoch:2 1611/2980 loss:17.5643
  2108. 2022-11-09 19:38:30,860 - INFO - main.py - train - 68 - 【train】 epoch:2 1612/2980 loss:1.5125
  2109. 2022-11-09 19:38:32,422 - INFO - main.py - train - 68 - 【train】 epoch:2 1613/2980 loss:8.2371
  2110. 2022-11-09 19:38:33,797 - INFO - main.py - train - 68 - 【train】 epoch:2 1614/2980 loss:8.3551
  2111. 2022-11-09 19:38:35,187 - INFO - main.py - train - 68 - 【train】 epoch:2 1615/2980 loss:6.3841
  2112. 2022-11-09 19:38:36,515 - INFO - main.py - train - 68 - 【train】 epoch:2 1616/2980 loss:13.3133
  2113. 2022-11-09 19:38:37,936 - INFO - main.py - train - 68 - 【train】 epoch:2 1617/2980 loss:13.1829
  2114. 2022-11-09 19:38:39,483 - INFO - main.py - train - 68 - 【train】 epoch:2 1618/2980 loss:3.2250
  2115. 2022-11-09 19:38:40,748 - INFO - main.py - train - 68 - 【train】 epoch:2 1619/2980 loss:4.2770
  2116. 2022-11-09 19:38:41,967 - INFO - main.py - train - 68 - 【train】 epoch:2 1620/2980 loss:3.8124
  2117. 2022-11-09 19:38:43,591 - INFO - main.py - train - 68 - 【train】 epoch:2 1621/2980 loss:5.1748
  2118. 2022-11-09 19:38:44,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1622/2980 loss:7.4533
  2119. 2022-11-09 19:38:46,106 - INFO - main.py - train - 68 - 【train】 epoch:2 1623/2980 loss:5.4316
  2120. 2022-11-09 19:38:47,372 - INFO - main.py - train - 68 - 【train】 epoch:2 1624/2980 loss:3.6036
  2121. 2022-11-09 19:38:48,621 - INFO - main.py - train - 68 - 【train】 epoch:2 1625/2980 loss:14.8389
  2122. 2022-11-09 19:38:49,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1626/2980 loss:1.2543
  2123. 2022-11-09 19:38:51,121 - INFO - main.py - train - 68 - 【train】 epoch:2 1627/2980 loss:20.6375
  2124. 2022-11-09 19:38:52,355 - INFO - main.py - train - 68 - 【train】 epoch:2 1628/2980 loss:1.7576
  2125. 2022-11-09 19:38:53,651 - INFO - main.py - train - 68 - 【train】 epoch:2 1629/2980 loss:7.7404
  2126. 2022-11-09 19:38:54,917 - INFO - main.py - train - 68 - 【train】 epoch:2 1630/2980 loss:7.4985
  2127. 2022-11-09 19:38:56,213 - INFO - main.py - train - 68 - 【train】 epoch:2 1631/2980 loss:9.8291
  2128. 2022-11-09 19:38:57,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1632/2980 loss:1.1633
  2129. 2022-11-09 19:38:58,697 - INFO - main.py - train - 68 - 【train】 epoch:2 1633/2980 loss:6.1685
  2130. 2022-11-09 19:39:00,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1634/2980 loss:6.1808
  2131. 2022-11-09 19:39:01,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1635/2980 loss:5.1600
  2132. 2022-11-09 19:39:02,806 - INFO - main.py - train - 68 - 【train】 epoch:2 1636/2980 loss:6.5405
  2133. 2022-11-09 19:39:04,180 - INFO - main.py - train - 68 - 【train】 epoch:2 1637/2980 loss:17.5535
  2134. 2022-11-09 19:39:05,399 - INFO - main.py - train - 68 - 【train】 epoch:2 1638/2980 loss:9.4675
  2135. 2022-11-09 19:39:06,711 - INFO - main.py - train - 68 - 【train】 epoch:2 1639/2980 loss:15.7294
  2136. 2022-11-09 19:39:07,914 - INFO - main.py - train - 68 - 【train】 epoch:2 1640/2980 loss:5.5219
  2137. 2022-11-09 19:39:09,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1641/2980 loss:11.5948
  2138. 2022-11-09 19:39:10,491 - INFO - main.py - train - 68 - 【train】 epoch:2 1642/2980 loss:12.2448
  2139. 2022-11-09 19:39:11,960 - INFO - main.py - train - 68 - 【train】 epoch:2 1643/2980 loss:7.0064
  2140. 2022-11-09 19:39:13,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1644/2980 loss:2.2382
  2141. 2022-11-09 19:39:14,631 - INFO - main.py - train - 68 - 【train】 epoch:2 1645/2980 loss:2.0529
  2142. 2022-11-09 19:39:15,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1646/2980 loss:0.9262
  2143. 2022-11-09 19:39:17,255 - INFO - main.py - train - 68 - 【train】 epoch:2 1647/2980 loss:10.3580
  2144. 2022-11-09 19:39:18,661 - INFO - main.py - train - 68 - 【train】 epoch:2 1648/2980 loss:6.3628
  2145. 2022-11-09 19:39:19,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1649/2980 loss:0.4074
  2146. 2022-11-09 19:39:21,426 - INFO - main.py - train - 68 - 【train】 epoch:2 1650/2980 loss:11.3310
  2147. 2022-11-09 19:39:22,629 - INFO - main.py - train - 68 - 【train】 epoch:2 1651/2980 loss:3.5028
  2148. 2022-11-09 19:39:23,957 - INFO - main.py - train - 68 - 【train】 epoch:2 1652/2980 loss:0.8759
  2149. 2022-11-09 19:39:25,394 - INFO - main.py - train - 68 - 【train】 epoch:2 1653/2980 loss:2.6706
  2150. 2022-11-09 19:39:26,815 - INFO - main.py - train - 68 - 【train】 epoch:2 1654/2980 loss:14.8026
  2151. 2022-11-09 19:39:28,050 - INFO - main.py - train - 68 - 【train】 epoch:2 1655/2980 loss:5.6178
  2152. 2022-11-09 19:39:29,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1656/2980 loss:4.7064
  2153. 2022-11-09 19:39:30,986 - INFO - main.py - train - 68 - 【train】 epoch:2 1657/2980 loss:2.9684
  2154. 2022-11-09 19:39:32,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1658/2980 loss:1.4064
  2155. 2022-11-09 19:39:33,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1659/2980 loss:10.5353
  2156. 2022-11-09 19:39:35,064 - INFO - main.py - train - 68 - 【train】 epoch:2 1660/2980 loss:1.4182
  2157. 2022-11-09 19:39:36,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1661/2980 loss:6.9135
  2158. 2022-11-09 19:39:37,516 - INFO - main.py - train - 68 - 【train】 epoch:2 1662/2980 loss:13.7261
  2159. 2022-11-09 19:39:38,797 - INFO - main.py - train - 68 - 【train】 epoch:2 1663/2980 loss:0.9665
  2160. 2022-11-09 19:39:40,265 - INFO - main.py - train - 68 - 【train】 epoch:2 1664/2980 loss:4.8511
  2161. 2022-11-09 19:39:41,578 - INFO - main.py - train - 68 - 【train】 epoch:2 1665/2980 loss:3.1790
  2162. 2022-11-09 19:39:42,968 - INFO - main.py - train - 68 - 【train】 epoch:2 1666/2980 loss:2.6626
  2163. 2022-11-09 19:39:44,343 - INFO - main.py - train - 68 - 【train】 epoch:2 1667/2980 loss:3.0606
  2164. 2022-11-09 19:39:45,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1668/2980 loss:4.9648
  2165. 2022-11-09 19:39:46,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1669/2980 loss:7.3115
  2166. 2022-11-09 19:39:48,107 - INFO - main.py - train - 68 - 【train】 epoch:2 1670/2980 loss:9.9873
  2167. 2022-11-09 19:39:49,560 - INFO - main.py - train - 68 - 【train】 epoch:2 1671/2980 loss:5.7872
  2168. 2022-11-09 19:39:50,763 - INFO - main.py - train - 68 - 【train】 epoch:2 1672/2980 loss:6.2443
  2169. 2022-11-09 19:39:52,185 - INFO - main.py - train - 68 - 【train】 epoch:2 1673/2980 loss:10.9521
  2170. 2022-11-09 19:39:53,575 - INFO - main.py - train - 68 - 【train】 epoch:2 1674/2980 loss:4.3125
  2171. 2022-11-09 19:39:54,996 - INFO - main.py - train - 68 - 【train】 epoch:2 1675/2980 loss:1.9474
  2172. 2022-11-09 19:39:56,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1676/2980 loss:9.3020
  2173. 2022-11-09 19:39:57,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1677/2980 loss:10.2043
  2174. 2022-11-09 19:39:59,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1678/2980 loss:7.9669
  2175. 2022-11-09 19:40:00,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1679/2980 loss:3.9025
  2176. 2022-11-09 19:40:01,963 - INFO - main.py - train - 68 - 【train】 epoch:2 1680/2980 loss:1.0127
  2177. 2022-11-09 19:40:03,213 - INFO - main.py - train - 68 - 【train】 epoch:2 1681/2980 loss:6.6499
  2178. 2022-11-09 19:40:04,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1682/2980 loss:10.6642
  2179. 2022-11-09 19:40:05,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1683/2980 loss:13.8268
  2180. 2022-11-09 19:40:07,212 - INFO - main.py - train - 68 - 【train】 epoch:2 1684/2980 loss:4.8331
  2181. 2022-11-09 19:40:08,571 - INFO - main.py - train - 68 - 【train】 epoch:2 1685/2980 loss:0.6691
  2182. 2022-11-09 19:40:09,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1686/2980 loss:10.9442
  2183. 2022-11-09 19:40:11,024 - INFO - main.py - train - 68 - 【train】 epoch:2 1687/2980 loss:5.2270
  2184. 2022-11-09 19:40:12,523 - INFO - main.py - train - 68 - 【train】 epoch:2 1688/2980 loss:13.7997
  2185. 2022-11-09 19:40:13,742 - INFO - main.py - train - 68 - 【train】 epoch:2 1689/2980 loss:2.9096
  2186. 2022-11-09 19:40:15,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1690/2980 loss:6.9434
  2187. 2022-11-09 19:40:16,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1691/2980 loss:18.9285
  2188. 2022-11-09 19:40:18,100 - INFO - main.py - train - 68 - 【train】 epoch:2 1692/2980 loss:1.7381
  2189. 2022-11-09 19:40:19,475 - INFO - main.py - train - 68 - 【train】 epoch:2 1693/2980 loss:11.3171
  2190. 2022-11-09 19:40:20,725 - INFO - main.py - train - 68 - 【train】 epoch:2 1694/2980 loss:6.4544
  2191. 2022-11-09 19:40:22,193 - INFO - main.py - train - 68 - 【train】 epoch:2 1695/2980 loss:11.6625
  2192. 2022-11-09 19:40:23,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1696/2980 loss:2.0881
  2193. 2022-11-09 19:40:24,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1697/2980 loss:7.1348
  2194. 2022-11-09 19:40:26,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1698/2980 loss:14.1697
  2195. 2022-11-09 19:40:27,645 - INFO - main.py - train - 68 - 【train】 epoch:2 1699/2980 loss:2.3342
  2196. 2022-11-09 19:40:28,879 - INFO - main.py - train - 68 - 【train】 epoch:2 1700/2980 loss:4.0471
  2197. 2022-11-09 19:40:30,129 - INFO - main.py - train - 68 - 【train】 epoch:2 1701/2980 loss:3.8025
  2198. 2022-11-09 19:40:31,706 - INFO - main.py - train - 68 - 【train】 epoch:2 1702/2980 loss:6.0625
  2199. 2022-11-09 19:40:32,941 - INFO - main.py - train - 68 - 【train】 epoch:2 1703/2980 loss:10.1595
  2200. 2022-11-09 19:40:34,300 - INFO - main.py - train - 68 - 【train】 epoch:2 1704/2980 loss:9.5634
  2201. 2022-11-09 19:40:35,690 - INFO - main.py - train - 68 - 【train】 epoch:2 1705/2980 loss:2.9766
  2202. 2022-11-09 19:40:36,940 - INFO - main.py - train - 68 - 【train】 epoch:2 1706/2980 loss:1.9428
  2203. 2022-11-09 19:40:38,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1707/2980 loss:4.6639
  2204. 2022-11-09 19:40:39,455 - INFO - main.py - train - 68 - 【train】 epoch:2 1708/2980 loss:3.7505
  2205. 2022-11-09 19:40:40,658 - INFO - main.py - train - 68 - 【train】 epoch:2 1709/2980 loss:6.3019
  2206. 2022-11-09 19:40:42,173 - INFO - main.py - train - 68 - 【train】 epoch:2 1710/2980 loss:4.2058
  2207. 2022-11-09 19:40:43,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1711/2980 loss:22.6029
  2208. 2022-11-09 19:40:44,735 - INFO - main.py - train - 68 - 【train】 epoch:2 1712/2980 loss:4.7852
  2209. 2022-11-09 19:40:46,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1713/2980 loss:25.8160
  2210. 2022-11-09 19:40:47,406 - INFO - main.py - train - 68 - 【train】 epoch:2 1714/2980 loss:0.2757
  2211. 2022-11-09 19:40:48,781 - INFO - main.py - train - 68 - 【train】 epoch:2 1715/2980 loss:3.4377
  2212. 2022-11-09 19:40:50,015 - INFO - main.py - train - 68 - 【train】 epoch:2 1716/2980 loss:5.3432
  2213. 2022-11-09 19:40:51,358 - INFO - main.py - train - 68 - 【train】 epoch:2 1717/2980 loss:15.8291
  2214. 2022-11-09 19:40:52,608 - INFO - main.py - train - 68 - 【train】 epoch:2 1718/2980 loss:11.7439
  2215. 2022-11-09 19:40:54,232 - INFO - main.py - train - 68 - 【train】 epoch:2 1719/2980 loss:12.8558
  2216. 2022-11-09 19:40:55,920 - INFO - main.py - train - 68 - 【train】 epoch:2 1720/2980 loss:12.2404
  2217. 2022-11-09 19:40:57,154 - INFO - main.py - train - 68 - 【train】 epoch:2 1721/2980 loss:7.7461
  2218. 2022-11-09 19:40:58,575 - INFO - main.py - train - 68 - 【train】 epoch:2 1722/2980 loss:7.4942
  2219. 2022-11-09 19:40:59,778 - INFO - main.py - train - 68 - 【train】 epoch:2 1723/2980 loss:10.0869
  2220. 2022-11-09 19:41:01,028 - INFO - main.py - train - 68 - 【train】 epoch:2 1724/2980 loss:4.2238
  2221. 2022-11-09 19:41:02,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1725/2980 loss:21.7425
  2222. 2022-11-09 19:41:03,465 - INFO - main.py - train - 68 - 【train】 epoch:2 1726/2980 loss:7.6532
  2223. 2022-11-09 19:41:05,121 - INFO - main.py - train - 68 - 【train】 epoch:2 1727/2980 loss:17.6375
  2224. 2022-11-09 19:41:06,339 - INFO - main.py - train - 68 - 【train】 epoch:2 1728/2980 loss:6.1104
  2225. 2022-11-09 19:41:07,823 - INFO - main.py - train - 68 - 【train】 epoch:2 1729/2980 loss:13.0301
  2226. 2022-11-09 19:41:09,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1730/2980 loss:3.3698
  2227. 2022-11-09 19:41:10,432 - INFO - main.py - train - 68 - 【train】 epoch:2 1731/2980 loss:8.1173
  2228. 2022-11-09 19:41:11,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1732/2980 loss:7.6716
  2229. 2022-11-09 19:41:13,072 - INFO - main.py - train - 68 - 【train】 epoch:2 1733/2980 loss:9.9004
  2230. 2022-11-09 19:41:14,415 - INFO - main.py - train - 68 - 【train】 epoch:2 1734/2980 loss:14.1273
  2231. 2022-11-09 19:41:15,618 - INFO - main.py - train - 68 - 【train】 epoch:2 1735/2980 loss:3.2484
  2232. 2022-11-09 19:41:16,868 - INFO - main.py - train - 68 - 【train】 epoch:2 1736/2980 loss:7.2173
  2233. 2022-11-09 19:41:18,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1737/2980 loss:4.1392
  2234. 2022-11-09 19:41:19,477 - INFO - main.py - train - 68 - 【train】 epoch:2 1738/2980 loss:2.8440
  2235. 2022-11-09 19:41:20,819 - INFO - main.py - train - 68 - 【train】 epoch:2 1739/2980 loss:7.1274
  2236. 2022-11-09 19:41:22,053 - INFO - main.py - train - 68 - 【train】 epoch:2 1740/2980 loss:23.1565
  2237. 2022-11-09 19:41:23,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1741/2980 loss:10.5067
  2238. 2022-11-09 19:41:24,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1742/2980 loss:3.7810
  2239. 2022-11-09 19:41:25,942 - INFO - main.py - train - 68 - 【train】 epoch:2 1743/2980 loss:23.2404
  2240. 2022-11-09 19:41:27,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1744/2980 loss:7.4635
  2241. 2022-11-09 19:41:28,567 - INFO - main.py - train - 68 - 【train】 epoch:2 1745/2980 loss:7.2137
  2242. 2022-11-09 19:41:29,879 - INFO - main.py - train - 68 - 【train】 epoch:2 1746/2980 loss:2.6924
  2243. 2022-11-09 19:41:31,222 - INFO - main.py - train - 68 - 【train】 epoch:2 1747/2980 loss:9.6021
  2244. 2022-11-09 19:41:32,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1748/2980 loss:2.7536
  2245. 2022-11-09 19:41:33,894 - INFO - main.py - train - 68 - 【train】 epoch:2 1749/2980 loss:1.7109
  2246. 2022-11-09 19:41:35,471 - INFO - main.py - train - 68 - 【train】 epoch:2 1750/2980 loss:16.6074
  2247. 2022-11-09 19:41:37,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1751/2980 loss:17.3047
  2248. 2022-11-09 19:41:38,533 - INFO - main.py - train - 68 - 【train】 epoch:2 1752/2980 loss:2.9894
  2249. 2022-11-09 19:41:39,752 - INFO - main.py - train - 68 - 【train】 epoch:2 1753/2980 loss:8.1296
  2250. 2022-11-09 19:41:41,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1754/2980 loss:0.5379
  2251. 2022-11-09 19:41:42,626 - INFO - main.py - train - 68 - 【train】 epoch:2 1755/2980 loss:4.4142
  2252. 2022-11-09 19:41:43,891 - INFO - main.py - train - 68 - 【train】 epoch:2 1756/2980 loss:11.8648
  2253. 2022-11-09 19:41:45,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1757/2980 loss:16.0272
  2254. 2022-11-09 19:41:46,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1758/2980 loss:2.8537
  2255. 2022-11-09 19:41:47,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1759/2980 loss:5.7682
  2256. 2022-11-09 19:41:49,046 - INFO - main.py - train - 68 - 【train】 epoch:2 1760/2980 loss:7.4695
  2257. 2022-11-09 19:41:50,265 - INFO - main.py - train - 68 - 【train】 epoch:2 1761/2980 loss:7.3708
  2258. 2022-11-09 19:41:51,515 - INFO - main.py - train - 68 - 【train】 epoch:2 1762/2980 loss:17.8952
  2259. 2022-11-09 19:41:52,749 - INFO - main.py - train - 68 - 【train】 epoch:2 1763/2980 loss:13.5664
  2260. 2022-11-09 19:41:53,983 - INFO - main.py - train - 68 - 【train】 epoch:2 1764/2980 loss:13.0042
  2261. 2022-11-09 19:41:55,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1765/2980 loss:0.9464
  2262. 2022-11-09 19:41:56,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1766/2980 loss:4.8302
  2263. 2022-11-09 19:41:57,685 - INFO - main.py - train - 68 - 【train】 epoch:2 1767/2980 loss:8.1051
  2264. 2022-11-09 19:41:58,966 - INFO - main.py - train - 68 - 【train】 epoch:2 1768/2980 loss:1.6168
  2265. 2022-11-09 19:42:00,512 - INFO - main.py - train - 68 - 【train】 epoch:2 1769/2980 loss:14.6113
  2266. 2022-11-09 19:42:01,778 - INFO - main.py - train - 68 - 【train】 epoch:2 1770/2980 loss:4.4657
  2267. 2022-11-09 19:42:03,621 - INFO - main.py - train - 68 - 【train】 epoch:2 1771/2980 loss:9.3895
  2268. 2022-11-09 19:42:04,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1772/2980 loss:0.6420
  2269. 2022-11-09 19:42:06,058 - INFO - main.py - train - 68 - 【train】 epoch:2 1773/2980 loss:2.0415
  2270. 2022-11-09 19:42:07,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1774/2980 loss:17.3841
  2271. 2022-11-09 19:42:08,854 - INFO - main.py - train - 68 - 【train】 epoch:2 1775/2980 loss:9.7059
  2272. 2022-11-09 19:42:10,135 - INFO - main.py - train - 68 - 【train】 epoch:2 1776/2980 loss:17.9254
  2273. 2022-11-09 19:42:11,463 - INFO - main.py - train - 68 - 【train】 epoch:2 1777/2980 loss:4.4008
  2274. 2022-11-09 19:42:12,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1778/2980 loss:21.1686
  2275. 2022-11-09 19:42:14,119 - INFO - main.py - train - 68 - 【train】 epoch:2 1779/2980 loss:9.4750
  2276. 2022-11-09 19:42:15,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1780/2980 loss:2.5117
  2277. 2022-11-09 19:42:16,681 - INFO - main.py - train - 68 - 【train】 epoch:2 1781/2980 loss:15.5348
  2278. 2022-11-09 19:42:17,946 - INFO - main.py - train - 68 - 【train】 epoch:2 1782/2980 loss:12.3820
  2279. 2022-11-09 19:42:19,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1783/2980 loss:13.7912
  2280. 2022-11-09 19:42:20,461 - INFO - main.py - train - 68 - 【train】 epoch:2 1784/2980 loss:2.8347
  2281. 2022-11-09 19:42:21,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1785/2980 loss:1.3813
  2282. 2022-11-09 19:42:23,148 - INFO - main.py - train - 68 - 【train】 epoch:2 1786/2980 loss:2.6952
  2283. 2022-11-09 19:42:24,397 - INFO - main.py - train - 68 - 【train】 epoch:2 1787/2980 loss:36.1618
  2284. 2022-11-09 19:42:29,224 - INFO - main.py - train - 68 - 【train】 epoch:3 1788/2980 loss:8.8240
  2285. 2022-11-09 19:42:30,427 - INFO - main.py - train - 68 - 【train】 epoch:3 1789/2980 loss:12.3918
  2286. 2022-11-09 19:42:31,708 - INFO - main.py - train - 68 - 【train】 epoch:3 1790/2980 loss:2.8292
  2287. 2022-11-09 19:42:32,927 - INFO - main.py - train - 68 - 【train】 epoch:3 1791/2980 loss:7.6035
  2288. 2022-11-09 19:42:34,192 - INFO - main.py - train - 68 - 【train】 epoch:3 1792/2980 loss:4.0272
  2289. 2022-11-09 19:42:35,426 - INFO - main.py - train - 68 - 【train】 epoch:3 1793/2980 loss:5.3875
  2290. 2022-11-09 19:42:36,707 - INFO - main.py - train - 68 - 【train】 epoch:3 1794/2980 loss:9.6330
  2291. 2022-11-09 19:42:37,972 - INFO - main.py - train - 68 - 【train】 epoch:3 1795/2980 loss:2.0736
  2292. 2022-11-09 19:42:39,285 - INFO - main.py - train - 68 - 【train】 epoch:3 1796/2980 loss:14.7170
  2293. 2022-11-09 19:42:40,503 - INFO - main.py - train - 68 - 【train】 epoch:3 1797/2980 loss:7.9797
  2294. 2022-11-09 19:42:41,722 - INFO - main.py - train - 68 - 【train】 epoch:3 1798/2980 loss:4.9186
  2295. 2022-11-09 19:42:42,940 - INFO - main.py - train - 68 - 【train】 epoch:3 1799/2980 loss:4.1856
  2296. 2022-11-09 19:42:44,174 - INFO - main.py - train - 68 - 【train】 epoch:3 1800/2980 loss:4.7505
  2297. 2022-11-09 19:42:45,455 - INFO - main.py - train - 68 - 【train】 epoch:3 1801/2980 loss:4.2593
  2298. 2022-11-09 19:42:46,736 - INFO - main.py - train - 68 - 【train】 epoch:3 1802/2980 loss:3.9799
  2299. 2022-11-09 19:42:48,173 - INFO - main.py - train - 68 - 【train】 epoch:3 1803/2980 loss:1.9576
  2300. 2022-11-09 19:42:49,392 - INFO - main.py - train - 68 - 【train】 epoch:3 1804/2980 loss:3.9610
  2301. 2022-11-09 19:42:50,610 - INFO - main.py - train - 68 - 【train】 epoch:3 1805/2980 loss:6.9952
  2302. 2022-11-09 19:42:51,985 - INFO - main.py - train - 68 - 【train】 epoch:3 1806/2980 loss:5.6878
  2303. 2022-11-09 19:42:53,219 - INFO - main.py - train - 68 - 【train】 epoch:3 1807/2980 loss:19.9670
  2304. 2022-11-09 19:42:54,437 - INFO - main.py - train - 68 - 【train】 epoch:3 1808/2980 loss:6.2648
  2305. 2022-11-09 19:42:55,656 - INFO - main.py - train - 68 - 【train】 epoch:3 1809/2980 loss:9.4900
  2306. 2022-11-09 19:42:56,890 - INFO - main.py - train - 68 - 【train】 epoch:3 1810/2980 loss:3.6146
  2307. 2022-11-09 19:42:58,202 - INFO - main.py - train - 68 - 【train】 epoch:3 1811/2980 loss:0.9061
  2308. 2022-11-09 19:42:59,389 - INFO - main.py - train - 68 - 【train】 epoch:3 1812/2980 loss:4.9130
  2309. 2022-11-09 19:43:00,670 - INFO - main.py - train - 68 - 【train】 epoch:3 1813/2980 loss:14.9498
  2310. 2022-11-09 19:43:01,904 - INFO - main.py - train - 68 - 【train】 epoch:3 1814/2980 loss:7.7017
  2311. 2022-11-09 19:43:03,154 - INFO - main.py - train - 68 - 【train】 epoch:3 1815/2980 loss:5.5295
  2312. 2022-11-09 19:43:04,404 - INFO - main.py - train - 68 - 【train】 epoch:3 1816/2980 loss:3.1331
  2313. 2022-11-09 19:43:05,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1817/2980 loss:8.5901
  2314. 2022-11-09 19:43:06,950 - INFO - main.py - train - 68 - 【train】 epoch:3 1818/2980 loss:6.8087
  2315. 2022-11-09 19:43:08,278 - INFO - main.py - train - 68 - 【train】 epoch:3 1819/2980 loss:8.8649
  2316. 2022-11-09 19:43:09,512 - INFO - main.py - train - 68 - 【train】 epoch:3 1820/2980 loss:9.8708
  2317. 2022-11-09 19:43:10,746 - INFO - main.py - train - 68 - 【train】 epoch:3 1821/2980 loss:4.1222
  2318. 2022-11-09 19:43:12,168 - INFO - main.py - train - 68 - 【train】 epoch:3 1822/2980 loss:5.9062
  2319. 2022-11-09 19:43:13,402 - INFO - main.py - train - 68 - 【train】 epoch:3 1823/2980 loss:9.9948
  2320. 2022-11-09 19:43:14,604 - INFO - main.py - train - 68 - 【train】 epoch:3 1824/2980 loss:2.2752
  2321. 2022-11-09 19:43:15,807 - INFO - main.py - train - 68 - 【train】 epoch:3 1825/2980 loss:4.3673
  2322. 2022-11-09 19:43:17,119 - INFO - main.py - train - 68 - 【train】 epoch:3 1826/2980 loss:7.9074
  2323. 2022-11-09 19:43:18,650 - INFO - main.py - train - 68 - 【train】 epoch:3 1827/2980 loss:3.6884
  2324. 2022-11-09 19:43:20,072 - INFO - main.py - train - 68 - 【train】 epoch:3 1828/2980 loss:1.1944
  2325. 2022-11-09 19:43:21,290 - INFO - main.py - train - 68 - 【train】 epoch:3 1829/2980 loss:11.1585
  2326. 2022-11-09 19:43:22,618 - INFO - main.py - train - 68 - 【train】 epoch:3 1830/2980 loss:1.6995
  2327. 2022-11-09 19:43:23,852 - INFO - main.py - train - 68 - 【train】 epoch:3 1831/2980 loss:4.5924
  2328. 2022-11-09 19:43:25,118 - INFO - main.py - train - 68 - 【train】 epoch:3 1832/2980 loss:3.8288
  2329. 2022-11-09 19:43:26,399 - INFO - main.py - train - 68 - 【train】 epoch:3 1833/2980 loss:16.3912
  2330. 2022-11-09 19:43:27,726 - INFO - main.py - train - 68 - 【train】 epoch:3 1834/2980 loss:3.3349
  2331. 2022-11-09 19:43:29,164 - INFO - main.py - train - 68 - 【train】 epoch:3 1835/2980 loss:3.8013
  2332. 2022-11-09 19:43:30,398 - INFO - main.py - train - 68 - 【train】 epoch:3 1836/2980 loss:20.4617
  2333. 2022-11-09 19:43:31,663 - INFO - main.py - train - 68 - 【train】 epoch:3 1837/2980 loss:3.7216
  2334. 2022-11-09 19:43:32,928 - INFO - main.py - train - 68 - 【train】 epoch:3 1838/2980 loss:3.2133
  2335. 2022-11-09 19:43:34,365 - INFO - main.py - train - 68 - 【train】 epoch:3 1839/2980 loss:22.5358
  2336. 2022-11-09 19:43:35,771 - INFO - main.py - train - 68 - 【train】 epoch:3 1840/2980 loss:3.2878
  2337. 2022-11-09 19:43:37,177 - INFO - main.py - train - 68 - 【train】 epoch:3 1841/2980 loss:5.9286
  2338. 2022-11-09 19:43:38,443 - INFO - main.py - train - 68 - 【train】 epoch:3 1842/2980 loss:8.8531
  2339. 2022-11-09 19:43:39,895 - INFO - main.py - train - 68 - 【train】 epoch:3 1843/2980 loss:2.6568
  2340. 2022-11-09 19:43:41,223 - INFO - main.py - train - 68 - 【train】 epoch:3 1844/2980 loss:9.5821
  2341. 2022-11-09 19:43:42,535 - INFO - main.py - train - 68 - 【train】 epoch:3 1845/2980 loss:8.2549
  2342. 2022-11-09 19:43:43,988 - INFO - main.py - train - 68 - 【train】 epoch:3 1846/2980 loss:6.8388
  2343. 2022-11-09 19:43:45,300 - INFO - main.py - train - 68 - 【train】 epoch:3 1847/2980 loss:1.4866
  2344. 2022-11-09 19:43:46,722 - INFO - main.py - train - 68 - 【train】 epoch:3 1848/2980 loss:11.6807
  2345. 2022-11-09 19:43:48,034 - INFO - main.py - train - 68 - 【train】 epoch:3 1849/2980 loss:3.6416
  2346. 2022-11-09 19:43:49,503 - INFO - main.py - train - 68 - 【train】 epoch:3 1850/2980 loss:0.5830
  2347. 2022-11-09 19:43:50,768 - INFO - main.py - train - 68 - 【train】 epoch:3 1851/2980 loss:2.7012
  2348. 2022-11-09 19:43:52,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1852/2980 loss:1.6195
  2349. 2022-11-09 19:43:53,533 - INFO - main.py - train - 68 - 【train】 epoch:3 1853/2980 loss:2.6296
  2350. 2022-11-09 19:43:54,814 - INFO - main.py - train - 68 - 【train】 epoch:3 1854/2980 loss:5.0958
  2351. 2022-11-09 19:43:56,110 - INFO - main.py - train - 68 - 【train】 epoch:3 1855/2980 loss:6.8109
  2352. 2022-11-09 19:43:57,469 - INFO - main.py - train - 68 - 【train】 epoch:3 1856/2980 loss:1.3811
  2353. 2022-11-09 19:43:58,891 - INFO - main.py - train - 68 - 【train】 epoch:3 1857/2980 loss:0.9896
  2354. 2022-11-09 19:44:00,156 - INFO - main.py - train - 68 - 【train】 epoch:3 1858/2980 loss:3.5533
  2355. 2022-11-09 19:44:01,422 - INFO - main.py - train - 68 - 【train】 epoch:3 1859/2980 loss:11.2828
  2356. 2022-11-09 19:44:02,734 - INFO - main.py - train - 68 - 【train】 epoch:3 1860/2980 loss:6.6569
  2357. 2022-11-09 19:44:03,999 - INFO - main.py - train - 68 - 【train】 epoch:3 1861/2980 loss:9.9686
  2358. 2022-11-09 19:44:05,405 - INFO - main.py - train - 68 - 【train】 epoch:3 1862/2980 loss:17.5181
  2359. 2022-11-09 19:44:06,889 - INFO - main.py - train - 68 - 【train】 epoch:3 1863/2980 loss:2.3724
  2360. 2022-11-09 19:44:08,186 - INFO - main.py - train - 68 - 【train】 epoch:3 1864/2980 loss:2.9340
  2361. 2022-11-09 19:44:09,435 - INFO - main.py - train - 68 - 【train】 epoch:3 1865/2980 loss:8.7570
  2362. 2022-11-09 19:44:11,310 - INFO - main.py - train - 68 - 【train】 epoch:3 1866/2980 loss:5.6250
  2363. 2022-11-09 19:44:12,544 - INFO - main.py - train - 68 - 【train】 epoch:3 1867/2980 loss:1.6472
  2364. 2022-11-09 19:44:13,762 - INFO - main.py - train - 68 - 【train】 epoch:3 1868/2980 loss:4.5866
  2365. 2022-11-09 19:44:15,043 - INFO - main.py - train - 68 - 【train】 epoch:3 1869/2980 loss:2.6903
  2366. 2022-11-09 19:44:16,340 - INFO - main.py - train - 68 - 【train】 epoch:3 1870/2980 loss:4.9836
  2367. 2022-11-09 19:44:17,605 - INFO - main.py - train - 68 - 【train】 epoch:3 1871/2980 loss:3.1562
  2368. 2022-11-09 19:44:18,902 - INFO - main.py - train - 68 - 【train】 epoch:3 1872/2980 loss:18.7857
  2369. 2022-11-09 19:44:20,136 - INFO - main.py - train - 68 - 【train】 epoch:3 1873/2980 loss:0.4651
  2370. 2022-11-09 19:44:21,401 - INFO - main.py - train - 68 - 【train】 epoch:3 1874/2980 loss:8.0647
  2371. 2022-11-09 19:44:22,760 - INFO - main.py - train - 68 - 【train】 epoch:3 1875/2980 loss:6.6382
  2372. 2022-11-09 19:44:24,073 - INFO - main.py - train - 68 - 【train】 epoch:3 1876/2980 loss:3.6758
  2373. 2022-11-09 19:44:25,447 - INFO - main.py - train - 68 - 【train】 epoch:3 1877/2980 loss:1.6441
  2374. 2022-11-09 19:44:26,666 - INFO - main.py - train - 68 - 【train】 epoch:3 1878/2980 loss:5.9020
  2375. 2022-11-09 19:44:28,009 - INFO - main.py - train - 68 - 【train】 epoch:3 1879/2980 loss:5.0646
  2376. 2022-11-09 19:44:29,212 - INFO - main.py - train - 68 - 【train】 epoch:3 1880/2980 loss:0.9704
  2377. 2022-11-09 19:44:30,430 - INFO - main.py - train - 68 - 【train】 epoch:3 1881/2980 loss:1.4998
  2378. 2022-11-09 19:44:31,805 - INFO - main.py - train - 68 - 【train】 epoch:3 1882/2980 loss:10.8268
  2379. 2022-11-09 19:44:33,086 - INFO - main.py - train - 68 - 【train】 epoch:3 1883/2980 loss:4.0557
  2380. 2022-11-09 19:44:34,351 - INFO - main.py - train - 68 - 【train】 epoch:3 1884/2980 loss:3.6349
  2381. 2022-11-09 19:44:35,554 - INFO - main.py - train - 68 - 【train】 epoch:3 1885/2980 loss:3.1354
  2382. 2022-11-09 19:44:37,023 - INFO - main.py - train - 68 - 【train】 epoch:3 1886/2980 loss:5.5817
  2383. 2022-11-09 19:44:38,241 - INFO - main.py - train - 68 - 【train】 epoch:3 1887/2980 loss:3.8993
  2384. 2022-11-09 19:44:39,506 - INFO - main.py - train - 68 - 【train】 epoch:3 1888/2980 loss:6.1745
  2385. 2022-11-09 19:44:40,725 - INFO - main.py - train - 68 - 【train】 epoch:3 1889/2980 loss:0.5642
  2386. 2022-11-09 19:44:42,021 - INFO - main.py - train - 68 - 【train】 epoch:3 1890/2980 loss:24.0659
  2387. 2022-11-09 19:44:43,381 - INFO - main.py - train - 68 - 【train】 epoch:3 1891/2980 loss:2.5896
  2388. 2022-11-09 19:44:44,583 - INFO - main.py - train - 68 - 【train】 epoch:3 1892/2980 loss:1.0718
  2389. 2022-11-09 19:44:45,864 - INFO - main.py - train - 68 - 【train】 epoch:3 1893/2980 loss:4.6188
  2390. 2022-11-09 19:44:47,145 - INFO - main.py - train - 68 - 【train】 epoch:3 1894/2980 loss:1.8852
  2391. 2022-11-09 19:44:48,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1895/2980 loss:3.7526
  2392. 2022-11-09 19:44:49,707 - INFO - main.py - train - 68 - 【train】 epoch:3 1896/2980 loss:4.0554
  2393. 2022-11-09 19:44:50,926 - INFO - main.py - train - 68 - 【train】 epoch:3 1897/2980 loss:3.7527
  2394. 2022-11-09 19:44:52,160 - INFO - main.py - train - 68 - 【train】 epoch:3 1898/2980 loss:9.0816
  2395. 2022-11-09 19:44:53,363 - INFO - main.py - train - 68 - 【train】 epoch:3 1899/2980 loss:3.0098
  2396. 2022-11-09 19:44:54,706 - INFO - main.py - train - 68 - 【train】 epoch:3 1900/2980 loss:0.1917
  2397. 2022-11-09 19:44:55,924 - INFO - main.py - train - 68 - 【train】 epoch:3 1901/2980 loss:3.3513
  2398. 2022-11-09 19:44:57,190 - INFO - main.py - train - 68 - 【train】 epoch:3 1902/2980 loss:6.4007
  2399. 2022-11-09 19:44:58,549 - INFO - main.py - train - 68 - 【train】 epoch:3 1903/2980 loss:4.2947
  2400. 2022-11-09 19:44:59,814 - INFO - main.py - train - 68 - 【train】 epoch:3 1904/2980 loss:6.8919
  2401. 2022-11-09 19:45:01,329 - INFO - main.py - train - 68 - 【train】 epoch:3 1905/2980 loss:3.2345
  2402. 2022-11-09 19:45:02,563 - INFO - main.py - train - 68 - 【train】 epoch:3 1906/2980 loss:0.6183
  2403. 2022-11-09 19:45:03,829 - INFO - main.py - train - 68 - 【train】 epoch:3 1907/2980 loss:2.8291
  2404. 2022-11-09 19:45:05,110 - INFO - main.py - train - 68 - 【train】 epoch:3 1908/2980 loss:2.8883
  2405. 2022-11-09 19:45:06,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1909/2980 loss:4.4710
  2406. 2022-11-09 19:45:07,594 - INFO - main.py - train - 68 - 【train】 epoch:3 1910/2980 loss:4.5293
  2407. 2022-11-09 19:45:08,828 - INFO - main.py - train - 68 - 【train】 epoch:3 1911/2980 loss:0.5429
  2408. 2022-11-09 19:45:10,077 - INFO - main.py - train - 68 - 【train】 epoch:3 1912/2980 loss:9.6340
  2409. 2022-11-09 19:45:11,358 - INFO - main.py - train - 68 - 【train】 epoch:3 1913/2980 loss:3.4762
  2410. 2022-11-09 19:45:12,624 - INFO - main.py - train - 68 - 【train】 epoch:3 1914/2980 loss:9.3016
  2411. 2022-11-09 19:45:14,045 - INFO - main.py - train - 68 - 【train】 epoch:3 1915/2980 loss:1.4203
  2412. 2022-11-09 19:45:15,342 - INFO - main.py - train - 68 - 【train】 epoch:3 1916/2980 loss:1.7912
  2413. 2022-11-09 19:45:16,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1917/2980 loss:13.7995
  2414. 2022-11-09 19:45:18,185 - INFO - main.py - train - 68 - 【train】 epoch:3 1918/2980 loss:7.7719
  2415. 2022-11-09 19:45:19,450 - INFO - main.py - train - 68 - 【train】 epoch:3 1919/2980 loss:3.0086
  2416. 2022-11-09 19:45:20,653 - INFO - main.py - train - 68 - 【train】 epoch:3 1920/2980 loss:10.9337
  2417. 2022-11-09 19:45:22,012 - INFO - main.py - train - 68 - 【train】 epoch:3 1921/2980 loss:5.1152
  2418. 2022-11-09 19:45:23,262 - INFO - main.py - train - 68 - 【train】 epoch:3 1922/2980 loss:2.0545
  2419. 2022-11-09 19:45:24,543 - INFO - main.py - train - 68 - 【train】 epoch:3 1923/2980 loss:9.1042
  2420. 2022-11-09 19:45:25,902 - INFO - main.py - train - 68 - 【train】 epoch:3 1924/2980 loss:4.2745
  2421. 2022-11-09 19:45:27,136 - INFO - main.py - train - 68 - 【train】 epoch:3 1925/2980 loss:4.9549
  2422. 2022-11-09 19:45:28,354 - INFO - main.py - train - 68 - 【train】 epoch:3 1926/2980 loss:7.4547
  2423. 2022-11-09 19:45:29,776 - INFO - main.py - train - 68 - 【train】 epoch:3 1927/2980 loss:11.7595
  2424. 2022-11-09 19:45:31,026 - INFO - main.py - train - 68 - 【train】 epoch:3 1928/2980 loss:11.8228
  2425. 2022-11-09 19:45:32,322 - INFO - main.py - train - 68 - 【train】 epoch:3 1929/2980 loss:24.8392
  2426. 2022-11-09 19:45:33,666 - INFO - main.py - train - 68 - 【train】 epoch:3 1930/2980 loss:1.2980
  2427. 2022-11-09 19:45:34,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1931/2980 loss:11.6046
  2428. 2022-11-09 19:45:36,196 - INFO - main.py - train - 68 - 【train】 epoch:3 1932/2980 loss:16.0000
  2429. 2022-11-09 19:45:37,477 - INFO - main.py - train - 68 - 【train】 epoch:3 1933/2980 loss:4.0776
  2430. 2022-11-09 19:45:38,883 - INFO - main.py - train - 68 - 【train】 epoch:3 1934/2980 loss:3.2904
  2431. 2022-11-09 19:45:40,133 - INFO - main.py - train - 68 - 【train】 epoch:3 1935/2980 loss:9.8337
  2432. 2022-11-09 19:45:41,398 - INFO - main.py - train - 68 - 【train】 epoch:3 1936/2980 loss:5.9869
  2433. 2022-11-09 19:45:42,632 - INFO - main.py - train - 68 - 【train】 epoch:3 1937/2980 loss:0.4306
  2434. 2022-11-09 19:45:43,960 - INFO - main.py - train - 68 - 【train】 epoch:3 1938/2980 loss:18.1725
  2435. 2022-11-09 19:45:45,241 - INFO - main.py - train - 68 - 【train】 epoch:3 1939/2980 loss:2.7740
  2436. 2022-11-09 19:45:46,459 - INFO - main.py - train - 68 - 【train】 epoch:3 1940/2980 loss:3.5603
  2437. 2022-11-09 19:45:47,678 - INFO - main.py - train - 68 - 【train】 epoch:3 1941/2980 loss:5.5209
  2438. 2022-11-09 19:45:48,881 - INFO - main.py - train - 68 - 【train】 epoch:3 1942/2980 loss:7.2224
  2439. 2022-11-09 19:45:50,209 - INFO - main.py - train - 68 - 【train】 epoch:3 1943/2980 loss:12.6728
  2440. 2022-11-09 19:45:51,474 - INFO - main.py - train - 68 - 【train】 epoch:3 1944/2980 loss:9.2621
  2441. 2022-11-09 19:45:52,661 - INFO - main.py - train - 68 - 【train】 epoch:3 1945/2980 loss:7.0825
  2442. 2022-11-09 19:45:54,036 - INFO - main.py - train - 68 - 【train】 epoch:3 1946/2980 loss:4.7226
  2443. 2022-11-09 19:45:55,395 - INFO - main.py - train - 68 - 【train】 epoch:3 1947/2980 loss:4.5126
  2444. 2022-11-09 19:45:56,645 - INFO - main.py - train - 68 - 【train】 epoch:3 1948/2980 loss:4.0967
  2445. 2022-11-09 19:45:58,004 - INFO - main.py - train - 68 - 【train】 epoch:3 1949/2980 loss:9.3058
  2446. 2022-11-09 19:45:59,316 - INFO - main.py - train - 68 - 【train】 epoch:3 1950/2980 loss:17.9866
  2447. 2022-11-09 19:46:00,628 - INFO - main.py - train - 68 - 【train】 epoch:3 1951/2980 loss:18.6246
  2448. 2022-11-09 19:46:01,831 - INFO - main.py - train - 68 - 【train】 epoch:3 1952/2980 loss:7.5396
  2449. 2022-11-09 19:46:03,159 - INFO - main.py - train - 68 - 【train】 epoch:3 1953/2980 loss:17.3530
  2450. 2022-11-09 19:46:04,408 - INFO - main.py - train - 68 - 【train】 epoch:3 1954/2980 loss:11.3328
  2451. 2022-11-09 19:46:05,596 - INFO - main.py - train - 68 - 【train】 epoch:3 1955/2980 loss:2.1486
  2452. 2022-11-09 19:46:06,830 - INFO - main.py - train - 68 - 【train】 epoch:3 1956/2980 loss:4.1667
  2453. 2022-11-09 19:46:08,079 - INFO - main.py - train - 68 - 【train】 epoch:3 1957/2980 loss:17.4102
  2454. 2022-11-09 19:46:09,470 - INFO - main.py - train - 68 - 【train】 epoch:3 1958/2980 loss:8.3530
  2455. 2022-11-09 19:46:10,704 - INFO - main.py - train - 68 - 【train】 epoch:3 1959/2980 loss:1.2704
  2456. 2022-11-09 19:46:11,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1960/2980 loss:3.7153
  2457. 2022-11-09 19:46:13,250 - INFO - main.py - train - 68 - 【train】 epoch:3 1961/2980 loss:4.4735
  2458. 2022-11-09 19:46:14,453 - INFO - main.py - train - 68 - 【train】 epoch:3 1962/2980 loss:4.0548
  2459. 2022-11-09 19:46:15,671 - INFO - main.py - train - 68 - 【train】 epoch:3 1963/2980 loss:6.8521
  2460. 2022-11-09 19:46:17,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1964/2980 loss:3.7319
  2461. 2022-11-09 19:46:18,327 - INFO - main.py - train - 68 - 【train】 epoch:3 1965/2980 loss:8.0778
  2462. 2022-11-09 19:46:19,608 - INFO - main.py - train - 68 - 【train】 epoch:3 1966/2980 loss:10.3978
  2463. 2022-11-09 19:46:20,858 - INFO - main.py - train - 68 - 【train】 epoch:3 1967/2980 loss:2.5187
  2464. 2022-11-09 19:46:22,061 - INFO - main.py - train - 68 - 【train】 epoch:3 1968/2980 loss:1.8932
  2465. 2022-11-09 19:46:23,341 - INFO - main.py - train - 68 - 【train】 epoch:3 1969/2980 loss:2.8519
  2466. 2022-11-09 19:46:24,560 - INFO - main.py - train - 68 - 【train】 epoch:3 1970/2980 loss:2.4372
  2467. 2022-11-09 19:46:25,888 - INFO - main.py - train - 68 - 【train】 epoch:3 1971/2980 loss:11.6587
  2468. 2022-11-09 19:46:27,091 - INFO - main.py - train - 68 - 【train】 epoch:3 1972/2980 loss:3.6907
  2469. 2022-11-09 19:46:28,372 - INFO - main.py - train - 68 - 【train】 epoch:3 1973/2980 loss:5.7926
  2470. 2022-11-09 19:46:29,777 - INFO - main.py - train - 68 - 【train】 epoch:3 1974/2980 loss:1.9065
  2471. 2022-11-09 19:46:31,043 - INFO - main.py - train - 68 - 【train】 epoch:3 1975/2980 loss:10.9802
  2472. 2022-11-09 19:46:32,339 - INFO - main.py - train - 68 - 【train】 epoch:3 1976/2980 loss:6.7161
  2473. 2022-11-09 19:46:33,698 - INFO - main.py - train - 68 - 【train】 epoch:3 1977/2980 loss:12.4055
  2474. 2022-11-09 19:46:34,995 - INFO - main.py - train - 68 - 【train】 epoch:3 1978/2980 loss:7.1598
  2475. 2022-11-09 19:46:36,276 - INFO - main.py - train - 68 - 【train】 epoch:3 1979/2980 loss:8.1160
  2476. 2022-11-09 19:46:37,744 - INFO - main.py - train - 68 - 【train】 epoch:3 1980/2980 loss:3.6253
  2477. 2022-11-09 19:46:38,947 - INFO - main.py - train - 68 - 【train】 epoch:3 1981/2980 loss:2.4322
  2478. 2022-11-09 19:46:40,181 - INFO - main.py - train - 68 - 【train】 epoch:3 1982/2980 loss:1.0009
  2479. 2022-11-09 19:46:41,509 - INFO - main.py - train - 68 - 【train】 epoch:3 1983/2980 loss:12.0832
  2480. 2022-11-09 19:46:42,727 - INFO - main.py - train - 68 - 【train】 epoch:3 1984/2980 loss:10.5155
  2481. 2022-11-09 19:46:43,946 - INFO - main.py - train - 68 - 【train】 epoch:3 1985/2980 loss:0.3303
  2482. 2022-11-09 19:46:45,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1986/2980 loss:3.6867
  2483. 2022-11-09 19:46:46,695 - INFO - main.py - train - 68 - 【train】 epoch:3 1987/2980 loss:10.5174
  2484. 2022-11-09 19:46:47,945 - INFO - main.py - train - 68 - 【train】 epoch:3 1988/2980 loss:2.8098
  2485. 2022-11-09 19:46:49,195 - INFO - main.py - train - 68 - 【train】 epoch:3 1989/2980 loss:5.6648
  2486. 2022-11-09 19:46:50,616 - INFO - main.py - train - 68 - 【train】 epoch:3 1990/2980 loss:3.9913
  2487. 2022-11-09 19:46:51,882 - INFO - main.py - train - 68 - 【train】 epoch:3 1991/2980 loss:10.6140
  2488. 2022-11-09 19:46:53,116 - INFO - main.py - train - 68 - 【train】 epoch:3 1992/2980 loss:14.0792
  2489. 2022-11-09 19:46:54,553 - INFO - main.py - train - 68 - 【train】 epoch:3 1993/2980 loss:4.2274
  2490. 2022-11-09 19:46:55,834 - INFO - main.py - train - 68 - 【train】 epoch:3 1994/2980 loss:20.0582
  2491. 2022-11-09 19:46:57,037 - INFO - main.py - train - 68 - 【train】 epoch:3 1995/2980 loss:2.0205
  2492. 2022-11-09 19:46:58,286 - INFO - main.py - train - 68 - 【train】 epoch:3 1996/2980 loss:3.6085
  2493. 2022-11-09 19:46:59,802 - INFO - main.py - train - 68 - 【train】 epoch:3 1997/2980 loss:3.6177
  2494. 2022-11-09 19:47:01,036 - INFO - main.py - train - 68 - 【train】 epoch:3 1998/2980 loss:7.8017
  2495. 2022-11-09 19:47:02,317 - INFO - main.py - train - 68 - 【train】 epoch:3 1999/2980 loss:2.9125
  2496. 2022-11-09 19:47:03,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2000/2980 loss:16.1003
  2497. 2022-11-09 19:47:04,816 - INFO - main.py - train - 68 - 【train】 epoch:3 2001/2980 loss:11.5063
  2498. 2022-11-09 19:47:06,066 - INFO - main.py - train - 68 - 【train】 epoch:3 2002/2980 loss:7.0009
  2499. 2022-11-09 19:47:07,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2003/2980 loss:4.5406
  2500. 2022-11-09 19:47:08,628 - INFO - main.py - train - 68 - 【train】 epoch:3 2004/2980 loss:5.1064
  2501. 2022-11-09 19:47:09,877 - INFO - main.py - train - 68 - 【train】 epoch:3 2005/2980 loss:11.8655
  2502. 2022-11-09 19:47:11,111 - INFO - main.py - train - 68 - 【train】 epoch:3 2006/2980 loss:15.6202
  2503. 2022-11-09 19:47:12,720 - INFO - main.py - train - 68 - 【train】 epoch:3 2007/2980 loss:11.0555
  2504. 2022-11-09 19:47:13,908 - INFO - main.py - train - 68 - 【train】 epoch:3 2008/2980 loss:1.7271
  2505. 2022-11-09 19:47:15,642 - INFO - main.py - train - 68 - 【train】 epoch:3 2009/2980 loss:3.7263
  2506. 2022-11-09 19:47:16,907 - INFO - main.py - train - 68 - 【train】 epoch:3 2010/2980 loss:0.3438
  2507. 2022-11-09 19:47:18,141 - INFO - main.py - train - 68 - 【train】 epoch:3 2011/2980 loss:3.1452
  2508. 2022-11-09 19:47:19,469 - INFO - main.py - train - 68 - 【train】 epoch:3 2012/2980 loss:8.8084
  2509. 2022-11-09 19:47:20,828 - INFO - main.py - train - 68 - 【train】 epoch:3 2013/2980 loss:9.3441
  2510. 2022-11-09 19:47:22,140 - INFO - main.py - train - 68 - 【train】 epoch:3 2014/2980 loss:20.1783
  2511. 2022-11-09 19:47:23,359 - INFO - main.py - train - 68 - 【train】 epoch:3 2015/2980 loss:4.1473
  2512. 2022-11-09 19:47:24,577 - INFO - main.py - train - 68 - 【train】 epoch:3 2016/2980 loss:4.0500
  2513. 2022-11-09 19:47:26,170 - INFO - main.py - train - 68 - 【train】 epoch:3 2017/2980 loss:3.8575
  2514. 2022-11-09 19:47:27,779 - INFO - main.py - train - 68 - 【train】 epoch:3 2018/2980 loss:0.7290
  2515. 2022-11-09 19:47:29,607 - INFO - main.py - train - 68 - 【train】 epoch:3 2019/2980 loss:16.8239
  2516. 2022-11-09 19:47:30,826 - INFO - main.py - train - 68 - 【train】 epoch:3 2020/2980 loss:3.3804
  2517. 2022-11-09 19:47:32,325 - INFO - main.py - train - 68 - 【train】 epoch:3 2021/2980 loss:2.9446
  2518. 2022-11-09 19:47:33,622 - INFO - main.py - train - 68 - 【train】 epoch:3 2022/2980 loss:14.6228
  2519. 2022-11-09 19:47:35,059 - INFO - main.py - train - 68 - 【train】 epoch:3 2023/2980 loss:8.2343
  2520. 2022-11-09 19:47:36,309 - INFO - main.py - train - 68 - 【train】 epoch:3 2024/2980 loss:5.8330
  2521. 2022-11-09 19:47:37,543 - INFO - main.py - train - 68 - 【train】 epoch:3 2025/2980 loss:1.9732
  2522. 2022-11-09 19:47:38,824 - INFO - main.py - train - 68 - 【train】 epoch:3 2026/2980 loss:2.3754
  2523. 2022-11-09 19:47:40,651 - INFO - main.py - train - 68 - 【train】 epoch:3 2027/2980 loss:4.9650
  2524. 2022-11-09 19:47:41,870 - INFO - main.py - train - 68 - 【train】 epoch:3 2028/2980 loss:6.9541
  2525. 2022-11-09 19:47:43,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2029/2980 loss:3.9706
  2526. 2022-11-09 19:47:44,401 - INFO - main.py - train - 68 - 【train】 epoch:3 2030/2980 loss:3.4107
  2527. 2022-11-09 19:47:45,728 - INFO - main.py - train - 68 - 【train】 epoch:3 2031/2980 loss:1.1006
  2528. 2022-11-09 19:47:46,994 - INFO - main.py - train - 68 - 【train】 epoch:3 2032/2980 loss:8.5320
  2529. 2022-11-09 19:47:48,384 - INFO - main.py - train - 68 - 【train】 epoch:3 2033/2980 loss:18.9435
  2530. 2022-11-09 19:47:49,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2034/2980 loss:0.5091
  2531. 2022-11-09 19:47:51,071 - INFO - main.py - train - 68 - 【train】 epoch:3 2035/2980 loss:3.6944
  2532. 2022-11-09 19:47:52,336 - INFO - main.py - train - 68 - 【train】 epoch:3 2036/2980 loss:4.7474
  2533. 2022-11-09 19:47:53,586 - INFO - main.py - train - 68 - 【train】 epoch:3 2037/2980 loss:2.4968
  2534. 2022-11-09 19:47:54,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2038/2980 loss:1.0380
  2535. 2022-11-09 19:47:56,070 - INFO - main.py - train - 68 - 【train】 epoch:3 2039/2980 loss:11.1354
  2536. 2022-11-09 19:47:57,460 - INFO - main.py - train - 68 - 【train】 epoch:3 2040/2980 loss:2.1013
  2537. 2022-11-09 19:47:58,725 - INFO - main.py - train - 68 - 【train】 epoch:3 2041/2980 loss:2.2644
  2538. 2022-11-09 19:48:00,334 - INFO - main.py - train - 68 - 【train】 epoch:3 2042/2980 loss:3.7950
  2539. 2022-11-09 19:48:01,553 - INFO - main.py - train - 68 - 【train】 epoch:3 2043/2980 loss:5.2269
  2540. 2022-11-09 19:48:02,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2044/2980 loss:14.1601
  2541. 2022-11-09 19:48:04,115 - INFO - main.py - train - 68 - 【train】 epoch:3 2045/2980 loss:7.9504
  2542. 2022-11-09 19:48:05,442 - INFO - main.py - train - 68 - 【train】 epoch:3 2046/2980 loss:3.5642
  2543. 2022-11-09 19:48:06,786 - INFO - main.py - train - 68 - 【train】 epoch:3 2047/2980 loss:12.9079
  2544. 2022-11-09 19:48:08,129 - INFO - main.py - train - 68 - 【train】 epoch:3 2048/2980 loss:10.6756
  2545. 2022-11-09 19:48:09,426 - INFO - main.py - train - 68 - 【train】 epoch:3 2049/2980 loss:6.8918
  2546. 2022-11-09 19:48:10,660 - INFO - main.py - train - 68 - 【train】 epoch:3 2050/2980 loss:2.7617
  2547. 2022-11-09 19:48:11,925 - INFO - main.py - train - 68 - 【train】 epoch:3 2051/2980 loss:9.5151
  2548. 2022-11-09 19:48:13,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2052/2980 loss:2.2708
  2549. 2022-11-09 19:48:14,472 - INFO - main.py - train - 68 - 【train】 epoch:3 2053/2980 loss:3.8032
  2550. 2022-11-09 19:48:15,721 - INFO - main.py - train - 68 - 【train】 epoch:3 2054/2980 loss:1.3917
  2551. 2022-11-09 19:48:16,955 - INFO - main.py - train - 68 - 【train】 epoch:3 2055/2980 loss:4.2505
  2552. 2022-11-09 19:48:18,393 - INFO - main.py - train - 68 - 【train】 epoch:3 2056/2980 loss:6.3719
  2553. 2022-11-09 19:48:19,642 - INFO - main.py - train - 68 - 【train】 epoch:3 2057/2980 loss:0.8375
  2554. 2022-11-09 19:48:21,079 - INFO - main.py - train - 68 - 【train】 epoch:3 2058/2980 loss:0.9376
  2555. 2022-11-09 19:48:22,282 - INFO - main.py - train - 68 - 【train】 epoch:3 2059/2980 loss:2.5583
  2556. 2022-11-09 19:48:23,688 - INFO - main.py - train - 68 - 【train】 epoch:3 2060/2980 loss:3.8150
  2557. 2022-11-09 19:48:25,078 - INFO - main.py - train - 68 - 【train】 epoch:3 2061/2980 loss:2.0839
  2558. 2022-11-09 19:48:26,766 - INFO - main.py - train - 68 - 【train】 epoch:3 2062/2980 loss:11.2789
  2559. 2022-11-09 19:48:28,281 - INFO - main.py - train - 68 - 【train】 epoch:3 2063/2980 loss:13.0807
  2560. 2022-11-09 19:48:29,468 - INFO - main.py - train - 68 - 【train】 epoch:3 2064/2980 loss:0.6458
  2561. 2022-11-09 19:48:31,030 - INFO - main.py - train - 68 - 【train】 epoch:3 2065/2980 loss:8.0586
  2562. 2022-11-09 19:48:32,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2066/2980 loss:3.1660
  2563. 2022-11-09 19:48:33,717 - INFO - main.py - train - 68 - 【train】 epoch:3 2067/2980 loss:20.3114
  2564. 2022-11-09 19:48:34,904 - INFO - main.py - train - 68 - 【train】 epoch:3 2068/2980 loss:1.3171
  2565. 2022-11-09 19:48:36,123 - INFO - main.py - train - 68 - 【train】 epoch:3 2069/2980 loss:1.0410
  2566. 2022-11-09 19:48:37,716 - INFO - main.py - train - 68 - 【train】 epoch:3 2070/2980 loss:7.4923
  2567. 2022-11-09 19:48:39,091 - INFO - main.py - train - 68 - 【train】 epoch:3 2071/2980 loss:5.4067
  2568. 2022-11-09 19:48:40,325 - INFO - main.py - train - 68 - 【train】 epoch:3 2072/2980 loss:11.3072
  2569. 2022-11-09 19:48:41,637 - INFO - main.py - train - 68 - 【train】 epoch:3 2073/2980 loss:2.2722
  2570. 2022-11-09 19:48:43,106 - INFO - main.py - train - 68 - 【train】 epoch:3 2074/2980 loss:4.0102
  2571. 2022-11-09 19:48:44,340 - INFO - main.py - train - 68 - 【train】 epoch:3 2075/2980 loss:1.7231
  2572. 2022-11-09 19:48:45,667 - INFO - main.py - train - 68 - 【train】 epoch:3 2076/2980 loss:18.5446
  2573. 2022-11-09 19:48:46,886 - INFO - main.py - train - 68 - 【train】 epoch:3 2077/2980 loss:21.8038
  2574. 2022-11-09 19:48:48,261 - INFO - main.py - train - 68 - 【train】 epoch:3 2078/2980 loss:16.2213
  2575. 2022-11-09 19:48:49,463 - INFO - main.py - train - 68 - 【train】 epoch:3 2079/2980 loss:6.9021
  2576. 2022-11-09 19:48:50,822 - INFO - main.py - train - 68 - 【train】 epoch:3 2080/2980 loss:7.6190
  2577. 2022-11-09 19:48:52,072 - INFO - main.py - train - 68 - 【train】 epoch:3 2081/2980 loss:5.3630
  2578. 2022-11-09 19:48:53,369 - INFO - main.py - train - 68 - 【train】 epoch:3 2082/2980 loss:6.0875
  2579. 2022-11-09 19:48:54,790 - INFO - main.py - train - 68 - 【train】 epoch:3 2083/2980 loss:8.1909
  2580. 2022-11-09 19:48:56,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2084/2980 loss:4.0717
  2581. 2022-11-09 19:48:57,321 - INFO - main.py - train - 68 - 【train】 epoch:3 2085/2980 loss:6.5421
  2582. 2022-11-09 19:48:58,539 - INFO - main.py - train - 68 - 【train】 epoch:3 2086/2980 loss:4.9222
  2583. 2022-11-09 19:48:59,773 - INFO - main.py - train - 68 - 【train】 epoch:3 2087/2980 loss:2.2720
  2584. 2022-11-09 19:49:01,008 - INFO - main.py - train - 68 - 【train】 epoch:3 2088/2980 loss:1.4419
  2585. 2022-11-09 19:49:02,226 - INFO - main.py - train - 68 - 【train】 epoch:3 2089/2980 loss:5.8061
  2586. 2022-11-09 19:49:03,429 - INFO - main.py - train - 68 - 【train】 epoch:3 2090/2980 loss:6.0647
  2587. 2022-11-09 19:49:04,741 - INFO - main.py - train - 68 - 【train】 epoch:3 2091/2980 loss:7.5967
  2588. 2022-11-09 19:49:06,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2092/2980 loss:25.5720
  2589. 2022-11-09 19:49:07,647 - INFO - main.py - train - 68 - 【train】 epoch:3 2093/2980 loss:1.7670
  2590. 2022-11-09 19:49:08,959 - INFO - main.py - train - 68 - 【train】 epoch:3 2094/2980 loss:5.0329
  2591. 2022-11-09 19:49:10,287 - INFO - main.py - train - 68 - 【train】 epoch:3 2095/2980 loss:7.9591
  2592. 2022-11-09 19:49:11,833 - INFO - main.py - train - 68 - 【train】 epoch:3 2096/2980 loss:9.7501
  2593. 2022-11-09 19:49:13,130 - INFO - main.py - train - 68 - 【train】 epoch:3 2097/2980 loss:17.8601
  2594. 2022-11-09 19:49:14,426 - INFO - main.py - train - 68 - 【train】 epoch:3 2098/2980 loss:7.7309
  2595. 2022-11-09 19:49:15,660 - INFO - main.py - train - 68 - 【train】 epoch:3 2099/2980 loss:4.7088
  2596. 2022-11-09 19:49:17,051 - INFO - main.py - train - 68 - 【train】 epoch:3 2100/2980 loss:0.7218
  2597. 2022-11-09 19:49:18,300 - INFO - main.py - train - 68 - 【train】 epoch:3 2101/2980 loss:10.2667
  2598. 2022-11-09 19:49:19,597 - INFO - main.py - train - 68 - 【train】 epoch:3 2102/2980 loss:6.5866
  2599. 2022-11-09 19:49:20,925 - INFO - main.py - train - 68 - 【train】 epoch:3 2103/2980 loss:21.9789
  2600. 2022-11-09 19:49:22,393 - INFO - main.py - train - 68 - 【train】 epoch:3 2104/2980 loss:5.0218
  2601. 2022-11-09 19:49:23,971 - INFO - main.py - train - 68 - 【train】 epoch:3 2105/2980 loss:9.8247
  2602. 2022-11-09 19:49:25,267 - INFO - main.py - train - 68 - 【train】 epoch:3 2106/2980 loss:18.3211
  2603. 2022-11-09 19:49:26,486 - INFO - main.py - train - 68 - 【train】 epoch:3 2107/2980 loss:0.2022
  2604. 2022-11-09 19:49:27,767 - INFO - main.py - train - 68 - 【train】 epoch:3 2108/2980 loss:3.0464
  2605. 2022-11-09 19:49:28,954 - INFO - main.py - train - 68 - 【train】 epoch:3 2109/2980 loss:3.7475
  2606. 2022-11-09 19:49:30,173 - INFO - main.py - train - 68 - 【train】 epoch:3 2110/2980 loss:2.1023
  2607. 2022-11-09 19:49:31,438 - INFO - main.py - train - 68 - 【train】 epoch:3 2111/2980 loss:2.3742
  2608. 2022-11-09 19:49:32,875 - INFO - main.py - train - 68 - 【train】 epoch:3 2112/2980 loss:12.8924
  2609. 2022-11-09 19:49:34,390 - INFO - main.py - train - 68 - 【train】 epoch:3 2113/2980 loss:4.6226
  2610. 2022-11-09 19:49:35,703 - INFO - main.py - train - 68 - 【train】 epoch:3 2114/2980 loss:5.1766
  2611. 2022-11-09 19:49:37,077 - INFO - main.py - train - 68 - 【train】 epoch:3 2115/2980 loss:1.3812
  2612. 2022-11-09 19:49:38,327 - INFO - main.py - train - 68 - 【train】 epoch:3 2116/2980 loss:10.4995
  2613. 2022-11-09 19:49:39,561 - INFO - main.py - train - 68 - 【train】 epoch:3 2117/2980 loss:7.4422
  2614. 2022-11-09 19:49:40,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2118/2980 loss:9.6164
  2615. 2022-11-09 19:49:41,998 - INFO - main.py - train - 68 - 【train】 epoch:3 2119/2980 loss:3.2383
  2616. 2022-11-09 19:49:43,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2120/2980 loss:5.0896
  2617. 2022-11-09 19:49:44,435 - INFO - main.py - train - 68 - 【train】 epoch:3 2121/2980 loss:0.5453
  2618. 2022-11-09 19:49:45,653 - INFO - main.py - train - 68 - 【train】 epoch:3 2122/2980 loss:8.7867
  2619. 2022-11-09 19:49:46,997 - INFO - main.py - train - 68 - 【train】 epoch:3 2123/2980 loss:0.5323
  2620. 2022-11-09 19:49:48,231 - INFO - main.py - train - 68 - 【train】 epoch:3 2124/2980 loss:2.2158
  2621. 2022-11-09 19:49:49,918 - INFO - main.py - train - 68 - 【train】 epoch:3 2125/2980 loss:6.2427
  2622. 2022-11-09 19:49:51,105 - INFO - main.py - train - 68 - 【train】 epoch:3 2126/2980 loss:12.0571
  2623. 2022-11-09 19:49:52,433 - INFO - main.py - train - 68 - 【train】 epoch:3 2127/2980 loss:7.4113
  2624. 2022-11-09 19:49:54,198 - INFO - main.py - train - 68 - 【train】 epoch:3 2128/2980 loss:2.9547
  2625. 2022-11-09 19:49:55,464 - INFO - main.py - train - 68 - 【train】 epoch:3 2129/2980 loss:3.9866
  2626. 2022-11-09 19:49:57,073 - INFO - main.py - train - 68 - 【train】 epoch:3 2130/2980 loss:0.6089
  2627. 2022-11-09 19:49:58,291 - INFO - main.py - train - 68 - 【train】 epoch:3 2131/2980 loss:4.8096
  2628. 2022-11-09 19:49:59,822 - INFO - main.py - train - 68 - 【train】 epoch:3 2132/2980 loss:7.0691
  2629. 2022-11-09 19:50:01,009 - INFO - main.py - train - 68 - 【train】 epoch:3 2133/2980 loss:0.2389
  2630. 2022-11-09 19:50:02,228 - INFO - main.py - train - 68 - 【train】 epoch:3 2134/2980 loss:5.2220
  2631. 2022-11-09 19:50:03,712 - INFO - main.py - train - 68 - 【train】 epoch:3 2135/2980 loss:5.6188
  2632. 2022-11-09 19:50:04,914 - INFO - main.py - train - 68 - 【train】 epoch:3 2136/2980 loss:3.6102
  2633. 2022-11-09 19:50:06,492 - INFO - main.py - train - 68 - 【train】 epoch:3 2137/2980 loss:11.6484
  2634. 2022-11-09 19:50:07,711 - INFO - main.py - train - 68 - 【train】 epoch:3 2138/2980 loss:9.5794
  2635. 2022-11-09 19:50:09,038 - INFO - main.py - train - 68 - 【train】 epoch:3 2139/2980 loss:1.6046
  2636. 2022-11-09 19:50:10,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2140/2980 loss:1.3748
  2637. 2022-11-09 19:50:11,694 - INFO - main.py - train - 68 - 【train】 epoch:3 2141/2980 loss:4.7358
  2638. 2022-11-09 19:50:12,944 - INFO - main.py - train - 68 - 【train】 epoch:3 2142/2980 loss:2.4469
  2639. 2022-11-09 19:50:14,209 - INFO - main.py - train - 68 - 【train】 epoch:3 2143/2980 loss:13.2550
  2640. 2022-11-09 19:50:15,756 - INFO - main.py - train - 68 - 【train】 epoch:3 2144/2980 loss:4.9117
  2641. 2022-11-09 19:50:17,099 - INFO - main.py - train - 68 - 【train】 epoch:3 2145/2980 loss:2.1657
  2642. 2022-11-09 19:50:18,286 - INFO - main.py - train - 68 - 【train】 epoch:3 2146/2980 loss:8.6464
  2643. 2022-11-09 19:50:19,520 - INFO - main.py - train - 68 - 【train】 epoch:3 2147/2980 loss:0.6729
  2644. 2022-11-09 19:50:20,911 - INFO - main.py - train - 68 - 【train】 epoch:3 2148/2980 loss:9.7602
  2645. 2022-11-09 19:50:22,379 - INFO - main.py - train - 68 - 【train】 epoch:3 2149/2980 loss:7.9134
  2646. 2022-11-09 19:50:23,629 - INFO - main.py - train - 68 - 【train】 epoch:3 2150/2980 loss:11.6418
  2647. 2022-11-09 19:50:25,035 - INFO - main.py - train - 68 - 【train】 epoch:3 2151/2980 loss:8.8093
  2648. 2022-11-09 19:50:26,238 - INFO - main.py - train - 68 - 【train】 epoch:3 2152/2980 loss:0.8717
  2649. 2022-11-09 19:50:27,612 - INFO - main.py - train - 68 - 【train】 epoch:3 2153/2980 loss:25.8363
  2650. 2022-11-09 19:50:28,956 - INFO - main.py - train - 68 - 【train】 epoch:3 2154/2980 loss:11.4902
  2651. 2022-11-09 19:50:30,237 - INFO - main.py - train - 68 - 【train】 epoch:3 2155/2980 loss:10.2475
  2652. 2022-11-09 19:50:31,596 - INFO - main.py - train - 68 - 【train】 epoch:3 2156/2980 loss:12.1616
  2653. 2022-11-09 19:50:32,814 - INFO - main.py - train - 68 - 【train】 epoch:3 2157/2980 loss:3.1629
  2654. 2022-11-09 19:50:34,111 - INFO - main.py - train - 68 - 【train】 epoch:3 2158/2980 loss:1.0681
  2655. 2022-11-09 19:50:35,314 - INFO - main.py - train - 68 - 【train】 epoch:3 2159/2980 loss:4.8904
  2656. 2022-11-09 19:50:36,829 - INFO - main.py - train - 68 - 【train】 epoch:3 2160/2980 loss:17.5399
  2657. 2022-11-09 19:50:38,172 - INFO - main.py - train - 68 - 【train】 epoch:3 2161/2980 loss:5.6569
  2658. 2022-11-09 19:50:39,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2162/2980 loss:9.6133
  2659. 2022-11-09 19:50:41,093 - INFO - main.py - train - 68 - 【train】 epoch:3 2163/2980 loss:2.0093
  2660. 2022-11-09 19:50:42,671 - INFO - main.py - train - 68 - 【train】 epoch:3 2164/2980 loss:7.2378
  2661. 2022-11-09 19:50:43,921 - INFO - main.py - train - 68 - 【train】 epoch:3 2165/2980 loss:2.6092
  2662. 2022-11-09 19:50:45,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2166/2980 loss:19.3116
  2663. 2022-11-09 19:50:46,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2167/2980 loss:3.2693
  2664. 2022-11-09 19:50:48,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2168/2980 loss:6.7831
  2665. 2022-11-09 19:50:49,576 - INFO - main.py - train - 68 - 【train】 epoch:3 2169/2980 loss:6.7434
  2666. 2022-11-09 19:50:50,810 - INFO - main.py - train - 68 - 【train】 epoch:3 2170/2980 loss:2.7351
  2667. 2022-11-09 19:50:52,247 - INFO - main.py - train - 68 - 【train】 epoch:3 2171/2980 loss:2.7241
  2668. 2022-11-09 19:50:53,637 - INFO - main.py - train - 68 - 【train】 epoch:3 2172/2980 loss:2.1062
  2669. 2022-11-09 19:50:54,950 - INFO - main.py - train - 68 - 【train】 epoch:3 2173/2980 loss:42.2830
  2670. 2022-11-09 19:50:56,199 - INFO - main.py - train - 68 - 【train】 epoch:3 2174/2980 loss:1.0498
  2671. 2022-11-09 19:50:57,699 - INFO - main.py - train - 68 - 【train】 epoch:3 2175/2980 loss:16.8513
  2672. 2022-11-09 19:50:58,902 - INFO - main.py - train - 68 - 【train】 epoch:3 2176/2980 loss:6.2720
  2673. 2022-11-09 19:51:00,714 - INFO - main.py - train - 68 - 【train】 epoch:3 2177/2980 loss:3.9154
  2674. 2022-11-09 19:51:02,135 - INFO - main.py - train - 68 - 【train】 epoch:3 2178/2980 loss:5.1758
  2675. 2022-11-09 19:51:03,354 - INFO - main.py - train - 68 - 【train】 epoch:3 2179/2980 loss:4.7701
  2676. 2022-11-09 19:51:04,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2180/2980 loss:7.2143
  2677. 2022-11-09 19:51:06,384 - INFO - main.py - train - 68 - 【train】 epoch:3 2181/2980 loss:3.0357
  2678. 2022-11-09 19:51:07,618 - INFO - main.py - train - 68 - 【train】 epoch:3 2182/2980 loss:4.8052
  2679. 2022-11-09 19:51:09,040 - INFO - main.py - train - 68 - 【train】 epoch:3 2183/2980 loss:6.2293
  2680. 2022-11-09 19:51:10,446 - INFO - main.py - train - 68 - 【train】 epoch:3 2184/2980 loss:11.7100
  2681. 2022-11-09 19:51:11,774 - INFO - main.py - train - 68 - 【train】 epoch:3 2185/2980 loss:4.3012
  2682. 2022-11-09 19:51:12,961 - INFO - main.py - train - 68 - 【train】 epoch:3 2186/2980 loss:2.4658
  2683. 2022-11-09 19:51:14,383 - INFO - main.py - train - 68 - 【train】 epoch:3 2187/2980 loss:8.0152
  2684. 2022-11-09 19:51:15,663 - INFO - main.py - train - 68 - 【train】 epoch:3 2188/2980 loss:5.6437
  2685. 2022-11-09 19:51:16,991 - INFO - main.py - train - 68 - 【train】 epoch:3 2189/2980 loss:2.3225
  2686. 2022-11-09 19:51:18,210 - INFO - main.py - train - 68 - 【train】 epoch:3 2190/2980 loss:12.1779
  2687. 2022-11-09 19:51:19,444 - INFO - main.py - train - 68 - 【train】 epoch:3 2191/2980 loss:3.9022
  2688. 2022-11-09 19:51:20,926 - INFO - main.py - train - 68 - 【train】 epoch:3 2192/2980 loss:21.3759
  2689. 2022-11-09 19:51:22,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2193/2980 loss:2.1009
  2690. 2022-11-09 19:51:23,394 - INFO - main.py - train - 68 - 【train】 epoch:3 2194/2980 loss:3.3490
  2691. 2022-11-09 19:51:24,628 - INFO - main.py - train - 68 - 【train】 epoch:3 2195/2980 loss:1.7332
  2692. 2022-11-09 19:51:26,034 - INFO - main.py - train - 68 - 【train】 epoch:3 2196/2980 loss:1.5150
  2693. 2022-11-09 19:51:27,284 - INFO - main.py - train - 68 - 【train】 epoch:3 2197/2980 loss:5.5514
  2694. 2022-11-09 19:51:28,705 - INFO - main.py - train - 68 - 【train】 epoch:3 2198/2980 loss:13.7067
  2695. 2022-11-09 19:51:30,252 - INFO - main.py - train - 68 - 【train】 epoch:3 2199/2980 loss:1.0528
  2696. 2022-11-09 19:51:31,673 - INFO - main.py - train - 68 - 【train】 epoch:3 2200/2980 loss:2.5015
  2697. 2022-11-09 19:51:33,142 - INFO - main.py - train - 68 - 【train】 epoch:3 2201/2980 loss:12.5353
  2698. 2022-11-09 19:51:34,329 - INFO - main.py - train - 68 - 【train】 epoch:3 2202/2980 loss:4.2087
  2699. 2022-11-09 19:51:35,594 - INFO - main.py - train - 68 - 【train】 epoch:3 2203/2980 loss:5.3747
  2700. 2022-11-09 19:51:36,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2204/2980 loss:12.2793
  2701. 2022-11-09 19:51:38,234 - INFO - main.py - train - 68 - 【train】 epoch:3 2205/2980 loss:2.5568
  2702. 2022-11-09 19:51:39,625 - INFO - main.py - train - 68 - 【train】 epoch:3 2206/2980 loss:5.3995
  2703. 2022-11-09 19:51:40,812 - INFO - main.py - train - 68 - 【train】 epoch:3 2207/2980 loss:8.6595
  2704. 2022-11-09 19:51:42,062 - INFO - main.py - train - 68 - 【train】 epoch:3 2208/2980 loss:11.4490
  2705. 2022-11-09 19:51:43,281 - INFO - main.py - train - 68 - 【train】 epoch:3 2209/2980 loss:4.7169
  2706. 2022-11-09 19:51:44,515 - INFO - main.py - train - 68 - 【train】 epoch:3 2210/2980 loss:2.7101
  2707. 2022-11-09 19:51:45,780 - INFO - main.py - train - 68 - 【train】 epoch:3 2211/2980 loss:4.1674
  2708. 2022-11-09 19:51:47,045 - INFO - main.py - train - 68 - 【train】 epoch:3 2212/2980 loss:3.1985
  2709. 2022-11-09 19:51:48,326 - INFO - main.py - train - 68 - 【train】 epoch:3 2213/2980 loss:0.5032
  2710. 2022-11-09 19:51:49,545 - INFO - main.py - train - 68 - 【train】 epoch:3 2214/2980 loss:1.9861
  2711. 2022-11-09 19:51:51,247 - INFO - main.py - train - 68 - 【train】 epoch:3 2215/2980 loss:4.2156
  2712. 2022-11-09 19:51:52,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2216/2980 loss:13.4684
  2713. 2022-11-09 19:51:54,012 - INFO - main.py - train - 68 - 【train】 epoch:3 2217/2980 loss:1.5764
  2714. 2022-11-09 19:51:55,465 - INFO - main.py - train - 68 - 【train】 epoch:3 2218/2980 loss:1.2236
  2715. 2022-11-09 19:51:56,855 - INFO - main.py - train - 68 - 【train】 epoch:3 2219/2980 loss:3.5649
  2716. 2022-11-09 19:51:58,105 - INFO - main.py - train - 68 - 【train】 epoch:3 2220/2980 loss:0.5041
  2717. 2022-11-09 19:51:59,449 - INFO - main.py - train - 68 - 【train】 epoch:3 2221/2980 loss:3.7301
  2718. 2022-11-09 19:52:00,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2222/2980 loss:18.9754
  2719. 2022-11-09 19:52:02,204 - INFO - main.py - train - 68 - 【train】 epoch:3 2223/2980 loss:10.1807
  2720. 2022-11-09 19:52:03,469 - INFO - main.py - train - 68 - 【train】 epoch:3 2224/2980 loss:9.1481
  2721. 2022-11-09 19:52:04,734 - INFO - main.py - train - 68 - 【train】 epoch:3 2225/2980 loss:13.5632
  2722. 2022-11-09 19:52:05,968 - INFO - main.py - train - 68 - 【train】 epoch:3 2226/2980 loss:6.7190
  2723. 2022-11-09 19:52:07,452 - INFO - main.py - train - 68 - 【train】 epoch:3 2227/2980 loss:7.3532
  2724. 2022-11-09 19:52:08,733 - INFO - main.py - train - 68 - 【train】 epoch:3 2228/2980 loss:0.2893
  2725. 2022-11-09 19:52:09,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2229/2980 loss:5.6450
  2726. 2022-11-09 19:52:11,202 - INFO - main.py - train - 68 - 【train】 epoch:3 2230/2980 loss:4.6140
  2727. 2022-11-09 19:52:12,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2231/2980 loss:5.4428
  2728. 2022-11-09 19:52:14,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2232/2980 loss:3.2289
  2729. 2022-11-09 19:52:15,451 - INFO - main.py - train - 68 - 【train】 epoch:3 2233/2980 loss:3.6411
  2730. 2022-11-09 19:52:16,732 - INFO - main.py - train - 68 - 【train】 epoch:3 2234/2980 loss:1.5584
  2731. 2022-11-09 19:52:18,356 - INFO - main.py - train - 68 - 【train】 epoch:3 2235/2980 loss:4.4238
  2732. 2022-11-09 19:52:19,559 - INFO - main.py - train - 68 - 【train】 epoch:3 2236/2980 loss:2.2649
  2733. 2022-11-09 19:52:20,793 - INFO - main.py - train - 68 - 【train】 epoch:3 2237/2980 loss:3.0556
  2734. 2022-11-09 19:52:22,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2238/2980 loss:15.8525
  2735. 2022-11-09 19:52:23,902 - INFO - main.py - train - 68 - 【train】 epoch:3 2239/2980 loss:7.1069
  2736. 2022-11-09 19:52:25,120 - INFO - main.py - train - 68 - 【train】 epoch:3 2240/2980 loss:9.0912
  2737. 2022-11-09 19:52:26,714 - INFO - main.py - train - 68 - 【train】 epoch:3 2241/2980 loss:4.0451
  2738. 2022-11-09 19:52:28,104 - INFO - main.py - train - 68 - 【train】 epoch:3 2242/2980 loss:3.3715
  2739. 2022-11-09 19:52:29,557 - INFO - main.py - train - 68 - 【train】 epoch:3 2243/2980 loss:0.4381
  2740. 2022-11-09 19:52:30,775 - INFO - main.py - train - 68 - 【train】 epoch:3 2244/2980 loss:6.4567
  2741. 2022-11-09 19:52:32,618 - INFO - main.py - train - 68 - 【train】 epoch:3 2245/2980 loss:13.5628
  2742. 2022-11-09 19:52:33,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2246/2980 loss:1.3568
  2743. 2022-11-09 19:52:35,305 - INFO - main.py - train - 68 - 【train】 epoch:3 2247/2980 loss:5.2943
  2744. 2022-11-09 19:52:36,664 - INFO - main.py - train - 68 - 【train】 epoch:3 2248/2980 loss:9.8672
  2745. 2022-11-09 19:52:37,961 - INFO - main.py - train - 68 - 【train】 epoch:3 2249/2980 loss:1.9929
  2746. 2022-11-09 19:52:39,695 - INFO - main.py - train - 68 - 【train】 epoch:3 2250/2980 loss:6.4600
  2747. 2022-11-09 19:52:40,960 - INFO - main.py - train - 68 - 【train】 epoch:3 2251/2980 loss:2.7783
  2748. 2022-11-09 19:52:42,366 - INFO - main.py - train - 68 - 【train】 epoch:3 2252/2980 loss:5.3969
  2749. 2022-11-09 19:52:43,928 - INFO - main.py - train - 68 - 【train】 epoch:3 2253/2980 loss:1.9150
  2750. 2022-11-09 19:52:45,303 - INFO - main.py - train - 68 - 【train】 epoch:3 2254/2980 loss:13.8240
  2751. 2022-11-09 19:52:46,537 - INFO - main.py - train - 68 - 【train】 epoch:3 2255/2980 loss:7.0933
  2752. 2022-11-09 19:52:47,849 - INFO - main.py - train - 68 - 【train】 epoch:3 2256/2980 loss:19.2435
  2753. 2022-11-09 19:52:49,240 - INFO - main.py - train - 68 - 【train】 epoch:3 2257/2980 loss:9.3527
  2754. 2022-11-09 19:52:50,786 - INFO - main.py - train - 68 - 【train】 epoch:3 2258/2980 loss:31.7597
  2755. 2022-11-09 19:52:52,239 - INFO - main.py - train - 68 - 【train】 epoch:3 2259/2980 loss:15.8173
  2756. 2022-11-09 19:52:53,817 - INFO - main.py - train - 68 - 【train】 epoch:3 2260/2980 loss:12.5182
  2757. 2022-11-09 19:52:55,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2261/2980 loss:2.2170
  2758. 2022-11-09 19:52:56,457 - INFO - main.py - train - 68 - 【train】 epoch:3 2262/2980 loss:8.3495
  2759. 2022-11-09 19:52:58,019 - INFO - main.py - train - 68 - 【train】 epoch:3 2263/2980 loss:3.6254
  2760. 2022-11-09 19:52:59,222 - INFO - main.py - train - 68 - 【train】 epoch:3 2264/2980 loss:2.8446
  2761. 2022-11-09 19:53:00,971 - INFO - main.py - train - 68 - 【train】 epoch:3 2265/2980 loss:13.6656
  2762. 2022-11-09 19:53:02,268 - INFO - main.py - train - 68 - 【train】 epoch:3 2266/2980 loss:7.6583
  2763. 2022-11-09 19:53:03,471 - INFO - main.py - train - 68 - 【train】 epoch:3 2267/2980 loss:6.5797
  2764. 2022-11-09 19:53:04,752 - INFO - main.py - train - 68 - 【train】 epoch:3 2268/2980 loss:1.9663
  2765. 2022-11-09 19:53:06,376 - INFO - main.py - train - 68 - 【train】 epoch:3 2269/2980 loss:11.5551
  2766. 2022-11-09 19:53:07,673 - INFO - main.py - train - 68 - 【train】 epoch:3 2270/2980 loss:8.6917
  2767. 2022-11-09 19:53:08,907 - INFO - main.py - train - 68 - 【train】 epoch:3 2271/2980 loss:3.8742
  2768. 2022-11-09 19:53:10,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2272/2980 loss:5.1100
  2769. 2022-11-09 19:53:11,891 - INFO - main.py - train - 68 - 【train】 epoch:3 2273/2980 loss:0.1214
  2770. 2022-11-09 19:53:13,203 - INFO - main.py - train - 68 - 【train】 epoch:3 2274/2980 loss:18.2596
  2771. 2022-11-09 19:53:14,531 - INFO - main.py - train - 68 - 【train】 epoch:3 2275/2980 loss:7.4577
  2772. 2022-11-09 19:53:15,749 - INFO - main.py - train - 68 - 【train】 epoch:3 2276/2980 loss:5.5038
  2773. 2022-11-09 19:53:16,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2277/2980 loss:9.9385
  2774. 2022-11-09 19:53:18,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2278/2980 loss:3.1031
  2775. 2022-11-09 19:53:19,826 - INFO - main.py - train - 68 - 【train】 epoch:3 2279/2980 loss:3.5171
  2776. 2022-11-09 19:53:21,045 - INFO - main.py - train - 68 - 【train】 epoch:3 2280/2980 loss:3.9216
  2777. 2022-11-09 19:53:22,294 - INFO - main.py - train - 68 - 【train】 epoch:3 2281/2980 loss:5.0778
  2778. 2022-11-09 19:53:23,872 - INFO - main.py - train - 68 - 【train】 epoch:3 2282/2980 loss:10.9088
  2779. 2022-11-09 19:53:25,091 - INFO - main.py - train - 68 - 【train】 epoch:3 2283/2980 loss:7.0077
  2780. 2022-11-09 19:53:26,700 - INFO - main.py - train - 68 - 【train】 epoch:3 2284/2980 loss:1.8758
  2781. 2022-11-09 19:53:28,152 - INFO - main.py - train - 68 - 【train】 epoch:3 2285/2980 loss:2.8881
  2782. 2022-11-09 19:53:29,558 - INFO - main.py - train - 68 - 【train】 epoch:3 2286/2980 loss:9.8184
  2783. 2022-11-09 19:53:30,808 - INFO - main.py - train - 68 - 【train】 epoch:3 2287/2980 loss:0.1926
  2784. 2022-11-09 19:53:32,089 - INFO - main.py - train - 68 - 【train】 epoch:3 2288/2980 loss:0.6237
  2785. 2022-11-09 19:53:33,604 - INFO - main.py - train - 68 - 【train】 epoch:3 2289/2980 loss:13.1553
  2786. 2022-11-09 19:53:35,010 - INFO - main.py - train - 68 - 【train】 epoch:3 2290/2980 loss:8.6239
  2787. 2022-11-09 19:53:36,354 - INFO - main.py - train - 68 - 【train】 epoch:3 2291/2980 loss:8.4019
  2788. 2022-11-09 19:53:37,634 - INFO - main.py - train - 68 - 【train】 epoch:3 2292/2980 loss:9.2975
  2789. 2022-11-09 19:53:38,915 - INFO - main.py - train - 68 - 【train】 epoch:3 2293/2980 loss:14.2161
  2790. 2022-11-09 19:53:40,399 - INFO - main.py - train - 68 - 【train】 epoch:3 2294/2980 loss:7.3832
  2791. 2022-11-09 19:53:41,868 - INFO - main.py - train - 68 - 【train】 epoch:3 2295/2980 loss:13.3958
  2792. 2022-11-09 19:53:43,102 - INFO - main.py - train - 68 - 【train】 epoch:3 2296/2980 loss:8.3029
  2793. 2022-11-09 19:53:44,367 - INFO - main.py - train - 68 - 【train】 epoch:3 2297/2980 loss:11.8345
  2794. 2022-11-09 19:53:45,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2298/2980 loss:4.9408
  2795. 2022-11-09 19:53:47,007 - INFO - main.py - train - 68 - 【train】 epoch:3 2299/2980 loss:2.1335
  2796. 2022-11-09 19:53:48,335 - INFO - main.py - train - 68 - 【train】 epoch:3 2300/2980 loss:1.8978
  2797. 2022-11-09 19:53:49,538 - INFO - main.py - train - 68 - 【train】 epoch:3 2301/2980 loss:2.6161
  2798. 2022-11-09 19:53:50,835 - INFO - main.py - train - 68 - 【train】 epoch:3 2302/2980 loss:2.5020
  2799. 2022-11-09 19:53:52,053 - INFO - main.py - train - 68 - 【train】 epoch:3 2303/2980 loss:8.7832
  2800. 2022-11-09 19:53:53,318 - INFO - main.py - train - 68 - 【train】 epoch:3 2304/2980 loss:3.7826
  2801. 2022-11-09 19:53:54,568 - INFO - main.py - train - 68 - 【train】 epoch:3 2305/2980 loss:0.9566
  2802. 2022-11-09 19:53:55,818 - INFO - main.py - train - 68 - 【train】 epoch:3 2306/2980 loss:3.7819
  2803. 2022-11-09 19:53:57,052 - INFO - main.py - train - 68 - 【train】 epoch:3 2307/2980 loss:8.0935
  2804. 2022-11-09 19:53:58,395 - INFO - main.py - train - 68 - 【train】 epoch:3 2308/2980 loss:14.8044
  2805. 2022-11-09 19:53:59,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2309/2980 loss:5.7758
  2806. 2022-11-09 19:54:01,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2310/2980 loss:5.1082
  2807. 2022-11-09 19:54:02,754 - INFO - main.py - train - 68 - 【train】 epoch:3 2311/2980 loss:4.2500
  2808. 2022-11-09 19:54:04,144 - INFO - main.py - train - 68 - 【train】 epoch:3 2312/2980 loss:19.7127
  2809. 2022-11-09 19:54:05,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2313/2980 loss:0.9058
  2810. 2022-11-09 19:54:06,799 - INFO - main.py - train - 68 - 【train】 epoch:3 2314/2980 loss:11.5810
  2811. 2022-11-09 19:54:08,221 - INFO - main.py - train - 68 - 【train】 epoch:3 2315/2980 loss:2.0547
  2812. 2022-11-09 19:54:09,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2316/2980 loss:3.8885
  2813. 2022-11-09 19:54:10,674 - INFO - main.py - train - 68 - 【train】 epoch:3 2317/2980 loss:6.0497
  2814. 2022-11-09 19:54:12,189 - INFO - main.py - train - 68 - 【train】 epoch:3 2318/2980 loss:0.7940
  2815. 2022-11-09 19:54:13,454 - INFO - main.py - train - 68 - 【train】 epoch:3 2319/2980 loss:5.4294
  2816. 2022-11-09 19:54:14,657 - INFO - main.py - train - 68 - 【train】 epoch:3 2320/2980 loss:5.2796
  2817. 2022-11-09 19:54:15,875 - INFO - main.py - train - 68 - 【train】 epoch:3 2321/2980 loss:3.0406
  2818. 2022-11-09 19:54:17,141 - INFO - main.py - train - 68 - 【train】 epoch:3 2322/2980 loss:7.6979
  2819. 2022-11-09 19:54:18,609 - INFO - main.py - train - 68 - 【train】 epoch:3 2323/2980 loss:1.5312
  2820. 2022-11-09 19:54:20,156 - INFO - main.py - train - 68 - 【train】 epoch:3 2324/2980 loss:6.7931
  2821. 2022-11-09 19:54:21,452 - INFO - main.py - train - 68 - 【train】 epoch:3 2325/2980 loss:9.8993
  2822. 2022-11-09 19:54:22,718 - INFO - main.py - train - 68 - 【train】 epoch:3 2326/2980 loss:3.1509
  2823. 2022-11-09 19:54:24,295 - INFO - main.py - train - 68 - 【train】 epoch:3 2327/2980 loss:8.2474
  2824. 2022-11-09 19:54:25,514 - INFO - main.py - train - 68 - 【train】 epoch:3 2328/2980 loss:4.7344
  2825. 2022-11-09 19:54:26,795 - INFO - main.py - train - 68 - 【train】 epoch:3 2329/2980 loss:7.5824
  2826. 2022-11-09 19:54:28,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2330/2980 loss:3.4036
  2827. 2022-11-09 19:54:29,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2331/2980 loss:4.3293
  2828. 2022-11-09 19:54:31,184 - INFO - main.py - train - 68 - 【train】 epoch:3 2332/2980 loss:4.4724
  2829. 2022-11-09 19:54:32,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2333/2980 loss:14.7370
  2830. 2022-11-09 19:54:34,012 - INFO - main.py - train - 68 - 【train】 epoch:3 2334/2980 loss:12.4971
  2831. 2022-11-09 19:54:35,340 - INFO - main.py - train - 68 - 【train】 epoch:3 2335/2980 loss:15.6389
  2832. 2022-11-09 19:54:36,542 - INFO - main.py - train - 68 - 【train】 epoch:3 2336/2980 loss:7.4467
  2833. 2022-11-09 19:54:38,027 - INFO - main.py - train - 68 - 【train】 epoch:3 2337/2980 loss:10.2014
  2834. 2022-11-09 19:54:39,526 - INFO - main.py - train - 68 - 【train】 epoch:3 2338/2980 loss:2.3598
  2835. 2022-11-09 19:54:40,807 - INFO - main.py - train - 68 - 【train】 epoch:3 2339/2980 loss:3.7181
  2836. 2022-11-09 19:54:42,026 - INFO - main.py - train - 68 - 【train】 epoch:3 2340/2980 loss:8.8021
  2837. 2022-11-09 19:54:43,338 - INFO - main.py - train - 68 - 【train】 epoch:3 2341/2980 loss:27.1214
  2838. 2022-11-09 19:54:44,603 - INFO - main.py - train - 68 - 【train】 epoch:3 2342/2980 loss:2.9668
  2839. 2022-11-09 19:54:45,931 - INFO - main.py - train - 68 - 【train】 epoch:3 2343/2980 loss:17.8089
  2840. 2022-11-09 19:54:47,221 - INFO - main.py - train - 68 - 【train】 epoch:3 2344/2980 loss:4.7201
  2841. 2022-11-09 19:54:48,564 - INFO - main.py - train - 68 - 【train】 epoch:3 2345/2980 loss:0.8969
  2842. 2022-11-09 19:54:49,877 - INFO - main.py - train - 68 - 【train】 epoch:3 2346/2980 loss:3.7045
  2843. 2022-11-09 19:54:51,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2347/2980 loss:11.8206
  2844. 2022-11-09 19:54:52,626 - INFO - main.py - train - 68 - 【train】 epoch:3 2348/2980 loss:2.8284
  2845. 2022-11-09 19:54:53,954 - INFO - main.py - train - 68 - 【train】 epoch:3 2349/2980 loss:0.8567
  2846. 2022-11-09 19:54:55,172 - INFO - main.py - train - 68 - 【train】 epoch:3 2350/2980 loss:14.1895
  2847. 2022-11-09 19:54:56,500 - INFO - main.py - train - 68 - 【train】 epoch:3 2351/2980 loss:5.9040
  2848. 2022-11-09 19:54:57,812 - INFO - main.py - train - 68 - 【train】 epoch:3 2352/2980 loss:3.3210
  2849. 2022-11-09 19:54:59,249 - INFO - main.py - train - 68 - 【train】 epoch:3 2353/2980 loss:0.9613
  2850. 2022-11-09 19:55:00,468 - INFO - main.py - train - 68 - 【train】 epoch:3 2354/2980 loss:2.7257
  2851. 2022-11-09 19:55:01,811 - INFO - main.py - train - 68 - 【train】 epoch:3 2355/2980 loss:1.4808
  2852. 2022-11-09 19:55:03,030 - INFO - main.py - train - 68 - 【train】 epoch:3 2356/2980 loss:8.2953
  2853. 2022-11-09 19:55:04,217 - INFO - main.py - train - 68 - 【train】 epoch:3 2357/2980 loss:0.4998
  2854. 2022-11-09 19:55:05,420 - INFO - main.py - train - 68 - 【train】 epoch:3 2358/2980 loss:3.1977
  2855. 2022-11-09 19:55:06,654 - INFO - main.py - train - 68 - 【train】 epoch:3 2359/2980 loss:10.6449
  2856. 2022-11-09 19:55:08,185 - INFO - main.py - train - 68 - 【train】 epoch:3 2360/2980 loss:3.8910
  2857. 2022-11-09 19:55:09,419 - INFO - main.py - train - 68 - 【train】 epoch:3 2361/2980 loss:6.3086
  2858. 2022-11-09 19:55:10,794 - INFO - main.py - train - 68 - 【train】 epoch:3 2362/2980 loss:6.7596
  2859. 2022-11-09 19:55:12,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2363/2980 loss:17.1606
  2860. 2022-11-09 19:55:13,668 - INFO - main.py - train - 68 - 【train】 epoch:3 2364/2980 loss:7.4674
  2861. 2022-11-09 19:55:14,871 - INFO - main.py - train - 68 - 【train】 epoch:3 2365/2980 loss:6.7409
  2862. 2022-11-09 19:55:16,089 - INFO - main.py - train - 68 - 【train】 epoch:3 2366/2980 loss:4.5915
  2863. 2022-11-09 19:55:17,401 - INFO - main.py - train - 68 - 【train】 epoch:3 2367/2980 loss:6.7920
  2864. 2022-11-09 19:55:18,698 - INFO - main.py - train - 68 - 【train】 epoch:3 2368/2980 loss:6.5300
  2865. 2022-11-09 19:55:20,244 - INFO - main.py - train - 68 - 【train】 epoch:3 2369/2980 loss:7.1821
  2866. 2022-11-09 19:55:21,900 - INFO - main.py - train - 68 - 【train】 epoch:3 2370/2980 loss:4.8888
  2867. 2022-11-09 19:55:23,134 - INFO - main.py - train - 68 - 【train】 epoch:3 2371/2980 loss:10.2645
  2868. 2022-11-09 19:55:24,572 - INFO - main.py - train - 68 - 【train】 epoch:3 2372/2980 loss:2.5036
  2869. 2022-11-09 19:55:25,962 - INFO - main.py - train - 68 - 【train】 epoch:3 2373/2980 loss:18.1987
  2870. 2022-11-09 19:55:27,180 - INFO - main.py - train - 68 - 【train】 epoch:3 2374/2980 loss:2.2081
  2871. 2022-11-09 19:55:28,555 - INFO - main.py - train - 68 - 【train】 epoch:3 2375/2980 loss:11.5233
  2872. 2022-11-09 19:55:29,836 - INFO - main.py - train - 68 - 【train】 epoch:3 2376/2980 loss:0.7339
  2873. 2022-11-09 19:55:31,586 - INFO - main.py - train - 68 - 【train】 epoch:3 2377/2980 loss:21.6278
  2874. 2022-11-09 19:55:32,804 - INFO - main.py - train - 68 - 【train】 epoch:3 2378/2980 loss:2.8937
  2875. 2022-11-09 19:55:34,429 - INFO - main.py - train - 68 - 【train】 epoch:3 2379/2980 loss:9.0080
  2876. 2022-11-09 19:55:35,647 - INFO - main.py - train - 68 - 【train】 epoch:3 2380/2980 loss:7.8122
  2877. 2022-11-09 19:55:36,881 - INFO - main.py - train - 68 - 【train】 epoch:3 2381/2980 loss:1.8185
  2878. 2022-11-09 19:55:38,381 - INFO - main.py - train - 68 - 【train】 epoch:3 2382/2980 loss:10.5323
  2879. 2022-11-09 19:55:40,209 - INFO - main.py - train - 68 - 【train】 epoch:3 2383/2980 loss:6.1839
  2880. 2022-11-09 19:55:44,817 - INFO - main.py - train - 68 - 【train】 epoch:4 2384/2980 loss:8.6628
  2881. 2022-11-09 19:55:46,020 - INFO - main.py - train - 68 - 【train】 epoch:4 2385/2980 loss:0.1823
  2882. 2022-11-09 19:55:47,316 - INFO - main.py - train - 68 - 【train】 epoch:4 2386/2980 loss:11.8514
  2883. 2022-11-09 19:55:48,597 - INFO - main.py - train - 68 - 【train】 epoch:4 2387/2980 loss:10.3778
  2884. 2022-11-09 19:55:49,800 - INFO - main.py - train - 68 - 【train】 epoch:4 2388/2980 loss:4.0404
  2885. 2022-11-09 19:55:51,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2389/2980 loss:2.7796
  2886. 2022-11-09 19:55:52,268 - INFO - main.py - train - 68 - 【train】 epoch:4 2390/2980 loss:9.0120
  2887. 2022-11-09 19:55:53,627 - INFO - main.py - train - 68 - 【train】 epoch:4 2391/2980 loss:8.8406
  2888. 2022-11-09 19:55:54,861 - INFO - main.py - train - 68 - 【train】 epoch:4 2392/2980 loss:6.3922
  2889. 2022-11-09 19:55:56,049 - INFO - main.py - train - 68 - 【train】 epoch:4 2393/2980 loss:1.5914
  2890. 2022-11-09 19:55:57,314 - INFO - main.py - train - 68 - 【train】 epoch:4 2394/2980 loss:2.3392
  2891. 2022-11-09 19:55:58,501 - INFO - main.py - train - 68 - 【train】 epoch:4 2395/2980 loss:1.1754
  2892. 2022-11-09 19:55:59,735 - INFO - main.py - train - 68 - 【train】 epoch:4 2396/2980 loss:4.1820
  2893. 2022-11-09 19:56:00,938 - INFO - main.py - train - 68 - 【train】 epoch:4 2397/2980 loss:2.9044
  2894. 2022-11-09 19:56:02,250 - INFO - main.py - train - 68 - 【train】 epoch:4 2398/2980 loss:12.9324
  2895. 2022-11-09 19:56:03,453 - INFO - main.py - train - 68 - 【train】 epoch:4 2399/2980 loss:8.8895
  2896. 2022-11-09 19:56:04,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2400/2980 loss:6.1899
  2897. 2022-11-09 19:56:06,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2401/2980 loss:3.1658
  2898. 2022-11-09 19:56:07,390 - INFO - main.py - train - 68 - 【train】 epoch:4 2402/2980 loss:2.7747
  2899. 2022-11-09 19:56:08,639 - INFO - main.py - train - 68 - 【train】 epoch:4 2403/2980 loss:2.1707
  2900. 2022-11-09 19:56:10,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2404/2980 loss:6.7226
  2901. 2022-11-09 19:56:11,451 - INFO - main.py - train - 68 - 【train】 epoch:4 2405/2980 loss:1.3819
  2902. 2022-11-09 19:56:12,701 - INFO - main.py - train - 68 - 【train】 epoch:4 2406/2980 loss:3.1514
  2903. 2022-11-09 19:56:14,013 - INFO - main.py - train - 68 - 【train】 epoch:4 2407/2980 loss:0.1464
  2904. 2022-11-09 19:56:15,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2408/2980 loss:6.8075
  2905. 2022-11-09 19:56:16,497 - INFO - main.py - train - 68 - 【train】 epoch:4 2409/2980 loss:6.0624
  2906. 2022-11-09 19:56:17,684 - INFO - main.py - train - 68 - 【train】 epoch:4 2410/2980 loss:2.5337
  2907. 2022-11-09 19:56:18,981 - INFO - main.py - train - 68 - 【train】 epoch:4 2411/2980 loss:1.9075
  2908. 2022-11-09 19:56:20,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2412/2980 loss:6.9420
  2909. 2022-11-09 19:56:21,621 - INFO - main.py - train - 68 - 【train】 epoch:4 2413/2980 loss:10.8169
  2910. 2022-11-09 19:56:22,870 - INFO - main.py - train - 68 - 【train】 epoch:4 2414/2980 loss:0.7860
  2911. 2022-11-09 19:56:24,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2415/2980 loss:8.5638
  2912. 2022-11-09 19:56:25,339 - INFO - main.py - train - 68 - 【train】 epoch:4 2416/2980 loss:5.0917
  2913. 2022-11-09 19:56:26,541 - INFO - main.py - train - 68 - 【train】 epoch:4 2417/2980 loss:2.6264
  2914. 2022-11-09 19:56:28,088 - INFO - main.py - train - 68 - 【train】 epoch:4 2418/2980 loss:10.7996
  2915. 2022-11-09 19:56:29,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2419/2980 loss:1.1193
  2916. 2022-11-09 19:56:30,650 - INFO - main.py - train - 68 - 【train】 epoch:4 2420/2980 loss:7.3170
  2917. 2022-11-09 19:56:31,837 - INFO - main.py - train - 68 - 【train】 epoch:4 2421/2980 loss:2.1668
  2918. 2022-11-09 19:56:33,056 - INFO - main.py - train - 68 - 【train】 epoch:4 2422/2980 loss:3.4634
  2919. 2022-11-09 19:56:34,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2423/2980 loss:0.5068
  2920. 2022-11-09 19:56:35,539 - INFO - main.py - train - 68 - 【train】 epoch:4 2424/2980 loss:7.1697
  2921. 2022-11-09 19:56:37,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2425/2980 loss:1.9516
  2922. 2022-11-09 19:56:38,242 - INFO - main.py - train - 68 - 【train】 epoch:4 2426/2980 loss:3.1500
  2923. 2022-11-09 19:56:39,554 - INFO - main.py - train - 68 - 【train】 epoch:4 2427/2980 loss:7.1254
  2924. 2022-11-09 19:56:40,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2428/2980 loss:3.7976
  2925. 2022-11-09 19:56:42,069 - INFO - main.py - train - 68 - 【train】 epoch:4 2429/2980 loss:2.4295
  2926. 2022-11-09 19:56:43,334 - INFO - main.py - train - 68 - 【train】 epoch:4 2430/2980 loss:1.5609
  2927. 2022-11-09 19:56:44,537 - INFO - main.py - train - 68 - 【train】 epoch:4 2431/2980 loss:7.9701
  2928. 2022-11-09 19:56:45,740 - INFO - main.py - train - 68 - 【train】 epoch:4 2432/2980 loss:6.2512
  2929. 2022-11-09 19:56:47,115 - INFO - main.py - train - 68 - 【train】 epoch:4 2433/2980 loss:16.3950
  2930. 2022-11-09 19:56:48,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2434/2980 loss:3.0017
  2931. 2022-11-09 19:56:49,630 - INFO - main.py - train - 68 - 【train】 epoch:4 2435/2980 loss:1.6653
  2932. 2022-11-09 19:56:50,848 - INFO - main.py - train - 68 - 【train】 epoch:4 2436/2980 loss:1.8849
  2933. 2022-11-09 19:56:52,051 - INFO - main.py - train - 68 - 【train】 epoch:4 2437/2980 loss:4.8907
  2934. 2022-11-09 19:56:53,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2438/2980 loss:6.5102
  2935. 2022-11-09 19:56:54,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2439/2980 loss:5.8387
  2936. 2022-11-09 19:56:55,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2440/2980 loss:4.2993
  2937. 2022-11-09 19:56:57,206 - INFO - main.py - train - 68 - 【train】 epoch:4 2441/2980 loss:2.4820
  2938. 2022-11-09 19:56:58,487 - INFO - main.py - train - 68 - 【train】 epoch:4 2442/2980 loss:4.6776
  2939. 2022-11-09 19:56:59,737 - INFO - main.py - train - 68 - 【train】 epoch:4 2443/2980 loss:8.1732
  2940. 2022-11-09 19:57:00,986 - INFO - main.py - train - 68 - 【train】 epoch:4 2444/2980 loss:1.9311
  2941. 2022-11-09 19:57:02,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2445/2980 loss:2.7802
  2942. 2022-11-09 19:57:03,611 - INFO - main.py - train - 68 - 【train】 epoch:4 2446/2980 loss:8.6120
  2943. 2022-11-09 19:57:05,157 - INFO - main.py - train - 68 - 【train】 epoch:4 2447/2980 loss:1.3957
  2944. 2022-11-09 19:57:06,376 - INFO - main.py - train - 68 - 【train】 epoch:4 2448/2980 loss:1.2294
  2945. 2022-11-09 19:57:07,672 - INFO - main.py - train - 68 - 【train】 epoch:4 2449/2980 loss:1.7729
  2946. 2022-11-09 19:57:08,907 - INFO - main.py - train - 68 - 【train】 epoch:4 2450/2980 loss:5.1130
  2947. 2022-11-09 19:57:10,187 - INFO - main.py - train - 68 - 【train】 epoch:4 2451/2980 loss:3.0753
  2948. 2022-11-09 19:57:11,500 - INFO - main.py - train - 68 - 【train】 epoch:4 2452/2980 loss:10.8192
  2949. 2022-11-09 19:57:12,796 - INFO - main.py - train - 68 - 【train】 epoch:4 2453/2980 loss:13.0640
  2950. 2022-11-09 19:57:13,999 - INFO - main.py - train - 68 - 【train】 epoch:4 2454/2980 loss:6.8624
  2951. 2022-11-09 19:57:15,202 - INFO - main.py - train - 68 - 【train】 epoch:4 2455/2980 loss:0.2149
  2952. 2022-11-09 19:57:16,670 - INFO - main.py - train - 68 - 【train】 epoch:4 2456/2980 loss:2.7374
  2953. 2022-11-09 19:57:17,889 - INFO - main.py - train - 68 - 【train】 epoch:4 2457/2980 loss:6.4777
  2954. 2022-11-09 19:57:19,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2458/2980 loss:1.0110
  2955. 2022-11-09 19:57:20,357 - INFO - main.py - train - 68 - 【train】 epoch:4 2459/2980 loss:0.6893
  2956. 2022-11-09 19:57:21,716 - INFO - main.py - train - 68 - 【train】 epoch:4 2460/2980 loss:12.1177
  2957. 2022-11-09 19:57:22,919 - INFO - main.py - train - 68 - 【train】 epoch:4 2461/2980 loss:1.8477
  2958. 2022-11-09 19:57:24,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2462/2980 loss:2.2995
  2959. 2022-11-09 19:57:25,387 - INFO - main.py - train - 68 - 【train】 epoch:4 2463/2980 loss:4.5228
  2960. 2022-11-09 19:57:26,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2464/2980 loss:0.2807
  2961. 2022-11-09 19:57:27,980 - INFO - main.py - train - 68 - 【train】 epoch:4 2465/2980 loss:6.4620
  2962. 2022-11-09 19:57:29,402 - INFO - main.py - train - 68 - 【train】 epoch:4 2466/2980 loss:3.2095
  2963. 2022-11-09 19:57:30,620 - INFO - main.py - train - 68 - 【train】 epoch:4 2467/2980 loss:4.1550
  2964. 2022-11-09 19:57:31,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2468/2980 loss:4.9112
  2965. 2022-11-09 19:57:33,416 - INFO - main.py - train - 68 - 【train】 epoch:4 2469/2980 loss:8.2142
  2966. 2022-11-09 19:57:34,650 - INFO - main.py - train - 68 - 【train】 epoch:4 2470/2980 loss:6.0117
  2967. 2022-11-09 19:57:36,166 - INFO - main.py - train - 68 - 【train】 epoch:4 2471/2980 loss:0.2751
  2968. 2022-11-09 19:57:37,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2472/2980 loss:0.2886
  2969. 2022-11-09 19:57:38,790 - INFO - main.py - train - 68 - 【train】 epoch:4 2473/2980 loss:8.8258
  2970. 2022-11-09 19:57:40,071 - INFO - main.py - train - 68 - 【train】 epoch:4 2474/2980 loss:3.6424
  2971. 2022-11-09 19:57:41,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2475/2980 loss:2.1371
  2972. 2022-11-09 19:57:42,727 - INFO - main.py - train - 68 - 【train】 epoch:4 2476/2980 loss:6.3939
  2973. 2022-11-09 19:57:43,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2477/2980 loss:7.4282
  2974. 2022-11-09 19:57:45,179 - INFO - main.py - train - 68 - 【train】 epoch:4 2478/2980 loss:2.7612
  2975. 2022-11-09 19:57:46,382 - INFO - main.py - train - 68 - 【train】 epoch:4 2479/2980 loss:7.2881
  2976. 2022-11-09 19:57:47,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2480/2980 loss:3.1484
  2977. 2022-11-09 19:57:49,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2481/2980 loss:2.0341
  2978. 2022-11-09 19:57:50,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2482/2980 loss:10.9087
  2979. 2022-11-09 19:57:51,771 - INFO - main.py - train - 68 - 【train】 epoch:4 2483/2980 loss:7.6537
  2980. 2022-11-09 19:57:53,318 - INFO - main.py - train - 68 - 【train】 epoch:4 2484/2980 loss:5.4955
  2981. 2022-11-09 19:57:54,536 - INFO - main.py - train - 68 - 【train】 epoch:4 2485/2980 loss:3.4337
  2982. 2022-11-09 19:57:55,802 - INFO - main.py - train - 68 - 【train】 epoch:4 2486/2980 loss:7.8631
  2983. 2022-11-09 19:57:57,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2487/2980 loss:1.6161
  2984. 2022-11-09 19:57:58,848 - INFO - main.py - train - 68 - 【train】 epoch:4 2488/2980 loss:0.9628
  2985. 2022-11-09 19:58:00,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2489/2980 loss:3.9391
  2986. 2022-11-09 19:58:01,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2490/2980 loss:10.3846
  2987. 2022-11-09 19:58:02,675 - INFO - main.py - train - 68 - 【train】 epoch:4 2491/2980 loss:2.6946
  2988. 2022-11-09 19:58:04,112 - INFO - main.py - train - 68 - 【train】 epoch:4 2492/2980 loss:3.3416
  2989. 2022-11-09 19:58:05,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2493/2980 loss:3.1153
  2990. 2022-11-09 19:58:06,612 - INFO - main.py - train - 68 - 【train】 epoch:4 2494/2980 loss:4.1366
  2991. 2022-11-09 19:58:08,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2495/2980 loss:7.1436
  2992. 2022-11-09 19:58:09,345 - INFO - main.py - train - 68 - 【train】 epoch:4 2496/2980 loss:3.8539
  2993. 2022-11-09 19:58:10,595 - INFO - main.py - train - 68 - 【train】 epoch:4 2497/2980 loss:6.7242
  2994. 2022-11-09 19:58:11,985 - INFO - main.py - train - 68 - 【train】 epoch:4 2498/2980 loss:3.8360
  2995. 2022-11-09 19:58:13,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2499/2980 loss:9.3618
  2996. 2022-11-09 19:58:14,547 - INFO - main.py - train - 68 - 【train】 epoch:4 2500/2980 loss:0.8583
  2997. 2022-11-09 19:58:15,860 - INFO - main.py - train - 68 - 【train】 epoch:4 2501/2980 loss:7.4613
  2998. 2022-11-09 19:58:17,094 - INFO - main.py - train - 68 - 【train】 epoch:4 2502/2980 loss:1.2392
  2999. 2022-11-09 19:58:18,375 - INFO - main.py - train - 68 - 【train】 epoch:4 2503/2980 loss:3.9371
  3000. 2022-11-09 19:58:19,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2504/2980 loss:8.2050
  3001. 2022-11-09 19:58:20,890 - INFO - main.py - train - 68 - 【train】 epoch:4 2505/2980 loss:1.3824
  3002. 2022-11-09 19:58:22,358 - INFO - main.py - train - 68 - 【train】 epoch:4 2506/2980 loss:1.8316
  3003. 2022-11-09 19:58:23,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2507/2980 loss:2.9265
  3004. 2022-11-09 19:58:24,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2508/2980 loss:3.4016
  3005. 2022-11-09 19:58:26,060 - INFO - main.py - train - 68 - 【train】 epoch:4 2509/2980 loss:1.2337
  3006. 2022-11-09 19:58:27,294 - INFO - main.py - train - 68 - 【train】 epoch:4 2510/2980 loss:7.9797
  3007. 2022-11-09 19:58:28,528 - INFO - main.py - train - 68 - 【train】 epoch:4 2511/2980 loss:7.5836
  3008. 2022-11-09 19:58:29,778 - INFO - main.py - train - 68 - 【train】 epoch:4 2512/2980 loss:1.2003
  3009. 2022-11-09 19:58:31,200 - INFO - main.py - train - 68 - 【train】 epoch:4 2513/2980 loss:6.2888
  3010. 2022-11-09 19:58:32,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2514/2980 loss:3.6258
  3011. 2022-11-09 19:58:33,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2515/2980 loss:1.6706
  3012. 2022-11-09 19:58:34,918 - INFO - main.py - train - 68 - 【train】 epoch:4 2516/2980 loss:1.9696
  3013. 2022-11-09 19:58:36,167 - INFO - main.py - train - 68 - 【train】 epoch:4 2517/2980 loss:5.6497
  3014. 2022-11-09 19:58:37,495 - INFO - main.py - train - 68 - 【train】 epoch:4 2518/2980 loss:13.1435
  3015. 2022-11-09 19:58:38,745 - INFO - main.py - train - 68 - 【train】 epoch:4 2519/2980 loss:14.0555
  3016. 2022-11-09 19:58:40,166 - INFO - main.py - train - 68 - 【train】 epoch:4 2520/2980 loss:12.8972
  3017. 2022-11-09 19:58:41,432 - INFO - main.py - train - 68 - 【train】 epoch:4 2521/2980 loss:4.8705
  3018. 2022-11-09 19:58:42,916 - INFO - main.py - train - 68 - 【train】 epoch:4 2522/2980 loss:6.3843
  3019. 2022-11-09 19:58:44,134 - INFO - main.py - train - 68 - 【train】 epoch:4 2523/2980 loss:14.6158
  3020. 2022-11-09 19:58:45,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2524/2980 loss:0.6124
  3021. 2022-11-09 19:58:46,634 - INFO - main.py - train - 68 - 【train】 epoch:4 2525/2980 loss:6.4716
  3022. 2022-11-09 19:58:48,102 - INFO - main.py - train - 68 - 【train】 epoch:4 2526/2980 loss:1.6540
  3023. 2022-11-09 19:58:49,430 - INFO - main.py - train - 68 - 【train】 epoch:4 2527/2980 loss:16.2062
  3024. 2022-11-09 19:58:50,680 - INFO - main.py - train - 68 - 【train】 epoch:4 2528/2980 loss:8.8126
  3025. 2022-11-09 19:58:51,914 - INFO - main.py - train - 68 - 【train】 epoch:4 2529/2980 loss:3.9212
  3026. 2022-11-09 19:58:53,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2530/2980 loss:2.4754
  3027. 2022-11-09 19:58:54,569 - INFO - main.py - train - 68 - 【train】 epoch:4 2531/2980 loss:7.5874
  3028. 2022-11-09 19:58:55,756 - INFO - main.py - train - 68 - 【train】 epoch:4 2532/2980 loss:0.6759
  3029. 2022-11-09 19:58:57,178 - INFO - main.py - train - 68 - 【train】 epoch:4 2533/2980 loss:5.1466
  3030. 2022-11-09 19:58:58,724 - INFO - main.py - train - 68 - 【train】 epoch:4 2534/2980 loss:0.5672
  3031. 2022-11-09 19:59:00,099 - INFO - main.py - train - 68 - 【train】 epoch:4 2535/2980 loss:23.3488
  3032. 2022-11-09 19:59:01,318 - INFO - main.py - train - 68 - 【train】 epoch:4 2536/2980 loss:3.9832
  3033. 2022-11-09 19:59:02,520 - INFO - main.py - train - 68 - 【train】 epoch:4 2537/2980 loss:10.8963
  3034. 2022-11-09 19:59:03,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2538/2980 loss:7.7953
  3035. 2022-11-09 19:59:05,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2539/2980 loss:11.7134
  3036. 2022-11-09 19:59:06,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2540/2980 loss:7.8076
  3037. 2022-11-09 19:59:07,629 - INFO - main.py - train - 68 - 【train】 epoch:4 2541/2980 loss:6.0664
  3038. 2022-11-09 19:59:09,050 - INFO - main.py - train - 68 - 【train】 epoch:4 2542/2980 loss:7.0108
  3039. 2022-11-09 19:59:10,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2543/2980 loss:6.7948
  3040. 2022-11-09 19:59:11,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2544/2980 loss:4.1202
  3041. 2022-11-09 19:59:13,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2545/2980 loss:0.8337
  3042. 2022-11-09 19:59:14,440 - INFO - main.py - train - 68 - 【train】 epoch:4 2546/2980 loss:1.8822
  3043. 2022-11-09 19:59:15,736 - INFO - main.py - train - 68 - 【train】 epoch:4 2547/2980 loss:45.5748
  3044. 2022-11-09 19:59:16,986 - INFO - main.py - train - 68 - 【train】 epoch:4 2548/2980 loss:8.2719
  3045. 2022-11-09 19:59:18,251 - INFO - main.py - train - 68 - 【train】 epoch:4 2549/2980 loss:9.2381
  3046. 2022-11-09 19:59:19,548 - INFO - main.py - train - 68 - 【train】 epoch:4 2550/2980 loss:7.2872
  3047. 2022-11-09 19:59:20,797 - INFO - main.py - train - 68 - 【train】 epoch:4 2551/2980 loss:1.6203
  3048. 2022-11-09 19:59:22,125 - INFO - main.py - train - 68 - 【train】 epoch:4 2552/2980 loss:5.6328
  3049. 2022-11-09 19:59:23,328 - INFO - main.py - train - 68 - 【train】 epoch:4 2553/2980 loss:1.6579
  3050. 2022-11-09 19:59:24,547 - INFO - main.py - train - 68 - 【train】 epoch:4 2554/2980 loss:0.1695
  3051. 2022-11-09 19:59:25,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2555/2980 loss:5.2280
  3052. 2022-11-09 19:59:27,077 - INFO - main.py - train - 68 - 【train】 epoch:4 2556/2980 loss:3.4616
  3053. 2022-11-09 19:59:28,358 - INFO - main.py - train - 68 - 【train】 epoch:4 2557/2980 loss:1.2110
  3054. 2022-11-09 19:59:29,608 - INFO - main.py - train - 68 - 【train】 epoch:4 2558/2980 loss:1.0149
  3055. 2022-11-09 19:59:30,920 - INFO - main.py - train - 68 - 【train】 epoch:4 2559/2980 loss:0.2427
  3056. 2022-11-09 19:59:32,170 - INFO - main.py - train - 68 - 【train】 epoch:4 2560/2980 loss:1.5380
  3057. 2022-11-09 19:59:33,466 - INFO - main.py - train - 68 - 【train】 epoch:4 2561/2980 loss:12.3594
  3058. 2022-11-09 19:59:34,669 - INFO - main.py - train - 68 - 【train】 epoch:4 2562/2980 loss:2.5502
  3059. 2022-11-09 19:59:35,966 - INFO - main.py - train - 68 - 【train】 epoch:4 2563/2980 loss:4.9738
  3060. 2022-11-09 19:59:37,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2564/2980 loss:7.2377
  3061. 2022-11-09 19:59:38,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2565/2980 loss:8.0770
  3062. 2022-11-09 19:59:40,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2566/2980 loss:8.0261
  3063. 2022-11-09 19:59:41,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2567/2980 loss:6.4290
  3064. 2022-11-09 19:59:43,011 - INFO - main.py - train - 68 - 【train】 epoch:4 2568/2980 loss:3.4196
  3065. 2022-11-09 19:59:44,511 - INFO - main.py - train - 68 - 【train】 epoch:4 2569/2980 loss:7.2104
  3066. 2022-11-09 19:59:45,776 - INFO - main.py - train - 68 - 【train】 epoch:4 2570/2980 loss:5.7126
  3067. 2022-11-09 19:59:47,010 - INFO - main.py - train - 68 - 【train】 epoch:4 2571/2980 loss:4.3358
  3068. 2022-11-09 19:59:48,275 - INFO - main.py - train - 68 - 【train】 epoch:4 2572/2980 loss:14.0888
  3069. 2022-11-09 19:59:49,478 - INFO - main.py - train - 68 - 【train】 epoch:4 2573/2980 loss:5.0968
  3070. 2022-11-09 19:59:50,728 - INFO - main.py - train - 68 - 【train】 epoch:4 2574/2980 loss:1.0790
  3071. 2022-11-09 19:59:52,040 - INFO - main.py - train - 68 - 【train】 epoch:4 2575/2980 loss:2.9951
  3072. 2022-11-09 19:59:53,430 - INFO - main.py - train - 68 - 【train】 epoch:4 2576/2980 loss:5.2751
  3073. 2022-11-09 19:59:54,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2577/2980 loss:0.3324
  3074. 2022-11-09 19:59:55,930 - INFO - main.py - train - 68 - 【train】 epoch:4 2578/2980 loss:27.6013
  3075. 2022-11-09 19:59:57,195 - INFO - main.py - train - 68 - 【train】 epoch:4 2579/2980 loss:1.9199
  3076. 2022-11-09 19:59:58,445 - INFO - main.py - train - 68 - 【train】 epoch:4 2580/2980 loss:3.0216
  3077. 2022-11-09 19:59:59,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2581/2980 loss:9.3096
  3078. 2022-11-09 20:00:01,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2582/2980 loss:11.3707
  3079. 2022-11-09 20:00:02,381 - INFO - main.py - train - 68 - 【train】 epoch:4 2583/2980 loss:8.9787
  3080. 2022-11-09 20:00:03,944 - INFO - main.py - train - 68 - 【train】 epoch:4 2584/2980 loss:12.2420
  3081. 2022-11-09 20:00:05,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2585/2980 loss:4.3955
  3082. 2022-11-09 20:00:06,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2586/2980 loss:4.1328
  3083. 2022-11-09 20:00:07,802 - INFO - main.py - train - 68 - 【train】 epoch:4 2587/2980 loss:8.1769
  3084. 2022-11-09 20:00:09,036 - INFO - main.py - train - 68 - 【train】 epoch:4 2588/2980 loss:16.5086
  3085. 2022-11-09 20:00:10,301 - INFO - main.py - train - 68 - 【train】 epoch:4 2589/2980 loss:6.7786
  3086. 2022-11-09 20:00:11,598 - INFO - main.py - train - 68 - 【train】 epoch:4 2590/2980 loss:8.7843
  3087. 2022-11-09 20:00:12,910 - INFO - main.py - train - 68 - 【train】 epoch:4 2591/2980 loss:2.9186
  3088. 2022-11-09 20:00:14,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2592/2980 loss:6.9893
  3089. 2022-11-09 20:00:16,003 - INFO - main.py - train - 68 - 【train】 epoch:4 2593/2980 loss:4.3126
  3090. 2022-11-09 20:00:17,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2594/2980 loss:13.0590
  3091. 2022-11-09 20:00:18,456 - INFO - main.py - train - 68 - 【train】 epoch:4 2595/2980 loss:3.3728
  3092. 2022-11-09 20:00:19,799 - INFO - main.py - train - 68 - 【train】 epoch:4 2596/2980 loss:3.8551
  3093. 2022-11-09 20:00:21,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2597/2980 loss:5.5317
  3094. 2022-11-09 20:00:22,580 - INFO - main.py - train - 68 - 【train】 epoch:4 2598/2980 loss:4.8696
  3095. 2022-11-09 20:00:24,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2599/2980 loss:5.0085
  3096. 2022-11-09 20:00:25,360 - INFO - main.py - train - 68 - 【train】 epoch:4 2600/2980 loss:2.2028
  3097. 2022-11-09 20:00:26,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2601/2980 loss:4.6017
  3098. 2022-11-09 20:00:27,969 - INFO - main.py - train - 68 - 【train】 epoch:4 2602/2980 loss:0.7865
  3099. 2022-11-09 20:00:29,219 - INFO - main.py - train - 68 - 【train】 epoch:4 2603/2980 loss:8.4654
  3100. 2022-11-09 20:00:30,469 - INFO - main.py - train - 68 - 【train】 epoch:4 2604/2980 loss:0.8515
  3101. 2022-11-09 20:00:31,812 - INFO - main.py - train - 68 - 【train】 epoch:4 2605/2980 loss:1.4553
  3102. 2022-11-09 20:00:33,405 - INFO - main.py - train - 68 - 【train】 epoch:4 2606/2980 loss:10.2379
  3103. 2022-11-09 20:00:34,639 - INFO - main.py - train - 68 - 【train】 epoch:4 2607/2980 loss:6.5080
  3104. 2022-11-09 20:00:35,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2608/2980 loss:7.0209
  3105. 2022-11-09 20:00:37,186 - INFO - main.py - train - 68 - 【train】 epoch:4 2609/2980 loss:10.3965
  3106. 2022-11-09 20:00:38,685 - INFO - main.py - train - 68 - 【train】 epoch:4 2610/2980 loss:5.3557
  3107. 2022-11-09 20:00:39,966 - INFO - main.py - train - 68 - 【train】 epoch:4 2611/2980 loss:1.8559
  3108. 2022-11-09 20:00:41,622 - INFO - main.py - train - 68 - 【train】 epoch:4 2612/2980 loss:4.9701
  3109. 2022-11-09 20:00:42,872 - INFO - main.py - train - 68 - 【train】 epoch:4 2613/2980 loss:3.6839
  3110. 2022-11-09 20:00:44,122 - INFO - main.py - train - 68 - 【train】 epoch:4 2614/2980 loss:3.3855
  3111. 2022-11-09 20:00:45,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2615/2980 loss:1.6688
  3112. 2022-11-09 20:00:46,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2616/2980 loss:2.7363
  3113. 2022-11-09 20:00:47,980 - INFO - main.py - train - 68 - 【train】 epoch:4 2617/2980 loss:8.8802
  3114. 2022-11-09 20:00:49,308 - INFO - main.py - train - 68 - 【train】 epoch:4 2618/2980 loss:5.4904
  3115. 2022-11-09 20:00:50,667 - INFO - main.py - train - 68 - 【train】 epoch:4 2619/2980 loss:6.0189
  3116. 2022-11-09 20:00:51,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2620/2980 loss:7.2755
  3117. 2022-11-09 20:00:53,338 - INFO - main.py - train - 68 - 【train】 epoch:4 2621/2980 loss:6.4143
  3118. 2022-11-09 20:00:54,760 - INFO - main.py - train - 68 - 【train】 epoch:4 2622/2980 loss:4.4439
  3119. 2022-11-09 20:00:55,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2623/2980 loss:2.3206
  3120. 2022-11-09 20:00:57,228 - INFO - main.py - train - 68 - 【train】 epoch:4 2624/2980 loss:6.5507
  3121. 2022-11-09 20:00:58,509 - INFO - main.py - train - 68 - 【train】 epoch:4 2625/2980 loss:17.6206
  3122. 2022-11-09 20:00:59,868 - INFO - main.py - train - 68 - 【train】 epoch:4 2626/2980 loss:2.3969
  3123. 2022-11-09 20:01:01,118 - INFO - main.py - train - 68 - 【train】 epoch:4 2627/2980 loss:13.1877
  3124. 2022-11-09 20:01:02,508 - INFO - main.py - train - 68 - 【train】 epoch:4 2628/2980 loss:3.9541
  3125. 2022-11-09 20:01:03,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2629/2980 loss:18.3610
  3126. 2022-11-09 20:01:05,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2630/2980 loss:0.5892
  3127. 2022-11-09 20:01:06,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2631/2980 loss:2.4280
  3128. 2022-11-09 20:01:07,538 - INFO - main.py - train - 68 - 【train】 epoch:4 2632/2980 loss:0.8216
  3129. 2022-11-09 20:01:08,788 - INFO - main.py - train - 68 - 【train】 epoch:4 2633/2980 loss:1.8502
  3130. 2022-11-09 20:01:10,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2634/2980 loss:5.7744
  3131. 2022-11-09 20:01:11,428 - INFO - main.py - train - 68 - 【train】 epoch:4 2635/2980 loss:2.2374
  3132. 2022-11-09 20:01:12,771 - INFO - main.py - train - 68 - 【train】 epoch:4 2636/2980 loss:9.1371
  3133. 2022-11-09 20:01:13,974 - INFO - main.py - train - 68 - 【train】 epoch:4 2637/2980 loss:2.4714
  3134. 2022-11-09 20:01:15,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2638/2980 loss:3.6261
  3135. 2022-11-09 20:01:16,395 - INFO - main.py - train - 68 - 【train】 epoch:4 2639/2980 loss:4.9638
  3136. 2022-11-09 20:01:17,879 - INFO - main.py - train - 68 - 【train】 epoch:4 2640/2980 loss:20.0527
  3137. 2022-11-09 20:01:19,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2641/2980 loss:9.8683
  3138. 2022-11-09 20:01:20,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2642/2980 loss:11.8611
  3139. 2022-11-09 20:01:22,220 - INFO - main.py - train - 68 - 【train】 epoch:4 2643/2980 loss:4.3201
  3140. 2022-11-09 20:01:23,673 - INFO - main.py - train - 68 - 【train】 epoch:4 2644/2980 loss:7.4961
  3141. 2022-11-09 20:01:25,235 - INFO - main.py - train - 68 - 【train】 epoch:4 2645/2980 loss:4.9501
  3142. 2022-11-09 20:01:26,469 - INFO - main.py - train - 68 - 【train】 epoch:4 2646/2980 loss:6.3212
  3143. 2022-11-09 20:01:27,938 - INFO - main.py - train - 68 - 【train】 epoch:4 2647/2980 loss:1.4685
  3144. 2022-11-09 20:01:29,156 - INFO - main.py - train - 68 - 【train】 epoch:4 2648/2980 loss:3.4501
  3145. 2022-11-09 20:01:30,562 - INFO - main.py - train - 68 - 【train】 epoch:4 2649/2980 loss:2.4492
  3146. 2022-11-09 20:01:31,765 - INFO - main.py - train - 68 - 【train】 epoch:4 2650/2980 loss:1.7900
  3147. 2022-11-09 20:01:32,968 - INFO - main.py - train - 68 - 【train】 epoch:4 2651/2980 loss:5.5005
  3148. 2022-11-09 20:01:34,577 - INFO - main.py - train - 68 - 【train】 epoch:4 2652/2980 loss:10.1221
  3149. 2022-11-09 20:01:35,826 - INFO - main.py - train - 68 - 【train】 epoch:4 2653/2980 loss:2.1657
  3150. 2022-11-09 20:01:37,045 - INFO - main.py - train - 68 - 【train】 epoch:4 2654/2980 loss:0.8633
  3151. 2022-11-09 20:01:38,263 - INFO - main.py - train - 68 - 【train】 epoch:4 2655/2980 loss:3.1028
  3152. 2022-11-09 20:01:39,560 - INFO - main.py - train - 68 - 【train】 epoch:4 2656/2980 loss:2.6911
  3153. 2022-11-09 20:01:40,810 - INFO - main.py - train - 68 - 【train】 epoch:4 2657/2980 loss:10.2641
  3154. 2022-11-09 20:01:42,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2658/2980 loss:7.5004
  3155. 2022-11-09 20:01:43,291 - INFO - main.py - train - 68 - 【train】 epoch:4 2659/2980 loss:4.0484
  3156. 2022-11-09 20:01:44,666 - INFO - main.py - train - 68 - 【train】 epoch:4 2660/2980 loss:16.4339
  3157. 2022-11-09 20:01:45,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2661/2980 loss:16.5172
  3158. 2022-11-09 20:01:47,259 - INFO - main.py - train - 68 - 【train】 epoch:4 2662/2980 loss:10.6609
  3159. 2022-11-09 20:01:48,696 - INFO - main.py - train - 68 - 【train】 epoch:4 2663/2980 loss:2.6240
  3160. 2022-11-09 20:01:50,102 - INFO - main.py - train - 68 - 【train】 epoch:4 2664/2980 loss:4.3632
  3161. 2022-11-09 20:01:51,321 - INFO - main.py - train - 68 - 【train】 epoch:4 2665/2980 loss:3.5856
  3162. 2022-11-09 20:01:52,524 - INFO - main.py - train - 68 - 【train】 epoch:4 2666/2980 loss:1.4007
  3163. 2022-11-09 20:01:53,742 - INFO - main.py - train - 68 - 【train】 epoch:4 2667/2980 loss:6.9862
  3164. 2022-11-09 20:01:54,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2668/2980 loss:7.7964
  3165. 2022-11-09 20:01:56,226 - INFO - main.py - train - 68 - 【train】 epoch:4 2669/2980 loss:5.6201
  3166. 2022-11-09 20:01:57,585 - INFO - main.py - train - 68 - 【train】 epoch:4 2670/2980 loss:6.0617
  3167. 2022-11-09 20:01:58,913 - INFO - main.py - train - 68 - 【train】 epoch:4 2671/2980 loss:17.8672
  3168. 2022-11-09 20:02:00,209 - INFO - main.py - train - 68 - 【train】 epoch:4 2672/2980 loss:11.7439
  3169. 2022-11-09 20:02:01,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2673/2980 loss:0.8108
  3170. 2022-11-09 20:02:02,740 - INFO - main.py - train - 68 - 【train】 epoch:4 2674/2980 loss:1.9749
  3171. 2022-11-09 20:02:04,099 - INFO - main.py - train - 68 - 【train】 epoch:4 2675/2980 loss:7.7711
  3172. 2022-11-09 20:02:05,317 - INFO - main.py - train - 68 - 【train】 epoch:4 2676/2980 loss:5.9909
  3173. 2022-11-09 20:02:07,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2677/2980 loss:8.6010
  3174. 2022-11-09 20:02:08,410 - INFO - main.py - train - 68 - 【train】 epoch:4 2678/2980 loss:13.3741
  3175. 2022-11-09 20:02:09,629 - INFO - main.py - train - 68 - 【train】 epoch:4 2679/2980 loss:1.4132
  3176. 2022-11-09 20:02:11,144 - INFO - main.py - train - 68 - 【train】 epoch:4 2680/2980 loss:0.8958
  3177. 2022-11-09 20:02:12,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2681/2980 loss:4.7981
  3178. 2022-11-09 20:02:14,097 - INFO - main.py - train - 68 - 【train】 epoch:4 2682/2980 loss:2.1054
  3179. 2022-11-09 20:02:15,518 - INFO - main.py - train - 68 - 【train】 epoch:4 2683/2980 loss:7.5585
  3180. 2022-11-09 20:02:16,752 - INFO - main.py - train - 68 - 【train】 epoch:4 2684/2980 loss:2.5580
  3181. 2022-11-09 20:02:18,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2685/2980 loss:0.0378
  3182. 2022-11-09 20:02:19,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2686/2980 loss:1.5437
  3183. 2022-11-09 20:02:20,579 - INFO - main.py - train - 68 - 【train】 epoch:4 2687/2980 loss:1.0966
  3184. 2022-11-09 20:02:21,845 - INFO - main.py - train - 68 - 【train】 epoch:4 2688/2980 loss:14.4191
  3185. 2022-11-09 20:02:23,157 - INFO - main.py - train - 68 - 【train】 epoch:4 2689/2980 loss:3.2955
  3186. 2022-11-09 20:02:24,688 - INFO - main.py - train - 68 - 【train】 epoch:4 2690/2980 loss:11.5328
  3187. 2022-11-09 20:02:25,906 - INFO - main.py - train - 68 - 【train】 epoch:4 2691/2980 loss:2.3855
  3188. 2022-11-09 20:02:27,109 - INFO - main.py - train - 68 - 【train】 epoch:4 2692/2980 loss:1.2811
  3189. 2022-11-09 20:02:28,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2693/2980 loss:1.7025
  3190. 2022-11-09 20:02:30,187 - INFO - main.py - train - 68 - 【train】 epoch:4 2694/2980 loss:4.3139
  3191. 2022-11-09 20:02:31,780 - INFO - main.py - train - 68 - 【train】 epoch:4 2695/2980 loss:5.7478
  3192. 2022-11-09 20:02:33,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2696/2980 loss:6.9128
  3193. 2022-11-09 20:02:34,607 - INFO - main.py - train - 68 - 【train】 epoch:4 2697/2980 loss:2.6893
  3194. 2022-11-09 20:02:35,888 - INFO - main.py - train - 68 - 【train】 epoch:4 2698/2980 loss:2.7383
  3195. 2022-11-09 20:02:37,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2699/2980 loss:4.8907
  3196. 2022-11-09 20:02:39,013 - INFO - main.py - train - 68 - 【train】 epoch:4 2700/2980 loss:6.6017
  3197. 2022-11-09 20:02:40,372 - INFO - main.py - train - 68 - 【train】 epoch:4 2701/2980 loss:4.2167
  3198. 2022-11-09 20:02:41,965 - INFO - main.py - train - 68 - 【train】 epoch:4 2702/2980 loss:2.6083
  3199. 2022-11-09 20:02:43,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2703/2980 loss:1.0318
  3200. 2022-11-09 20:02:44,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2704/2980 loss:6.0399
  3201. 2022-11-09 20:02:45,902 - INFO - main.py - train - 68 - 【train】 epoch:4 2705/2980 loss:14.3815
  3202. 2022-11-09 20:02:47,261 - INFO - main.py - train - 68 - 【train】 epoch:4 2706/2980 loss:1.2899
  3203. 2022-11-09 20:02:48,589 - INFO - main.py - train - 68 - 【train】 epoch:4 2707/2980 loss:0.7735
  3204. 2022-11-09 20:02:49,791 - INFO - main.py - train - 68 - 【train】 epoch:4 2708/2980 loss:0.5960
  3205. 2022-11-09 20:02:51,291 - INFO - main.py - train - 68 - 【train】 epoch:4 2709/2980 loss:1.5321
  3206. 2022-11-09 20:02:52,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2710/2980 loss:2.6362
  3207. 2022-11-09 20:02:53,837 - INFO - main.py - train - 68 - 【train】 epoch:4 2711/2980 loss:0.3887
  3208. 2022-11-09 20:02:55,274 - INFO - main.py - train - 68 - 【train】 epoch:4 2712/2980 loss:9.9483
  3209. 2022-11-09 20:02:56,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2713/2980 loss:14.8537
  3210. 2022-11-09 20:02:58,008 - INFO - main.py - train - 68 - 【train】 epoch:4 2714/2980 loss:6.2283
  3211. 2022-11-09 20:02:59,211 - INFO - main.py - train - 68 - 【train】 epoch:4 2715/2980 loss:3.2389
  3212. 2022-11-09 20:03:00,414 - INFO - main.py - train - 68 - 【train】 epoch:4 2716/2980 loss:2.4829
  3213. 2022-11-09 20:03:01,648 - INFO - main.py - train - 68 - 【train】 epoch:4 2717/2980 loss:8.5190
  3214. 2022-11-09 20:03:02,866 - INFO - main.py - train - 68 - 【train】 epoch:4 2718/2980 loss:1.5478
  3215. 2022-11-09 20:03:04,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2719/2980 loss:6.9739
  3216. 2022-11-09 20:03:05,506 - INFO - main.py - train - 68 - 【train】 epoch:4 2720/2980 loss:3.4377
  3217. 2022-11-09 20:03:06,741 - INFO - main.py - train - 68 - 【train】 epoch:4 2721/2980 loss:3.5685
  3218. 2022-11-09 20:03:08,115 - INFO - main.py - train - 68 - 【train】 epoch:4 2722/2980 loss:4.2035
  3219. 2022-11-09 20:03:09,349 - INFO - main.py - train - 68 - 【train】 epoch:4 2723/2980 loss:3.0739
  3220. 2022-11-09 20:03:10,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2724/2980 loss:1.3633
  3221. 2022-11-09 20:03:11,958 - INFO - main.py - train - 68 - 【train】 epoch:4 2725/2980 loss:0.5781
  3222. 2022-11-09 20:03:13,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2726/2980 loss:0.9611
  3223. 2022-11-09 20:03:14,457 - INFO - main.py - train - 68 - 【train】 epoch:4 2727/2980 loss:4.1835
  3224. 2022-11-09 20:03:15,738 - INFO - main.py - train - 68 - 【train】 epoch:4 2728/2980 loss:2.3342
  3225. 2022-11-09 20:03:17,019 - INFO - main.py - train - 68 - 【train】 epoch:4 2729/2980 loss:0.4986
  3226. 2022-11-09 20:03:18,566 - INFO - main.py - train - 68 - 【train】 epoch:4 2730/2980 loss:4.1386
  3227. 2022-11-09 20:03:20,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2731/2980 loss:1.9214
  3228. 2022-11-09 20:03:21,628 - INFO - main.py - train - 68 - 【train】 epoch:4 2732/2980 loss:1.7750
  3229. 2022-11-09 20:03:22,846 - INFO - main.py - train - 68 - 【train】 epoch:4 2733/2980 loss:1.1244
  3230. 2022-11-09 20:03:24,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2734/2980 loss:5.2943
  3231. 2022-11-09 20:03:25,658 - INFO - main.py - train - 68 - 【train】 epoch:4 2735/2980 loss:15.0046
  3232. 2022-11-09 20:03:27,001 - INFO - main.py - train - 68 - 【train】 epoch:4 2736/2980 loss:0.5620
  3233. 2022-11-09 20:03:28,314 - INFO - main.py - train - 68 - 【train】 epoch:4 2737/2980 loss:6.4229
  3234. 2022-11-09 20:03:29,516 - INFO - main.py - train - 68 - 【train】 epoch:4 2738/2980 loss:3.9344
  3235. 2022-11-09 20:03:30,875 - INFO - main.py - train - 68 - 【train】 epoch:4 2739/2980 loss:3.1414
  3236. 2022-11-09 20:03:32,141 - INFO - main.py - train - 68 - 【train】 epoch:4 2740/2980 loss:13.5183
  3237. 2022-11-09 20:03:33,312 - INFO - main.py - train - 68 - 【train】 epoch:4 2741/2980 loss:5.1460
  3238. 2022-11-09 20:03:34,515 - INFO - main.py - train - 68 - 【train】 epoch:4 2742/2980 loss:14.9310
  3239. 2022-11-09 20:03:35,937 - INFO - main.py - train - 68 - 【train】 epoch:4 2743/2980 loss:16.4282
  3240. 2022-11-09 20:03:37,140 - INFO - main.py - train - 68 - 【train】 epoch:4 2744/2980 loss:4.1074
  3241. 2022-11-09 20:03:38,405 - INFO - main.py - train - 68 - 【train】 epoch:4 2745/2980 loss:6.1879
  3242. 2022-11-09 20:03:39,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2746/2980 loss:1.5750
  3243. 2022-11-09 20:03:41,326 - INFO - main.py - train - 68 - 【train】 epoch:4 2747/2980 loss:8.5627
  3244. 2022-11-09 20:03:42,716 - INFO - main.py - train - 68 - 【train】 epoch:4 2748/2980 loss:8.1814
  3245. 2022-11-09 20:03:43,982 - INFO - main.py - train - 68 - 【train】 epoch:4 2749/2980 loss:1.4465
  3246. 2022-11-09 20:03:45,185 - INFO - main.py - train - 68 - 【train】 epoch:4 2750/2980 loss:1.6409
  3247. 2022-11-09 20:03:46,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2751/2980 loss:2.2190
  3248. 2022-11-09 20:03:47,840 - INFO - main.py - train - 68 - 【train】 epoch:4 2752/2980 loss:2.4814
  3249. 2022-11-09 20:03:49,184 - INFO - main.py - train - 68 - 【train】 epoch:4 2753/2980 loss:9.9001
  3250. 2022-11-09 20:03:50,777 - INFO - main.py - train - 68 - 【train】 epoch:4 2754/2980 loss:0.1642
  3251. 2022-11-09 20:03:52,136 - INFO - main.py - train - 68 - 【train】 epoch:4 2755/2980 loss:2.8260
  3252. 2022-11-09 20:03:53,323 - INFO - main.py - train - 68 - 【train】 epoch:4 2756/2980 loss:1.0637
  3253. 2022-11-09 20:03:54,870 - INFO - main.py - train - 68 - 【train】 epoch:4 2757/2980 loss:0.0869
  3254. 2022-11-09 20:03:56,073 - INFO - main.py - train - 68 - 【train】 epoch:4 2758/2980 loss:1.6727
  3255. 2022-11-09 20:03:57,494 - INFO - main.py - train - 68 - 【train】 epoch:4 2759/2980 loss:5.0726
  3256. 2022-11-09 20:03:58,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2760/2980 loss:3.1533
  3257. 2022-11-09 20:04:00,181 - INFO - main.py - train - 68 - 【train】 epoch:4 2761/2980 loss:11.7942
  3258. 2022-11-09 20:04:01,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2762/2980 loss:2.7900
  3259. 2022-11-09 20:04:02,930 - INFO - main.py - train - 68 - 【train】 epoch:4 2763/2980 loss:2.0614
  3260. 2022-11-09 20:04:04,180 - INFO - main.py - train - 68 - 【train】 epoch:4 2764/2980 loss:1.7193
  3261. 2022-11-09 20:04:05,758 - INFO - main.py - train - 68 - 【train】 epoch:4 2765/2980 loss:13.1118
  3262. 2022-11-09 20:04:07,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2766/2980 loss:4.7747
  3263. 2022-11-09 20:04:08,664 - INFO - main.py - train - 68 - 【train】 epoch:4 2767/2980 loss:10.0617
  3264. 2022-11-09 20:04:09,898 - INFO - main.py - train - 68 - 【train】 epoch:4 2768/2980 loss:0.7231
  3265. 2022-11-09 20:04:11,382 - INFO - main.py - train - 68 - 【train】 epoch:4 2769/2980 loss:3.6742
  3266. 2022-11-09 20:04:12,678 - INFO - main.py - train - 68 - 【train】 epoch:4 2770/2980 loss:1.8170
  3267. 2022-11-09 20:04:14,131 - INFO - main.py - train - 68 - 【train】 epoch:4 2771/2980 loss:3.9560
  3268. 2022-11-09 20:04:15,334 - INFO - main.py - train - 68 - 【train】 epoch:4 2772/2980 loss:0.2562
  3269. 2022-11-09 20:04:16,646 - INFO - main.py - train - 68 - 【train】 epoch:4 2773/2980 loss:2.4209
  3270. 2022-11-09 20:04:18,052 - INFO - main.py - train - 68 - 【train】 epoch:4 2774/2980 loss:3.4398
  3271. 2022-11-09 20:04:19,255 - INFO - main.py - train - 68 - 【train】 epoch:4 2775/2980 loss:3.5759
  3272. 2022-11-09 20:04:20,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2776/2980 loss:8.8147
  3273. 2022-11-09 20:04:22,160 - INFO - main.py - train - 68 - 【train】 epoch:4 2777/2980 loss:2.4561
  3274. 2022-11-09 20:04:23,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2778/2980 loss:6.8320
  3275. 2022-11-09 20:04:24,722 - INFO - main.py - train - 68 - 【train】 epoch:4 2779/2980 loss:4.8999
  3276. 2022-11-09 20:04:25,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2780/2980 loss:1.7397
  3277. 2022-11-09 20:04:27,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2781/2980 loss:6.5466
  3278. 2022-11-09 20:04:29,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2782/2980 loss:5.8673
  3279. 2022-11-09 20:04:30,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2783/2980 loss:0.8484
  3280. 2022-11-09 20:04:32,158 - INFO - main.py - train - 68 - 【train】 epoch:4 2784/2980 loss:4.6587
  3281. 2022-11-09 20:04:33,392 - INFO - main.py - train - 68 - 【train】 epoch:4 2785/2980 loss:19.5457
  3282. 2022-11-09 20:04:34,579 - INFO - main.py - train - 68 - 【train】 epoch:4 2786/2980 loss:0.4501
  3283. 2022-11-09 20:04:35,798 - INFO - main.py - train - 68 - 【train】 epoch:4 2787/2980 loss:2.3485
  3284. 2022-11-09 20:04:37,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2788/2980 loss:2.4606
  3285. 2022-11-09 20:04:38,860 - INFO - main.py - train - 68 - 【train】 epoch:4 2789/2980 loss:4.4672
  3286. 2022-11-09 20:04:40,125 - INFO - main.py - train - 68 - 【train】 epoch:4 2790/2980 loss:4.3031
  3287. 2022-11-09 20:04:41,578 - INFO - main.py - train - 68 - 【train】 epoch:4 2791/2980 loss:12.3261
  3288. 2022-11-09 20:04:43,030 - INFO - main.py - train - 68 - 【train】 epoch:4 2792/2980 loss:5.4207
  3289. 2022-11-09 20:04:44,280 - INFO - main.py - train - 68 - 【train】 epoch:4 2793/2980 loss:1.5168
  3290. 2022-11-09 20:04:45,530 - INFO - main.py - train - 68 - 【train】 epoch:4 2794/2980 loss:11.3564
  3291. 2022-11-09 20:04:46,795 - INFO - main.py - train - 68 - 【train】 epoch:4 2795/2980 loss:5.5018
  3292. 2022-11-09 20:04:48,014 - INFO - main.py - train - 68 - 【train】 epoch:4 2796/2980 loss:9.9051
  3293. 2022-11-09 20:04:49,529 - INFO - main.py - train - 68 - 【train】 epoch:4 2797/2980 loss:6.8039
  3294. 2022-11-09 20:04:50,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2798/2980 loss:9.6922
  3295. 2022-11-09 20:04:52,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2799/2980 loss:8.5915
  3296. 2022-11-09 20:04:53,559 - INFO - main.py - train - 68 - 【train】 epoch:4 2800/2980 loss:12.1428
  3297. 2022-11-09 20:04:54,903 - INFO - main.py - train - 68 - 【train】 epoch:4 2801/2980 loss:3.6181
  3298. 2022-11-09 20:04:56,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2802/2980 loss:0.8762
  3299. 2022-11-09 20:04:57,558 - INFO - main.py - train - 68 - 【train】 epoch:4 2803/2980 loss:2.9194
  3300. 2022-11-09 20:04:58,761 - INFO - main.py - train - 68 - 【train】 epoch:4 2804/2980 loss:1.9627
  3301. 2022-11-09 20:04:59,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2805/2980 loss:4.1186
  3302. 2022-11-09 20:05:01,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2806/2980 loss:1.0407
  3303. 2022-11-09 20:05:02,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2807/2980 loss:9.3726
  3304. 2022-11-09 20:05:04,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2808/2980 loss:1.8189
  3305. 2022-11-09 20:05:05,353 - INFO - main.py - train - 68 - 【train】 epoch:4 2809/2980 loss:2.9102
  3306. 2022-11-09 20:05:06,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2810/2980 loss:9.3115
  3307. 2022-11-09 20:05:07,978 - INFO - main.py - train - 68 - 【train】 epoch:4 2811/2980 loss:3.7243
  3308. 2022-11-09 20:05:09,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2812/2980 loss:9.5175
  3309. 2022-11-09 20:05:10,540 - INFO - main.py - train - 68 - 【train】 epoch:4 2813/2980 loss:9.3498
  3310. 2022-11-09 20:05:11,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2814/2980 loss:6.7173
  3311. 2022-11-09 20:05:13,039 - INFO - main.py - train - 68 - 【train】 epoch:4 2815/2980 loss:2.1331
  3312. 2022-11-09 20:05:14,304 - INFO - main.py - train - 68 - 【train】 epoch:4 2816/2980 loss:3.1644
  3313. 2022-11-09 20:05:15,773 - INFO - main.py - train - 68 - 【train】 epoch:4 2817/2980 loss:6.2883
  3314. 2022-11-09 20:05:17,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2818/2980 loss:3.4545
  3315. 2022-11-09 20:05:18,569 - INFO - main.py - train - 68 - 【train】 epoch:4 2819/2980 loss:4.9737
  3316. 2022-11-09 20:05:19,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2820/2980 loss:2.7694
  3317. 2022-11-09 20:05:21,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2821/2980 loss:9.1602
  3318. 2022-11-09 20:05:22,521 - INFO - main.py - train - 68 - 【train】 epoch:4 2822/2980 loss:3.4860
  3319. 2022-11-09 20:05:23,880 - INFO - main.py - train - 68 - 【train】 epoch:4 2823/2980 loss:3.6534
  3320. 2022-11-09 20:05:25,177 - INFO - main.py - train - 68 - 【train】 epoch:4 2824/2980 loss:16.0299
  3321. 2022-11-09 20:05:26,489 - INFO - main.py - train - 68 - 【train】 epoch:4 2825/2980 loss:3.3742
  3322. 2022-11-09 20:05:27,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2826/2980 loss:7.1065
  3323. 2022-11-09 20:05:29,098 - INFO - main.py - train - 68 - 【train】 epoch:4 2827/2980 loss:4.8266
  3324. 2022-11-09 20:05:30,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2828/2980 loss:3.2273
  3325. 2022-11-09 20:05:31,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2829/2980 loss:5.1901
  3326. 2022-11-09 20:05:33,159 - INFO - main.py - train - 68 - 【train】 epoch:4 2830/2980 loss:0.5216
  3327. 2022-11-09 20:05:34,378 - INFO - main.py - train - 68 - 【train】 epoch:4 2831/2980 loss:3.5427
  3328. 2022-11-09 20:05:35,940 - INFO - main.py - train - 68 - 【train】 epoch:4 2832/2980 loss:1.1807
  3329. 2022-11-09 20:05:37,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2833/2980 loss:6.5068
  3330. 2022-11-09 20:05:38,455 - INFO - main.py - train - 68 - 【train】 epoch:4 2834/2980 loss:5.5958
  3331. 2022-11-09 20:05:39,658 - INFO - main.py - train - 68 - 【train】 epoch:4 2835/2980 loss:1.4574
  3332. 2022-11-09 20:05:40,876 - INFO - main.py - train - 68 - 【train】 epoch:4 2836/2980 loss:4.9771
  3333. 2022-11-09 20:05:42,188 - INFO - main.py - train - 68 - 【train】 epoch:4 2837/2980 loss:1.8395
  3334. 2022-11-09 20:05:43,657 - INFO - main.py - train - 68 - 【train】 epoch:4 2838/2980 loss:3.8439
  3335. 2022-11-09 20:05:45,031 - INFO - main.py - train - 68 - 【train】 epoch:4 2839/2980 loss:1.4529
  3336. 2022-11-09 20:05:46,656 - INFO - main.py - train - 68 - 【train】 epoch:4 2840/2980 loss:0.4442
  3337. 2022-11-09 20:05:48,265 - INFO - main.py - train - 68 - 【train】 epoch:4 2841/2980 loss:1.6909
  3338. 2022-11-09 20:05:49,577 - INFO - main.py - train - 68 - 【train】 epoch:4 2842/2980 loss:8.9199
  3339. 2022-11-09 20:05:50,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2843/2980 loss:2.3126
  3340. 2022-11-09 20:05:52,295 - INFO - main.py - train - 68 - 【train】 epoch:4 2844/2980 loss:5.5358
  3341. 2022-11-09 20:05:53,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2845/2980 loss:4.9496
  3342. 2022-11-09 20:05:54,951 - INFO - main.py - train - 68 - 【train】 epoch:4 2846/2980 loss:5.9971
  3343. 2022-11-09 20:05:56,341 - INFO - main.py - train - 68 - 【train】 epoch:4 2847/2980 loss:6.1705
  3344. 2022-11-09 20:05:57,591 - INFO - main.py - train - 68 - 【train】 epoch:4 2848/2980 loss:1.4735
  3345. 2022-11-09 20:05:58,856 - INFO - main.py - train - 68 - 【train】 epoch:4 2849/2980 loss:5.0363
  3346. 2022-11-09 20:06:00,122 - INFO - main.py - train - 68 - 【train】 epoch:4 2850/2980 loss:7.9087
  3347. 2022-11-09 20:06:01,340 - INFO - main.py - train - 68 - 【train】 epoch:4 2851/2980 loss:5.1104
  3348. 2022-11-09 20:06:02,621 - INFO - main.py - train - 68 - 【train】 epoch:4 2852/2980 loss:21.5291
  3349. 2022-11-09 20:06:04,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2853/2980 loss:9.0431
  3350. 2022-11-09 20:06:05,370 - INFO - main.py - train - 68 - 【train】 epoch:4 2854/2980 loss:0.5157
  3351. 2022-11-09 20:06:06,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2855/2980 loss:7.1201
  3352. 2022-11-09 20:06:07,807 - INFO - main.py - train - 68 - 【train】 epoch:4 2856/2980 loss:5.2091
  3353. 2022-11-09 20:06:09,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2857/2980 loss:1.1728
  3354. 2022-11-09 20:06:10,229 - INFO - main.py - train - 68 - 【train】 epoch:4 2858/2980 loss:1.5170
  3355. 2022-11-09 20:06:11,728 - INFO - main.py - train - 68 - 【train】 epoch:4 2859/2980 loss:4.2357
  3356. 2022-11-09 20:06:12,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2860/2980 loss:2.5944
  3357. 2022-11-09 20:06:14,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2861/2980 loss:7.3436
  3358. 2022-11-09 20:06:15,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2862/2980 loss:7.2007
  3359. 2022-11-09 20:06:16,774 - INFO - main.py - train - 68 - 【train】 epoch:4 2863/2980 loss:13.7847
  3360. 2022-11-09 20:06:18,024 - INFO - main.py - train - 68 - 【train】 epoch:4 2864/2980 loss:5.4764
  3361. 2022-11-09 20:06:19,289 - INFO - main.py - train - 68 - 【train】 epoch:4 2865/2980 loss:0.9220
  3362. 2022-11-09 20:06:20,508 - INFO - main.py - train - 68 - 【train】 epoch:4 2866/2980 loss:1.2658
  3363. 2022-11-09 20:06:21,726 - INFO - main.py - train - 68 - 【train】 epoch:4 2867/2980 loss:8.0016
  3364. 2022-11-09 20:06:23,241 - INFO - main.py - train - 68 - 【train】 epoch:4 2868/2980 loss:0.2208
  3365. 2022-11-09 20:06:24,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2869/2980 loss:3.4591
  3366. 2022-11-09 20:06:25,788 - INFO - main.py - train - 68 - 【train】 epoch:4 2870/2980 loss:0.0688
  3367. 2022-11-09 20:06:27,006 - INFO - main.py - train - 68 - 【train】 epoch:4 2871/2980 loss:3.3938
  3368. 2022-11-09 20:06:28,365 - INFO - main.py - train - 68 - 【train】 epoch:4 2872/2980 loss:8.0456
  3369. 2022-11-09 20:06:29,630 - INFO - main.py - train - 68 - 【train】 epoch:4 2873/2980 loss:9.0713
  3370. 2022-11-09 20:06:30,849 - INFO - main.py - train - 68 - 【train】 epoch:4 2874/2980 loss:3.1294
  3371. 2022-11-09 20:06:32,364 - INFO - main.py - train - 68 - 【train】 epoch:4 2875/2980 loss:4.4570
  3372. 2022-11-09 20:06:33,583 - INFO - main.py - train - 68 - 【train】 epoch:4 2876/2980 loss:8.1954
  3373. 2022-11-09 20:06:34,832 - INFO - main.py - train - 68 - 【train】 epoch:4 2877/2980 loss:5.1306
  3374. 2022-11-09 20:06:36,020 - INFO - main.py - train - 68 - 【train】 epoch:4 2878/2980 loss:1.4794
  3375. 2022-11-09 20:06:37,285 - INFO - main.py - train - 68 - 【train】 epoch:4 2879/2980 loss:4.2028
  3376. 2022-11-09 20:06:38,706 - INFO - main.py - train - 68 - 【train】 epoch:4 2880/2980 loss:0.7456
  3377. 2022-11-09 20:06:39,925 - INFO - main.py - train - 68 - 【train】 epoch:4 2881/2980 loss:2.9262
  3378. 2022-11-09 20:06:41,268 - INFO - main.py - train - 68 - 【train】 epoch:4 2882/2980 loss:6.3665
  3379. 2022-11-09 20:06:42,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2883/2980 loss:4.1159
  3380. 2022-11-09 20:06:43,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2884/2980 loss:3.9429
  3381. 2022-11-09 20:06:45,244 - INFO - main.py - train - 68 - 【train】 epoch:4 2885/2980 loss:4.7758
  3382. 2022-11-09 20:06:46,478 - INFO - main.py - train - 68 - 【train】 epoch:4 2886/2980 loss:8.3184
  3383. 2022-11-09 20:06:47,899 - INFO - main.py - train - 68 - 【train】 epoch:4 2887/2980 loss:4.6903
  3384. 2022-11-09 20:06:49,149 - INFO - main.py - train - 68 - 【train】 epoch:4 2888/2980 loss:3.3314
  3385. 2022-11-09 20:06:50,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2889/2980 loss:7.3432
  3386. 2022-11-09 20:06:51,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2890/2980 loss:6.4275
  3387. 2022-11-09 20:06:53,117 - INFO - main.py - train - 68 - 【train】 epoch:4 2891/2980 loss:8.4065
  3388. 2022-11-09 20:06:54,538 - INFO - main.py - train - 68 - 【train】 epoch:4 2892/2980 loss:20.3128
  3389. 2022-11-09 20:06:55,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2893/2980 loss:4.9814
  3390. 2022-11-09 20:06:57,022 - INFO - main.py - train - 68 - 【train】 epoch:4 2894/2980 loss:2.0190
  3391. 2022-11-09 20:06:58,272 - INFO - main.py - train - 68 - 【train】 epoch:4 2895/2980 loss:3.6493
  3392. 2022-11-09 20:06:59,912 - INFO - main.py - train - 68 - 【train】 epoch:4 2896/2980 loss:12.7871
  3393. 2022-11-09 20:07:01,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2897/2980 loss:0.6251
  3394. 2022-11-09 20:07:02,490 - INFO - main.py - train - 68 - 【train】 epoch:4 2898/2980 loss:14.7209
  3395. 2022-11-09 20:07:03,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2899/2980 loss:2.2031
  3396. 2022-11-09 20:07:05,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2900/2980 loss:2.5351
  3397. 2022-11-09 20:07:06,317 - INFO - main.py - train - 68 - 【train】 epoch:4 2901/2980 loss:7.4597
  3398. 2022-11-09 20:07:07,535 - INFO - main.py - train - 68 - 【train】 epoch:4 2902/2980 loss:1.4243
  3399. 2022-11-09 20:07:08,785 - INFO - main.py - train - 68 - 【train】 epoch:4 2903/2980 loss:2.6511
  3400. 2022-11-09 20:07:10,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2904/2980 loss:4.8938
  3401. 2022-11-09 20:07:11,503 - INFO - main.py - train - 68 - 【train】 epoch:4 2905/2980 loss:9.6211
  3402. 2022-11-09 20:07:12,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2906/2980 loss:5.8431
  3403. 2022-11-09 20:07:14,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2907/2980 loss:10.3681
  3404. 2022-11-09 20:07:15,690 - INFO - main.py - train - 68 - 【train】 epoch:4 2908/2980 loss:2.9318
  3405. 2022-11-09 20:07:16,893 - INFO - main.py - train - 68 - 【train】 epoch:4 2909/2980 loss:2.2026
  3406. 2022-11-09 20:07:18,252 - INFO - main.py - train - 68 - 【train】 epoch:4 2910/2980 loss:6.4892
  3407. 2022-11-09 20:07:19,486 - INFO - main.py - train - 68 - 【train】 epoch:4 2911/2980 loss:6.1388
  3408. 2022-11-09 20:07:20,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2912/2980 loss:3.6376
  3409. 2022-11-09 20:07:21,985 - INFO - main.py - train - 68 - 【train】 epoch:4 2913/2980 loss:20.1212
  3410. 2022-11-09 20:07:23,329 - INFO - main.py - train - 68 - 【train】 epoch:4 2914/2980 loss:23.5739
  3411. 2022-11-09 20:07:24,594 - INFO - main.py - train - 68 - 【train】 epoch:4 2915/2980 loss:9.0045
  3412. 2022-11-09 20:07:25,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2916/2980 loss:1.2619
  3413. 2022-11-09 20:07:27,203 - INFO - main.py - train - 68 - 【train】 epoch:4 2917/2980 loss:9.1755
  3414. 2022-11-09 20:07:29,015 - INFO - main.py - train - 68 - 【train】 epoch:4 2918/2980 loss:6.8419
  3415. 2022-11-09 20:07:30,218 - INFO - main.py - train - 68 - 【train】 epoch:4 2919/2980 loss:0.2760
  3416. 2022-11-09 20:07:31,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2920/2980 loss:3.3320
  3417. 2022-11-09 20:07:33,045 - INFO - main.py - train - 68 - 【train】 epoch:4 2921/2980 loss:6.5739
  3418. 2022-11-09 20:07:34,545 - INFO - main.py - train - 68 - 【train】 epoch:4 2922/2980 loss:3.5778
  3419. 2022-11-09 20:07:35,935 - INFO - main.py - train - 68 - 【train】 epoch:4 2923/2980 loss:3.8758
  3420. 2022-11-09 20:07:37,185 - INFO - main.py - train - 68 - 【train】 epoch:4 2924/2980 loss:1.7090
  3421. 2022-11-09 20:07:38,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2925/2980 loss:1.9191
  3422. 2022-11-09 20:07:39,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2926/2980 loss:2.2775
  3423. 2022-11-09 20:07:40,871 - INFO - main.py - train - 68 - 【train】 epoch:4 2927/2980 loss:11.4487
  3424. 2022-11-09 20:07:42,215 - INFO - main.py - train - 68 - 【train】 epoch:4 2928/2980 loss:7.3169
  3425. 2022-11-09 20:07:43,449 - INFO - main.py - train - 68 - 【train】 epoch:4 2929/2980 loss:4.8073
  3426. 2022-11-09 20:07:44,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2930/2980 loss:9.2985
  3427. 2022-11-09 20:07:46,370 - INFO - main.py - train - 68 - 【train】 epoch:4 2931/2980 loss:5.0515
  3428. 2022-11-09 20:07:47,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2932/2980 loss:1.9086
  3429. 2022-11-09 20:07:49,010 - INFO - main.py - train - 68 - 【train】 epoch:4 2933/2980 loss:6.5544
  3430. 2022-11-09 20:07:50,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2934/2980 loss:7.0536
  3431. 2022-11-09 20:07:51,822 - INFO - main.py - train - 68 - 【train】 epoch:4 2935/2980 loss:2.9606
  3432. 2022-11-09 20:07:53,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2936/2980 loss:2.8525
  3433. 2022-11-09 20:07:54,977 - INFO - main.py - train - 68 - 【train】 epoch:4 2937/2980 loss:5.3135
  3434. 2022-11-09 20:07:56,196 - INFO - main.py - train - 68 - 【train】 epoch:4 2938/2980 loss:5.9989
  3435. 2022-11-09 20:07:58,070 - INFO - main.py - train - 68 - 【train】 epoch:4 2939/2980 loss:4.6328
  3436. 2022-11-09 20:07:59,445 - INFO - main.py - train - 68 - 【train】 epoch:4 2940/2980 loss:4.6224
  3437. 2022-11-09 20:08:00,851 - INFO - main.py - train - 68 - 【train】 epoch:4 2941/2980 loss:13.4419
  3438. 2022-11-09 20:08:02,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2942/2980 loss:0.0881
  3439. 2022-11-09 20:08:03,647 - INFO - main.py - train - 68 - 【train】 epoch:4 2943/2980 loss:4.5658
  3440. 2022-11-09 20:08:04,959 - INFO - main.py - train - 68 - 【train】 epoch:4 2944/2980 loss:2.9856
  3441. 2022-11-09 20:08:06,381 - INFO - main.py - train - 68 - 【train】 epoch:4 2945/2980 loss:6.7960
  3442. 2022-11-09 20:08:07,849 - INFO - main.py - train - 68 - 【train】 epoch:4 2946/2980 loss:2.1157
  3443. 2022-11-09 20:08:09,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2947/2980 loss:3.2768
  3444. 2022-11-09 20:08:10,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2948/2980 loss:7.1061
  3445. 2022-11-09 20:08:11,989 - INFO - main.py - train - 68 - 【train】 epoch:4 2949/2980 loss:4.0073
  3446. 2022-11-09 20:08:13,582 - INFO - main.py - train - 68 - 【train】 epoch:4 2950/2980 loss:20.3640
  3447. 2022-11-09 20:08:14,832 - INFO - main.py - train - 68 - 【train】 epoch:4 2951/2980 loss:0.1124
  3448. 2022-11-09 20:08:16,051 - INFO - main.py - train - 68 - 【train】 epoch:4 2952/2980 loss:6.8030
  3449. 2022-11-09 20:08:17,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2953/2980 loss:1.7045
  3450. 2022-11-09 20:08:18,675 - INFO - main.py - train - 68 - 【train】 epoch:4 2954/2980 loss:0.8841
  3451. 2022-11-09 20:08:19,909 - INFO - main.py - train - 68 - 【train】 epoch:4 2955/2980 loss:13.3774
  3452. 2022-11-09 20:08:21,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2956/2980 loss:1.9520
  3453. 2022-11-09 20:08:22,580 - INFO - main.py - train - 68 - 【train】 epoch:4 2957/2980 loss:8.1010
  3454. 2022-11-09 20:08:23,814 - INFO - main.py - train - 68 - 【train】 epoch:4 2958/2980 loss:2.7235
  3455. 2022-11-09 20:08:25,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2959/2980 loss:0.8775
  3456. 2022-11-09 20:08:26,298 - INFO - main.py - train - 68 - 【train】 epoch:4 2960/2980 loss:4.7177
  3457. 2022-11-09 20:08:27,688 - INFO - main.py - train - 68 - 【train】 epoch:4 2961/2980 loss:1.2038
  3458. 2022-11-09 20:08:29,063 - INFO - main.py - train - 68 - 【train】 epoch:4 2962/2980 loss:2.2772
  3459. 2022-11-09 20:08:30,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2963/2980 loss:2.3886
  3460. 2022-11-09 20:08:31,609 - INFO - main.py - train - 68 - 【train】 epoch:4 2964/2980 loss:10.8579
  3461. 2022-11-09 20:08:32,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2965/2980 loss:3.1771
  3462. 2022-11-09 20:08:34,406 - INFO - main.py - train - 68 - 【train】 epoch:4 2966/2980 loss:2.6416
  3463. 2022-11-09 20:08:35,749 - INFO - main.py - train - 68 - 【train】 epoch:4 2967/2980 loss:6.1592
  3464. 2022-11-09 20:08:37,264 - INFO - main.py - train - 68 - 【train】 epoch:4 2968/2980 loss:12.5800
  3465. 2022-11-09 20:08:38,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2969/2980 loss:1.1993
  3466. 2022-11-09 20:08:39,920 - INFO - main.py - train - 68 - 【train】 epoch:4 2970/2980 loss:2.6484
  3467. 2022-11-09 20:08:41,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2971/2980 loss:1.7165
  3468. 2022-11-09 20:08:42,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2972/2980 loss:11.3746
  3469. 2022-11-09 20:08:43,778 - INFO - main.py - train - 68 - 【train】 epoch:4 2973/2980 loss:3.9966
  3470. 2022-11-09 20:08:45,325 - INFO - main.py - train - 68 - 【train】 epoch:4 2974/2980 loss:5.1066
  3471. 2022-11-09 20:08:46,637 - INFO - main.py - train - 68 - 【train】 epoch:4 2975/2980 loss:4.9227
  3472. 2022-11-09 20:08:47,840 - INFO - main.py - train - 68 - 【train】 epoch:4 2976/2980 loss:0.8795
  3473. 2022-11-09 20:08:49,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2977/2980 loss:11.3107
  3474. 2022-11-09 20:08:50,730 - INFO - main.py - train - 68 - 【train】 epoch:4 2978/2980 loss:2.8808
  3475. 2022-11-09 20:08:51,948 - INFO - main.py - train - 68 - 【train】 epoch:4 2979/2980 loss:4.7416
  3476. 2022-11-09 20:08:52,167 - INFO - trainUtils.py - save_model - 70 - Saving model checkpoint to ./checkpoints/bert_crf
  3477. 2022-11-09 20:08:54,229 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3478. 2022-11-09 20:08:54,760 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3479. 2022-11-09 21:37:53,600 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3480. 2022-11-09 21:37:53,600 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3481. 2022-11-09 21:37:57,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3482. 2022-11-09 21:37:59,143 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3483. 2022-11-09 21:37:59,768 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3484. 2022-11-09 22:37:49,595 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3485. 2022-11-09 22:37:49,595 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3486. 2022-11-09 22:37:53,581 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3487. 2022-11-09 22:37:55,112 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3488. 2022-11-09 22:37:55,693 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3489. 2022-11-09 22:44:05,053 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3490. 2022-11-09 22:44:05,054 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3491. 2022-11-09 22:44:09,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3492. 2022-11-09 22:44:10,614 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3493. 2022-11-09 22:44:11,206 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3494. 2022-11-09 22:45:38,330 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3495. 2022-11-09 22:45:38,330 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3496. 2022-11-09 22:45:42,299 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3497. 2022-11-09 22:45:43,847 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3498. 2022-11-09 22:45:44,393 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3499. 2022-11-09 22:47:02,323 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3500. 2022-11-09 22:47:02,323 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3501. 2022-11-09 22:47:06,237 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3502. 2022-11-09 22:47:07,696 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3503. 2022-11-09 22:47:08,229 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3504. 2022-11-09 22:49:05,456 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3505. 2022-11-09 22:49:05,456 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3506. 2022-11-09 22:49:09,362 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3507. 2022-11-09 22:49:10,878 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3508. 2022-11-09 22:49:11,346 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3509. 2022-11-09 23:17:03,674 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3510. 2022-11-09 23:17:03,674 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3511. 2022-11-09 23:17:07,565 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3512. 2022-11-09 23:17:09,097 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3513. 2022-11-09 23:17:09,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3514. 2022-11-09 23:18:40,565 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3515. 2022-11-09 23:18:40,565 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3516. 2022-11-09 23:18:44,455 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3517. 2022-11-09 23:18:45,987 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3518. 2022-11-09 23:18:46,518 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3519. 2022-11-09 23:20:17,022 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3520. 2022-11-09 23:20:17,022 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3521. 2022-11-09 23:20:20,893 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3522. 2022-11-09 23:20:22,409 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3523. 2022-11-09 23:20:22,940 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3524. 2022-11-09 23:21:07,205 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3525. 2022-11-09 23:21:07,205 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3526. 2022-11-09 23:21:11,067 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3527. 2022-11-09 23:21:12,518 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3528. 2022-11-09 23:21:13,046 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3529. 2022-11-09 23:27:41,545 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3530. 2022-11-09 23:27:41,545 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3531. 2022-11-09 23:27:45,405 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3532. 2022-11-09 23:27:46,892 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3533. 2022-11-09 23:27:47,393 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3534. 2022-11-09 23:28:42,829 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3535. 2022-11-09 23:28:42,829 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3536. 2022-11-09 23:28:46,784 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3537. 2022-11-09 23:28:48,315 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3538. 2022-11-09 23:28:48,857 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3539. 2022-11-09 23:29:20,645 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3540. 2022-11-09 23:29:20,645 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3541. 2022-11-09 23:29:24,581 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3542. 2022-11-09 23:29:26,112 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3543. 2022-11-09 23:29:26,643 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3544. 2022-11-09 23:30:18,268 - INFO - main.py - <module> - 252 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3545. 2022-11-09 23:30:18,268 - INFO - main.py - <module> - 254 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3546. 2022-11-09 23:30:22,170 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3547. 2022-11-09 23:30:23,643 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3548. 2022-11-09 23:30:24,174 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3549. 2022-11-09 23:35:30,357 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3550. 2022-11-09 23:35:30,357 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3551. 2022-11-09 23:35:34,280 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3552. 2022-11-09 23:35:35,819 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3553. 2022-11-09 23:35:36,394 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3554. 2022-11-09 23:36:15,214 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3555. 2022-11-09 23:36:15,214 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3556. 2022-11-09 23:36:19,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3557. 2022-11-09 23:36:20,595 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3558. 2022-11-09 23:36:21,110 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3559. 2022-11-09 23:40:29,200 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3560. 2022-11-09 23:40:29,200 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3561. 2022-11-09 23:40:33,156 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3562. 2022-11-09 23:40:34,687 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3563. 2022-11-09 23:40:35,187 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3564. 2022-11-09 23:45:34,236 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3565. 2022-11-09 23:45:34,236 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3566. 2022-11-09 23:45:38,056 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3567. 2022-11-09 23:45:39,585 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3568. 2022-11-09 23:45:40,057 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3569. 2022-11-10 08:53:56,178 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3570. 2022-11-10 08:53:56,178 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3571. 2022-11-10 08:54:01,277 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3572. 2022-11-10 08:54:02,838 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3573. 2022-11-10 08:54:04,448 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3574. 2022-11-10 09:02:56,380 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3575. 2022-11-10 09:02:56,381 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3576. 2022-11-10 09:03:01,165 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3577. 2022-11-10 09:03:02,705 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3578. 2022-11-10 09:03:03,269 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3579. 2022-11-10 09:19:59,929 - INFO - main.py - <module> - 253 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3580. 2022-11-10 09:19:59,929 - INFO - main.py - <module> - 255 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3581. 2022-11-10 09:20:03,933 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3582. 2022-11-10 09:20:05,457 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3583. 2022-11-10 09:20:05,982 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3584. 2022-11-10 09:30:57,117 - INFO - main.py - <module> - 256 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3585. 2022-11-10 09:30:57,117 - INFO - main.py - <module> - 258 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3586. 2022-11-10 09:31:01,047 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3587. 2022-11-10 09:31:02,594 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3588. 2022-11-10 09:31:03,130 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3589. 2022-11-10 09:33:20,901 - INFO - main.py - <module> - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3590. 2022-11-10 09:33:20,902 - INFO - main.py - <module> - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3591. 2022-11-10 09:33:24,827 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3592. 2022-11-10 09:33:26,373 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3593. 2022-11-10 09:33:26,905 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3594. 2022-11-10 09:34:27,530 - INFO - main.py - <module> - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3595. 2022-11-10 09:34:27,530 - INFO - main.py - <module> - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3596. 2022-11-10 09:34:31,426 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3597. 2022-11-10 09:34:32,957 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3598. 2022-11-10 09:34:33,498 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3599. 2022-11-10 09:42:21,670 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3600. 2022-11-10 09:42:21,671 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3601. 2022-11-10 09:42:25,605 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3602. 2022-11-10 09:42:27,143 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3603. 2022-11-10 09:42:27,686 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3604. 2022-11-10 09:45:15,502 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3605. 2022-11-10 09:45:15,502 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3606. 2022-11-10 09:45:19,398 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3607. 2022-11-10 09:45:20,903 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3608. 2022-11-10 09:45:21,430 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3609. 2022-11-10 09:50:21,829 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3610. 2022-11-10 09:50:21,829 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3611. 2022-11-10 09:50:25,735 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3612. 2022-11-10 09:50:27,276 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3613. 2022-11-10 09:50:27,804 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3614. 2022-11-10 09:51:34,635 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3615. 2022-11-10 09:51:34,635 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3616. 2022-11-10 09:51:38,533 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3617. 2022-11-10 09:51:40,079 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3618. 2022-11-10 09:51:40,609 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3619. 2022-11-10 09:52:29,472 - INFO - main.py - <module> - 259 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3620. 2022-11-10 09:52:29,472 - INFO - main.py - <module> - 261 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3621. 2022-11-10 09:52:33,374 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3622. 2022-11-10 09:52:34,898 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3623. 2022-11-10 09:52:35,417 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3624. 2022-11-10 16:37:57,114 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3625. 2022-11-10 16:37:57,114 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3626. 2022-11-10 16:38:01,299 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3627. 2022-11-10 16:38:02,895 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3628. 2022-11-10 16:38:03,510 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3629. 2022-11-10 16:39:07,040 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3630. 2022-11-10 16:39:07,040 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3631. 2022-11-10 16:39:11,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3632. 2022-11-10 16:39:12,666 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3633. 2022-11-10 16:39:13,202 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3634. 2022-11-10 16:42:37,278 - INFO - main.py - <module> - 258 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3635. 2022-11-10 16:42:37,279 - INFO - main.py - <module> - 260 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3636. 2022-11-10 16:42:41,207 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3637. 2022-11-10 16:42:42,744 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3638. 2022-11-10 16:42:43,275 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3639. 2022-11-10 16:46:56,985 - INFO - main.py - <module> - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3640. 2022-11-10 16:46:56,985 - INFO - main.py - <module> - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3641. 2022-11-10 16:47:00,951 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3642. 2022-11-10 16:47:02,523 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3643. 2022-11-10 16:47:03,027 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3644. 2022-11-10 16:50:00,285 - INFO - main.py - <module> - 257 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3645. 2022-11-10 16:50:00,285 - INFO - main.py - <module> - 259 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3646. 2022-11-10 16:50:04,225 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3647. 2022-11-10 16:50:05,793 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3648. 2022-11-10 16:50:06,315 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3649. 2022-11-10 17:00:50,069 - INFO - main.py - <module> - 260 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3650. 2022-11-10 17:00:50,070 - INFO - main.py - <module> - 262 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3651. 2022-11-10 17:00:54,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3652. 2022-11-10 17:00:55,663 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3653. 2022-11-10 17:00:56,196 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3654. 2022-11-10 17:04:13,463 - INFO - main.py - <module> - 260 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3655. 2022-11-10 17:04:13,463 - INFO - main.py - <module> - 262 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3656. 2022-11-10 17:04:17,395 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3657. 2022-11-10 17:04:18,954 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3658. 2022-11-10 17:04:19,483 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3659. 2022-11-10 17:05:36,614 - INFO - main.py - <module> - 295 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3660. 2022-11-10 17:05:38,144 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3661. 2022-11-10 17:05:38,663 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3662. 2022-11-10 17:12:28,419 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3663. 2022-11-10 17:12:28,419 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3664. 2022-11-10 17:12:32,363 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3665. 2022-11-10 17:12:33,932 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3666. 2022-11-10 17:12:34,457 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3667. 2022-11-10 17:13:49,742 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3668. 2022-11-10 17:13:51,243 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3669. 2022-11-10 17:13:51,757 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3670. 2022-11-10 17:18:45,679 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3671. 2022-11-10 17:18:45,679 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3672. 2022-11-10 17:18:49,568 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3673. 2022-11-10 17:18:51,174 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3674. 2022-11-10 17:18:51,741 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3675. 2022-11-10 17:20:08,393 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3676. 2022-11-10 17:20:09,878 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3677. 2022-11-10 17:20:10,400 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3678. 2022-11-10 17:22:26,782 - INFO - main.py - <module> - 266 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3679. 2022-11-10 17:22:26,782 - INFO - main.py - <module> - 268 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3680. 2022-11-10 17:22:30,712 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3681. 2022-11-10 17:22:32,304 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3682. 2022-11-10 17:22:32,839 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3683. 2022-11-10 17:23:48,238 - INFO - main.py - <module> - 301 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3684. 2022-11-10 17:23:49,732 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3685. 2022-11-10 17:23:50,220 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3686. 2022-11-10 17:27:05,063 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3687. 2022-11-10 17:27:05,063 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3688. 2022-11-10 17:27:08,989 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3689. 2022-11-10 17:27:10,547 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3690. 2022-11-10 17:27:11,062 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3691. 2022-11-10 17:28:26,585 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3692. 2022-11-10 17:28:28,096 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3693. 2022-11-10 17:28:28,570 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3694. 2022-11-10 17:29:19,770 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3695. 2022-11-10 17:29:19,770 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3696. 2022-11-10 17:29:23,625 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3697. 2022-11-10 17:29:25,172 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3698. 2022-11-10 17:29:25,676 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3699. 2022-11-10 17:30:39,837 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3700. 2022-11-10 17:30:41,305 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3701. 2022-11-10 17:30:41,767 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3702. 2022-11-10 17:34:37,153 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3703. 2022-11-10 17:34:37,153 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3704. 2022-11-10 17:34:41,097 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3705. 2022-11-10 17:34:42,637 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3706. 2022-11-10 17:34:43,171 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3707. 2022-11-10 17:35:59,620 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3708. 2022-11-10 17:36:01,118 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3709. 2022-11-10 17:36:01,589 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3710. 2022-11-10 17:43:29,099 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3711. 2022-11-10 17:43:29,099 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3712. 2022-11-10 17:43:33,072 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3713. 2022-11-10 17:43:34,634 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3714. 2022-11-10 17:43:35,164 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3715. 2022-11-10 17:44:53,860 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3716. 2022-11-10 17:44:55,338 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3717. 2022-11-10 17:44:55,847 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3718. 2022-11-10 17:45:18,986 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3719. 2022-11-10 17:45:18,986 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3720. 2022-11-10 17:45:22,928 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3721. 2022-11-10 17:45:24,449 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3722. 2022-11-10 17:45:24,948 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3723. 2022-11-10 17:46:20,522 - INFO - main.py - <module> - 263 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3724. 2022-11-10 17:46:20,522 - INFO - main.py - <module> - 265 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3725. 2022-11-10 17:46:24,406 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3726. 2022-11-10 17:46:25,927 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3727. 2022-11-10 17:46:26,493 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3728. 2022-11-10 17:47:44,235 - INFO - main.py - <module> - 298 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3729. 2022-11-10 17:47:45,681 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3730. 2022-11-10 17:47:46,180 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3731. 2022-11-10 17:55:42,885 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3732. 2022-11-10 17:55:42,885 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3733. 2022-11-10 17:55:46,791 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3734. 2022-11-10 17:55:48,383 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3735. 2022-11-10 17:55:48,913 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3736. 2022-11-10 17:57:05,653 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3737. 2022-11-10 17:57:07,150 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3738. 2022-11-10 17:57:07,665 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3739. 2022-11-10 18:17:11,930 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3740. 2022-11-10 18:17:11,930 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3741. 2022-11-10 18:17:15,986 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3742. 2022-11-10 18:17:17,550 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3743. 2022-11-10 18:17:18,073 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3744. 2022-11-10 18:18:32,384 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3745. 2022-11-10 18:18:33,885 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3746. 2022-11-10 18:18:34,405 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3747. 2022-11-10 18:23:13,296 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3748. 2022-11-10 18:23:13,296 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3749. 2022-11-10 18:23:17,229 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3750. 2022-11-10 18:23:18,805 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3751. 2022-11-10 18:23:19,339 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3752. 2022-11-10 18:24:36,791 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3753. 2022-11-10 18:24:38,241 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3754. 2022-11-10 18:24:38,785 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3755. 2022-11-10 18:29:09,874 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3756. 2022-11-10 18:29:09,874 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3757. 2022-11-10 18:29:13,878 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3758. 2022-11-10 18:29:15,406 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3759. 2022-11-10 18:29:15,985 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3760. 2022-11-10 18:30:35,949 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3761. 2022-11-10 18:30:37,469 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3762. 2022-11-10 18:30:38,006 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3763. 2022-11-10 18:31:27,576 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3764. 2022-11-10 18:31:27,576 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3765. 2022-11-10 18:31:31,514 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3766. 2022-11-10 18:31:33,005 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3767. 2022-11-10 18:31:33,557 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3768. 2022-11-10 18:32:49,325 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3769. 2022-11-10 18:32:50,802 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3770. 2022-11-10 18:32:51,316 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3771. 2022-11-10 18:37:30,106 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3772. 2022-11-10 18:37:30,106 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3773. 2022-11-10 18:37:33,997 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3774. 2022-11-10 18:37:35,552 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3775. 2022-11-10 18:37:36,079 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3776. 2022-11-10 18:38:53,870 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3777. 2022-11-10 18:38:55,371 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3778. 2022-11-10 18:38:55,871 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3779. 2022-11-10 18:40:05,112 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3780. 2022-11-10 18:40:05,112 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3781. 2022-11-10 18:40:08,970 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3782. 2022-11-10 18:40:10,545 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3783. 2022-11-10 18:40:11,064 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3784. 2022-11-10 18:41:28,041 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3785. 2022-11-10 18:41:29,519 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3786. 2022-11-10 18:41:29,951 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3787. 2022-11-10 18:42:27,691 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3788. 2022-11-10 18:42:27,692 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3789. 2022-11-10 18:42:31,621 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3790. 2022-11-10 18:42:33,195 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3791. 2022-11-10 18:42:33,754 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3792. 2022-11-10 18:43:48,161 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3793. 2022-11-10 18:43:49,658 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3794. 2022-11-10 18:43:50,181 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3795. 2022-11-10 18:45:02,275 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3796. 2022-11-10 18:45:02,275 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3797. 2022-11-10 18:45:06,144 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3798. 2022-11-10 18:45:07,673 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3799. 2022-11-10 18:45:08,190 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3800. 2022-11-10 18:46:25,087 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3801. 2022-11-10 18:46:26,594 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3802. 2022-11-10 18:46:27,102 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3803. 2022-11-10 18:54:55,404 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3804. 2022-11-10 18:54:55,405 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3805. 2022-11-10 18:54:59,321 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3806. 2022-11-10 18:55:00,899 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3807. 2022-11-10 18:55:01,454 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3808. 2022-11-10 18:56:15,954 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3809. 2022-11-10 18:56:17,430 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3810. 2022-11-10 18:56:17,895 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3811. 2022-11-10 19:23:14,893 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3812. 2022-11-10 19:23:14,893 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3813. 2022-11-10 19:23:18,931 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3814. 2022-11-10 19:23:20,457 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3815. 2022-11-10 19:23:21,012 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3816. 2022-11-10 19:24:35,945 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3817. 2022-11-10 19:24:37,432 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3818. 2022-11-10 19:24:37,946 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3819. 2022-11-10 19:26:49,648 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3820. 2022-11-10 19:26:49,649 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3821. 2022-11-10 19:26:53,503 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3822. 2022-11-10 19:26:55,024 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3823. 2022-11-10 19:26:55,557 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3824. 2022-11-10 19:28:12,016 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3825. 2022-11-10 19:28:13,501 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3826. 2022-11-10 19:28:14,011 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3827. 2022-11-10 19:29:08,244 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3828. 2022-11-10 19:29:08,244 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3829. 2022-11-10 19:29:12,151 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3830. 2022-11-10 19:29:13,648 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3831. 2022-11-10 19:29:14,195 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3832. 2022-11-10 19:30:29,093 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3833. 2022-11-10 19:30:30,548 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3834. 2022-11-10 19:30:31,010 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3835. 2022-11-10 19:30:31,342 - INFO - main.py - predict - 198 - [('暖风鼓风机', 21, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('2鼓风', 75, 'subject'), ('内有杂', 79, 'object')]
  3836. 2022-11-10 19:40:03,510 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3837. 2022-11-10 19:40:03,511 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3838. 2022-11-10 19:40:07,424 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3839. 2022-11-10 19:40:08,988 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3840. 2022-11-10 19:40:09,513 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3841. 2022-11-10 19:46:03,178 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3842. 2022-11-10 19:46:03,178 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3843. 2022-11-10 19:46:07,445 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3844. 2022-11-10 19:46:09,083 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3845. 2022-11-10 19:46:09,610 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3846. 2022-11-10 20:03:40,961 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3847. 2022-11-10 20:03:40,961 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3848. 2022-11-10 20:03:44,954 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3849. 2022-11-10 20:03:46,524 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3850. 2022-11-10 20:03:47,074 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3851. 2022-11-10 20:12:12,450 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3852. 2022-11-10 20:12:12,451 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3853. 2022-11-10 20:12:16,386 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3854. 2022-11-10 20:12:17,963 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3855. 2022-11-10 20:12:18,492 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3856. 2022-11-10 20:16:51,884 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3857. 2022-11-10 20:16:51,884 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3858. 2022-11-10 20:16:55,874 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3859. 2022-11-10 20:16:57,444 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3860. 2022-11-10 20:16:57,975 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3861. 2022-11-10 20:20:54,021 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3862. 2022-11-10 20:20:54,021 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3863. 2022-11-10 20:20:57,964 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3864. 2022-11-10 20:20:59,502 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3865. 2022-11-10 20:21:00,047 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3866. 2022-11-10 20:30:07,108 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3867. 2022-11-10 20:30:07,108 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3868. 2022-11-10 20:30:10,989 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3869. 2022-11-10 20:30:12,528 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3870. 2022-11-10 20:30:13,048 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3871. 2022-11-11 10:33:12,211 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3872. 2022-11-11 10:33:12,211 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3873. 2022-11-11 10:33:16,114 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3874. 2022-11-11 10:33:17,719 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3875. 2022-11-11 10:33:18,345 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3876. 2022-11-20 18:04:14,025 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3877. 2022-11-20 18:04:14,025 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3878. 2022-11-20 18:04:19,333 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3879. 2022-11-20 18:04:20,876 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3880. 2022-11-20 18:04:21,453 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3881. 2022-11-21 23:26:20,302 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3882. 2022-11-21 23:26:20,302 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3883. 2022-11-21 23:27:17,601 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3884. 2022-11-21 23:27:17,601 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3885. 2022-11-21 23:27:22,658 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3886. 2022-11-21 23:27:24,168 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3887. 2022-11-21 23:27:24,777 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3888. 2022-11-21 23:28:41,197 - INFO - main.py - <module> - 299 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  3889. 2022-11-21 23:28:42,790 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3890. 2022-11-21 23:28:43,431 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3891. 2022-11-21 23:28:43,853 - INFO - main.py - predict - 198 - [('暖风鼓风机', 21, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('2鼓风', 75, 'subject'), ('内有杂', 79, 'object')]
  3892. 2022-11-22 15:34:35,264 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3893. 2022-11-22 15:34:35,264 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3894. 2022-11-23 21:12:45,244 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3895. 2022-11-23 21:18:10,782 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3896. 2022-11-23 21:18:11,485 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3897. 2022-11-23 22:21:01,725 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3898. 2022-11-23 22:21:01,725 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3899. 2022-11-23 22:21:06,001 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3900. 2022-11-23 22:21:07,547 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3901. 2022-11-23 22:21:08,500 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3902. 2022-11-29 23:24:44,589 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3903. 2022-11-29 23:24:44,589 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3904. 2022-11-29 23:34:26,938 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3905. 2022-11-29 23:34:26,938 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3906. 2022-11-29 23:36:22,619 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3907. 2022-11-29 23:36:25,400 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  3908. 2022-11-29 23:36:26,071 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3909. 2022-11-30 11:08:47,186 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3910. 2022-11-30 11:08:47,186 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3911. 2022-11-30 11:19:31,863 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3912. 2022-11-30 19:49:08,585 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3913. 2022-11-30 19:49:08,585 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3914. 2022-11-30 19:56:23,301 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3915. 2022-11-30 19:56:23,301 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3916. 2022-11-30 20:17:20,125 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3917. 2022-11-30 20:58:55,203 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3918. 2022-11-30 20:58:55,203 - INFO - main.py - <module> - 266 - Namespace(adam_epsilon=1e-08, bert_dir='../model_hub/chinese-roberta-wwm-ext/', crf_lr=0.03, data_dir='../data/dgre/', dropout=0.3, dropout_prob=0.3, eval_batch_size=2, gpu_ids='0', log_dir='./logs/', lr=3e-05, lstm_hidden=128, max_grad_norm=1, max_seq_len=512, num_layers=1, num_tags=5, other_lr=0.0003, output_dir='./checkpoints/', seed=123, swa_start=3, train_batch_size=2, train_epochs=5, use_crf='True', use_lstm='False', warmup_proportion=0.1, weight_decay=0.01)
  3919. 2022-11-30 20:59:02,055 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3920. 2023-03-16 21:05:02,026 - INFO - main.py - <module> - 264 - {0: 'O', 1: 'B-object', 2: 'I-object', 3: 'B-subject', 4: 'I-subject'}
  3921. 2023-03-16 21:05:02,026 - INFO - main.py - <module> - 266 - Namespace(output_dir='./checkpoints/', bert_dir='../model_hub/chinese-roberta-wwm-ext/', data_dir='../data/dgre/', log_dir='./logs/', num_tags=5, seed=123, gpu_ids='0', max_seq_len=512, eval_batch_size=2, swa_start=3, train_epochs=5, dropout_prob=0.3, lr=3e-05, other_lr=0.0003, crf_lr=0.03, max_grad_norm=1, warmup_proportion=0.1, weight_decay=0.01, adam_epsilon=1e-08, train_batch_size=2, use_lstm='False', lstm_hidden=128, num_layers=1, dropout=0.3, use_crf='True')
  3922. 2023-03-16 21:05:07,179 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  3923. 2023-03-16 21:05:19,512 - INFO - main.py - train - 68 - 【train】 epoch:0 0/2980 loss:292.0276
  3924. 2023-03-16 21:05:20,547 - INFO - main.py - train - 68 - 【train】 epoch:0 1/2980 loss:226.9651
  3925. 2023-03-16 21:05:21,583 - INFO - main.py - train - 68 - 【train】 epoch:0 2/2980 loss:96.5961
  3926. 2023-03-16 21:05:22,773 - INFO - main.py - train - 68 - 【train】 epoch:0 3/2980 loss:193.5617
  3927. 2023-03-16 21:05:23,897 - INFO - main.py - train - 68 - 【train】 epoch:0 4/2980 loss:138.0916
  3928. 2023-03-16 21:05:25,019 - INFO - main.py - train - 68 - 【train】 epoch:0 5/2980 loss:69.7198
  3929. 2023-03-16 21:05:26,093 - INFO - main.py - train - 68 - 【train】 epoch:0 6/2980 loss:367.6134
  3930. 2023-03-16 21:05:27,193 - INFO - main.py - train - 68 - 【train】 epoch:0 7/2980 loss:137.3571
  3931. 2023-03-16 21:05:28,302 - INFO - main.py - train - 68 - 【train】 epoch:0 8/2980 loss:418.8170
  3932. 2023-03-16 21:05:29,372 - INFO - main.py - train - 68 - 【train】 epoch:0 9/2980 loss:230.4982
  3933. 2023-03-16 21:05:30,444 - INFO - main.py - train - 68 - 【train】 epoch:0 10/2980 loss:173.2603
  3934. 2023-03-16 21:05:31,533 - INFO - main.py - train - 68 - 【train】 epoch:0 11/2980 loss:180.9781
  3935. 2023-03-16 21:05:32,627 - INFO - main.py - train - 68 - 【train】 epoch:0 12/2980 loss:392.8346
  3936. 2023-03-16 21:05:33,795 - INFO - main.py - train - 68 - 【train】 epoch:0 13/2980 loss:290.8567
  3937. 2023-03-16 21:05:34,933 - INFO - main.py - train - 68 - 【train】 epoch:0 14/2980 loss:57.3965
  3938. 2023-03-16 21:05:36,066 - INFO - main.py - train - 68 - 【train】 epoch:0 15/2980 loss:385.7918
  3939. 2023-03-16 21:05:37,149 - INFO - main.py - train - 68 - 【train】 epoch:0 16/2980 loss:70.0209
  3940. 2023-03-16 21:05:38,246 - INFO - main.py - train - 68 - 【train】 epoch:0 17/2980 loss:127.1326
  3941. 2023-03-16 21:05:39,333 - INFO - main.py - train - 68 - 【train】 epoch:0 18/2980 loss:202.2739
  3942. 2023-03-16 21:05:40,459 - INFO - main.py - train - 68 - 【train】 epoch:0 19/2980 loss:229.5152
  3943. 2023-03-16 21:05:41,575 - INFO - main.py - train - 68 - 【train】 epoch:0 20/2980 loss:364.3724
  3944. 2023-03-16 21:05:42,691 - INFO - main.py - train - 68 - 【train】 epoch:0 21/2980 loss:333.0904
  3945. 2023-03-16 21:05:43,804 - INFO - main.py - train - 68 - 【train】 epoch:0 22/2980 loss:248.2384
  3946. 2023-03-16 21:05:44,887 - INFO - main.py - train - 68 - 【train】 epoch:0 23/2980 loss:118.4113
  3947. 2023-03-16 21:05:46,058 - INFO - main.py - train - 68 - 【train】 epoch:0 24/2980 loss:363.6166
  3948. 2023-03-16 21:05:47,189 - INFO - main.py - train - 68 - 【train】 epoch:0 25/2980 loss:339.0241
  3949. 2023-03-16 21:05:48,287 - INFO - main.py - train - 68 - 【train】 epoch:0 26/2980 loss:45.9091
  3950. 2023-03-16 21:05:49,374 - INFO - main.py - train - 68 - 【train】 epoch:0 27/2980 loss:145.5225
  3951. 2023-03-16 21:05:50,471 - INFO - main.py - train - 68 - 【train】 epoch:0 28/2980 loss:113.1599
  3952. 2023-03-16 21:05:51,561 - INFO - main.py - train - 68 - 【train】 epoch:0 29/2980 loss:113.0434
  3953. 2023-03-16 21:05:52,657 - INFO - main.py - train - 68 - 【train】 epoch:0 30/2980 loss:77.8018
  3954. 2023-03-16 21:05:53,758 - INFO - main.py - train - 68 - 【train】 epoch:0 31/2980 loss:108.3225
  3955. 2023-03-16 21:05:54,887 - INFO - main.py - train - 68 - 【train】 epoch:0 32/2980 loss:396.3494
  3956. 2023-03-16 21:05:56,017 - INFO - main.py - train - 68 - 【train】 epoch:0 33/2980 loss:249.8687
  3957. 2023-03-16 21:05:57,149 - INFO - main.py - train - 68 - 【train】 epoch:0 34/2980 loss:179.0801
  3958. 2023-03-16 21:05:58,277 - INFO - main.py - train - 68 - 【train】 epoch:0 35/2980 loss:148.0742
  3959. 2023-03-16 21:05:59,493 - INFO - main.py - train - 68 - 【train】 epoch:0 36/2980 loss:256.1973
  3960. 2023-03-16 21:06:00,655 - INFO - main.py - train - 68 - 【train】 epoch:0 37/2980 loss:268.5482
  3961. 2023-03-16 21:06:01,772 - INFO - main.py - train - 68 - 【train】 epoch:0 38/2980 loss:48.5073
  3962. 2023-03-16 21:06:02,906 - INFO - main.py - train - 68 - 【train】 epoch:0 39/2980 loss:252.2066
  3963. 2023-03-16 21:06:04,033 - INFO - main.py - train - 68 - 【train】 epoch:0 40/2980 loss:142.8852
  3964. 2023-03-16 21:06:05,197 - INFO - main.py - train - 68 - 【train】 epoch:0 41/2980 loss:117.0852
  3965. 2023-03-16 21:06:06,344 - INFO - main.py - train - 68 - 【train】 epoch:0 42/2980 loss:159.1487
  3966. 2023-03-16 21:06:07,444 - INFO - main.py - train - 68 - 【train】 epoch:0 43/2980 loss:102.0254
  3967. 2023-03-16 21:06:08,640 - INFO - main.py - train - 68 - 【train】 epoch:0 44/2980 loss:140.6444
  3968. 2023-03-16 21:06:09,763 - INFO - main.py - train - 68 - 【train】 epoch:0 45/2980 loss:55.1283
  3969. 2023-03-16 21:06:10,954 - INFO - main.py - train - 68 - 【train】 epoch:0 46/2980 loss:90.1131
  3970. 2023-03-16 21:06:12,114 - INFO - main.py - train - 68 - 【train】 epoch:0 47/2980 loss:25.0661
  3971. 2023-03-16 21:06:13,223 - INFO - main.py - train - 68 - 【train】 epoch:0 48/2980 loss:48.0749
  3972. 2023-03-16 21:06:14,377 - INFO - main.py - train - 68 - 【train】 epoch:0 49/2980 loss:75.2903
  3973. 2023-03-16 21:06:15,492 - INFO - main.py - train - 68 - 【train】 epoch:0 50/2980 loss:72.3573
  3974. 2023-03-16 21:06:16,621 - INFO - main.py - train - 68 - 【train】 epoch:0 51/2980 loss:44.0508
  3975. 2023-03-16 21:06:17,753 - INFO - main.py - train - 68 - 【train】 epoch:0 52/2980 loss:60.4923
  3976. 2023-03-16 21:06:18,870 - INFO - main.py - train - 68 - 【train】 epoch:0 53/2980 loss:76.0212
  3977. 2023-03-16 21:06:19,979 - INFO - main.py - train - 68 - 【train】 epoch:0 54/2980 loss:26.8397
  3978. 2023-03-16 21:06:21,115 - INFO - main.py - train - 68 - 【train】 epoch:0 55/2980 loss:76.1568
  3979. 2023-03-16 21:06:22,246 - INFO - main.py - train - 68 - 【train】 epoch:0 56/2980 loss:52.9070
  3980. 2023-03-16 21:06:23,382 - INFO - main.py - train - 68 - 【train】 epoch:0 57/2980 loss:140.7496
  3981. 2023-03-16 21:06:24,501 - INFO - main.py - train - 68 - 【train】 epoch:0 58/2980 loss:100.6937
  3982. 2023-03-16 21:06:25,654 - INFO - main.py - train - 68 - 【train】 epoch:0 59/2980 loss:254.2648
  3983. 2023-03-16 21:06:26,811 - INFO - main.py - train - 68 - 【train】 epoch:0 60/2980 loss:228.7810
  3984. 2023-03-16 21:06:27,933 - INFO - main.py - train - 68 - 【train】 epoch:0 61/2980 loss:74.1850
  3985. 2023-03-16 21:06:29,054 - INFO - main.py - train - 68 - 【train】 epoch:0 62/2980 loss:135.2756
  3986. 2023-03-16 21:06:30,178 - INFO - main.py - train - 68 - 【train】 epoch:0 63/2980 loss:110.4374
  3987. 2023-03-16 21:06:31,323 - INFO - main.py - train - 68 - 【train】 epoch:0 64/2980 loss:180.2233
  3988. 2023-03-16 21:06:32,437 - INFO - main.py - train - 68 - 【train】 epoch:0 65/2980 loss:90.0186
  3989. 2023-03-16 21:06:33,569 - INFO - main.py - train - 68 - 【train】 epoch:0 66/2980 loss:84.2234
  3990. 2023-03-16 21:06:34,729 - INFO - main.py - train - 68 - 【train】 epoch:0 67/2980 loss:54.5729
  3991. 2023-03-16 21:06:35,878 - INFO - main.py - train - 68 - 【train】 epoch:0 68/2980 loss:189.6768
  3992. 2023-03-16 21:06:37,006 - INFO - main.py - train - 68 - 【train】 epoch:0 69/2980 loss:48.4310
  3993. 2023-03-16 21:06:38,133 - INFO - main.py - train - 68 - 【train】 epoch:0 70/2980 loss:64.5464
  3994. 2023-03-16 21:06:39,243 - INFO - main.py - train - 68 - 【train】 epoch:0 71/2980 loss:21.1862
  3995. 2023-03-16 21:06:40,380 - INFO - main.py - train - 68 - 【train】 epoch:0 72/2980 loss:89.8994
  3996. 2023-03-16 21:06:41,519 - INFO - main.py - train - 68 - 【train】 epoch:0 73/2980 loss:64.3583
  3997. 2023-03-16 21:06:42,666 - INFO - main.py - train - 68 - 【train】 epoch:0 74/2980 loss:201.5892
  3998. 2023-03-16 21:06:43,836 - INFO - main.py - train - 68 - 【train】 epoch:0 75/2980 loss:123.1158
  3999. 2023-03-16 21:06:44,969 - INFO - main.py - train - 68 - 【train】 epoch:0 76/2980 loss:51.7847
  4000. 2023-03-16 21:06:46,122 - INFO - main.py - train - 68 - 【train】 epoch:0 77/2980 loss:96.6935
  4001. 2023-03-16 21:06:47,317 - INFO - main.py - train - 68 - 【train】 epoch:0 78/2980 loss:95.5584
  4002. 2023-03-16 21:06:48,461 - INFO - main.py - train - 68 - 【train】 epoch:0 79/2980 loss:35.8590
  4003. 2023-03-16 21:06:49,622 - INFO - main.py - train - 68 - 【train】 epoch:0 80/2980 loss:92.6067
  4004. 2023-03-16 21:06:50,888 - INFO - main.py - train - 68 - 【train】 epoch:0 81/2980 loss:39.3148
  4005. 2023-03-16 21:06:52,075 - INFO - main.py - train - 68 - 【train】 epoch:0 82/2980 loss:48.2594
  4006. 2023-03-16 21:06:53,389 - INFO - main.py - train - 68 - 【train】 epoch:0 83/2980 loss:139.2910
  4007. 2023-03-16 21:06:54,523 - INFO - main.py - train - 68 - 【train】 epoch:0 84/2980 loss:75.2282
  4008. 2023-03-16 21:06:55,664 - INFO - main.py - train - 68 - 【train】 epoch:0 85/2980 loss:73.2401
  4009. 2023-03-16 21:06:56,783 - INFO - main.py - train - 68 - 【train】 epoch:0 86/2980 loss:30.7443
  4010. 2023-03-16 21:06:57,954 - INFO - main.py - train - 68 - 【train】 epoch:0 87/2980 loss:43.3145
  4011. 2023-03-16 21:06:59,083 - INFO - main.py - train - 68 - 【train】 epoch:0 88/2980 loss:73.9645
  4012. 2023-03-16 21:07:00,233 - INFO - main.py - train - 68 - 【train】 epoch:0 89/2980 loss:243.0572
  4013. 2023-03-16 21:07:01,382 - INFO - main.py - train - 68 - 【train】 epoch:0 90/2980 loss:103.8712
  4014. 2023-03-16 21:07:02,538 - INFO - main.py - train - 68 - 【train】 epoch:0 91/2980 loss:67.3335
  4015. 2023-03-16 21:07:03,683 - INFO - main.py - train - 68 - 【train】 epoch:0 92/2980 loss:73.1260
  4016. 2023-03-16 21:07:04,880 - INFO - main.py - train - 68 - 【train】 epoch:0 93/2980 loss:48.7900
  4017. 2023-03-16 21:07:06,022 - INFO - main.py - train - 68 - 【train】 epoch:0 94/2980 loss:141.0031
  4018. 2023-03-16 21:07:07,197 - INFO - main.py - train - 68 - 【train】 epoch:0 95/2980 loss:40.2439
  4019. 2023-03-16 21:07:08,372 - INFO - main.py - train - 68 - 【train】 epoch:0 96/2980 loss:45.7100
  4020. 2023-03-16 21:07:09,549 - INFO - main.py - train - 68 - 【train】 epoch:0 97/2980 loss:58.9906
  4021. 2023-03-16 21:07:10,698 - INFO - main.py - train - 68 - 【train】 epoch:0 98/2980 loss:110.6669
  4022. 2023-03-16 21:07:11,877 - INFO - main.py - train - 68 - 【train】 epoch:0 99/2980 loss:111.6620
  4023. 2023-03-16 21:07:13,036 - INFO - main.py - train - 68 - 【train】 epoch:0 100/2980 loss:21.2514
  4024. 2023-03-16 21:07:14,248 - INFO - main.py - train - 68 - 【train】 epoch:0 101/2980 loss:95.0912
  4025. 2023-03-16 21:07:15,362 - INFO - main.py - train - 68 - 【train】 epoch:0 102/2980 loss:89.0541
  4026. 2023-03-16 21:07:16,587 - INFO - main.py - train - 68 - 【train】 epoch:0 103/2980 loss:76.6104
  4027. 2023-03-16 21:07:17,753 - INFO - main.py - train - 68 - 【train】 epoch:0 104/2980 loss:26.8604
  4028. 2023-03-16 21:07:18,923 - INFO - main.py - train - 68 - 【train】 epoch:0 105/2980 loss:189.4082
  4029. 2023-03-16 21:07:20,083 - INFO - main.py - train - 68 - 【train】 epoch:0 106/2980 loss:73.6656
  4030. 2023-03-16 21:07:21,227 - INFO - main.py - train - 68 - 【train】 epoch:0 107/2980 loss:24.9248
  4031. 2023-03-16 21:07:22,395 - INFO - main.py - train - 68 - 【train】 epoch:0 108/2980 loss:80.2577
  4032. 2023-03-16 21:07:23,546 - INFO - main.py - train - 68 - 【train】 epoch:0 109/2980 loss:54.8539
  4033. 2023-03-16 21:07:24,696 - INFO - main.py - train - 68 - 【train】 epoch:0 110/2980 loss:45.1794
  4034. 2023-03-16 21:07:25,857 - INFO - main.py - train - 68 - 【train】 epoch:0 111/2980 loss:24.3131
  4035. 2023-03-16 21:07:27,164 - INFO - main.py - train - 68 - 【train】 epoch:0 112/2980 loss:20.2168
  4036. 2023-03-16 21:07:28,417 - INFO - main.py - train - 68 - 【train】 epoch:0 113/2980 loss:24.4618
  4037. 2023-03-16 21:07:29,603 - INFO - main.py - train - 68 - 【train】 epoch:0 114/2980 loss:188.8162
  4038. 2023-03-16 21:07:30,759 - INFO - main.py - train - 68 - 【train】 epoch:0 115/2980 loss:97.8015
  4039. 2023-03-16 21:07:31,915 - INFO - main.py - train - 68 - 【train】 epoch:0 116/2980 loss:19.5055
  4040. 2023-03-16 21:07:33,098 - INFO - main.py - train - 68 - 【train】 epoch:0 117/2980 loss:105.0646
  4041. 2023-03-16 21:07:34,299 - INFO - main.py - train - 68 - 【train】 epoch:0 118/2980 loss:50.1252
  4042. 2023-03-16 21:07:35,646 - INFO - main.py - train - 68 - 【train】 epoch:0 119/2980 loss:64.1951
  4043. 2023-03-16 21:07:37,128 - INFO - main.py - train - 68 - 【train】 epoch:0 120/2980 loss:26.3382
  4044. 2023-03-16 21:07:38,395 - INFO - main.py - train - 68 - 【train】 epoch:0 121/2980 loss:75.8050
  4045. 2023-03-16 21:07:39,638 - INFO - main.py - train - 68 - 【train】 epoch:0 122/2980 loss:69.6028
  4046. 2023-03-16 21:07:40,803 - INFO - main.py - train - 68 - 【train】 epoch:0 123/2980 loss:79.8826
  4047. 2023-03-16 21:07:42,087 - INFO - main.py - train - 68 - 【train】 epoch:0 124/2980 loss:98.6152
  4048. 2023-03-16 21:07:43,311 - INFO - main.py - train - 68 - 【train】 epoch:0 125/2980 loss:56.4791
  4049. 2023-03-16 21:07:44,607 - INFO - main.py - train - 68 - 【train】 epoch:0 126/2980 loss:46.8681
  4050. 2023-03-16 21:07:45,763 - INFO - main.py - train - 68 - 【train】 epoch:0 127/2980 loss:33.4132
  4051. 2023-03-16 21:07:46,980 - INFO - main.py - train - 68 - 【train】 epoch:0 128/2980 loss:65.5442
  4052. 2023-03-16 21:07:48,187 - INFO - main.py - train - 68 - 【train】 epoch:0 129/2980 loss:52.6542
  4053. 2023-03-16 21:07:49,309 - INFO - main.py - train - 68 - 【train】 epoch:0 130/2980 loss:31.5141
  4054. 2023-03-16 21:07:50,462 - INFO - main.py - train - 68 - 【train】 epoch:0 131/2980 loss:24.1928
  4055. 2023-03-16 21:07:51,596 - INFO - main.py - train - 68 - 【train】 epoch:0 132/2980 loss:37.6790
  4056. 2023-03-16 21:07:52,740 - INFO - main.py - train - 68 - 【train】 epoch:0 133/2980 loss:50.5162
  4057. 2023-03-16 21:07:53,894 - INFO - main.py - train - 68 - 【train】 epoch:0 134/2980 loss:40.2478
  4058. 2023-03-16 21:07:55,044 - INFO - main.py - train - 68 - 【train】 epoch:0 135/2980 loss:51.4791
  4059. 2023-03-16 21:07:56,183 - INFO - main.py - train - 68 - 【train】 epoch:0 136/2980 loss:32.5272
  4060. 2023-03-16 21:07:57,320 - INFO - main.py - train - 68 - 【train】 epoch:0 137/2980 loss:42.4032
  4061. 2023-03-16 21:07:58,475 - INFO - main.py - train - 68 - 【train】 epoch:0 138/2980 loss:14.7972
  4062. 2023-03-16 21:07:59,642 - INFO - main.py - train - 68 - 【train】 epoch:0 139/2980 loss:33.9670
  4063. 2023-03-16 21:08:00,898 - INFO - main.py - train - 68 - 【train】 epoch:0 140/2980 loss:25.2635
  4064. 2023-03-16 21:08:02,044 - INFO - main.py - train - 68 - 【train】 epoch:0 141/2980 loss:12.7451
  4065. 2023-03-16 21:08:03,205 - INFO - main.py - train - 68 - 【train】 epoch:0 142/2980 loss:64.7080
  4066. 2023-03-16 21:08:04,371 - INFO - main.py - train - 68 - 【train】 epoch:0 143/2980 loss:84.6620
  4067. 2023-03-16 21:08:05,522 - INFO - main.py - train - 68 - 【train】 epoch:0 144/2980 loss:52.9766
  4068. 2023-03-16 21:08:06,693 - INFO - main.py - train - 68 - 【train】 epoch:0 145/2980 loss:33.7152
  4069. 2023-03-16 21:08:07,823 - INFO - main.py - train - 68 - 【train】 epoch:0 146/2980 loss:39.0896
  4070. 2023-03-16 21:08:08,959 - INFO - main.py - train - 68 - 【train】 epoch:0 147/2980 loss:10.7021
  4071. 2023-03-16 21:08:10,106 - INFO - main.py - train - 68 - 【train】 epoch:0 148/2980 loss:76.2070
  4072. 2023-03-16 21:08:11,253 - INFO - main.py - train - 68 - 【train】 epoch:0 149/2980 loss:23.0698
  4073. 2023-03-16 21:08:12,458 - INFO - main.py - train - 68 - 【train】 epoch:0 150/2980 loss:15.1805
  4074. 2023-03-16 21:08:13,603 - INFO - main.py - train - 68 - 【train】 epoch:0 151/2980 loss:99.1099
  4075. 2023-03-16 21:08:14,749 - INFO - main.py - train - 68 - 【train】 epoch:0 152/2980 loss:38.9295
  4076. 2023-03-16 21:08:15,931 - INFO - main.py - train - 68 - 【train】 epoch:0 153/2980 loss:125.7342
  4077. 2023-03-16 21:08:17,062 - INFO - main.py - train - 68 - 【train】 epoch:0 154/2980 loss:21.4354
  4078. 2023-03-16 21:08:18,173 - INFO - main.py - train - 68 - 【train】 epoch:0 155/2980 loss:32.6417
  4079. 2023-03-16 21:08:19,293 - INFO - main.py - train - 68 - 【train】 epoch:0 156/2980 loss:32.1754
  4080. 2023-03-16 21:08:20,419 - INFO - main.py - train - 68 - 【train】 epoch:0 157/2980 loss:32.1315
  4081. 2023-03-16 21:08:21,539 - INFO - main.py - train - 68 - 【train】 epoch:0 158/2980 loss:17.8108
  4082. 2023-03-16 21:08:22,674 - INFO - main.py - train - 68 - 【train】 epoch:0 159/2980 loss:33.0230
  4083. 2023-03-16 21:08:23,815 - INFO - main.py - train - 68 - 【train】 epoch:0 160/2980 loss:49.7464
  4084. 2023-03-16 21:08:24,955 - INFO - main.py - train - 68 - 【train】 epoch:0 161/2980 loss:13.0739
  4085. 2023-03-16 21:08:26,106 - INFO - main.py - train - 68 - 【train】 epoch:0 162/2980 loss:26.6613
  4086. 2023-03-16 21:08:27,299 - INFO - main.py - train - 68 - 【train】 epoch:0 163/2980 loss:37.9839
  4087. 2023-03-16 21:08:28,563 - INFO - main.py - train - 68 - 【train】 epoch:0 164/2980 loss:56.5985
  4088. 2023-03-16 21:08:29,762 - INFO - main.py - train - 68 - 【train】 epoch:0 165/2980 loss:45.1057
  4089. 2023-03-16 21:08:31,021 - INFO - main.py - train - 68 - 【train】 epoch:0 166/2980 loss:74.3719
  4090. 2023-03-16 21:08:32,323 - INFO - main.py - train - 68 - 【train】 epoch:0 167/2980 loss:46.9525
  4091. 2023-03-16 21:08:33,468 - INFO - main.py - train - 68 - 【train】 epoch:0 168/2980 loss:14.9641
  4092. 2023-03-16 21:08:34,601 - INFO - main.py - train - 68 - 【train】 epoch:0 169/2980 loss:35.2809
  4093. 2023-03-16 21:08:35,743 - INFO - main.py - train - 68 - 【train】 epoch:0 170/2980 loss:37.4008
  4094. 2023-03-16 21:08:36,860 - INFO - main.py - train - 68 - 【train】 epoch:0 171/2980 loss:35.9144
  4095. 2023-03-16 21:08:38,179 - INFO - main.py - train - 68 - 【train】 epoch:0 172/2980 loss:48.5178
  4096. 2023-03-16 21:08:39,360 - INFO - main.py - train - 68 - 【train】 epoch:0 173/2980 loss:35.6137
  4097. 2023-03-16 21:08:40,623 - INFO - main.py - train - 68 - 【train】 epoch:0 174/2980 loss:13.9552
  4098. 2023-03-16 21:08:41,869 - INFO - main.py - train - 68 - 【train】 epoch:0 175/2980 loss:44.9754
  4099. 2023-03-16 21:08:43,161 - INFO - main.py - train - 68 - 【train】 epoch:0 176/2980 loss:40.4373
  4100. 2023-03-16 21:08:44,499 - INFO - main.py - train - 68 - 【train】 epoch:0 177/2980 loss:48.1163
  4101. 2023-03-16 21:08:46,118 - INFO - main.py - train - 68 - 【train】 epoch:0 178/2980 loss:31.6856
  4102. 2023-03-16 21:08:47,542 - INFO - main.py - train - 68 - 【train】 epoch:0 179/2980 loss:18.7556
  4103. 2023-03-16 21:08:48,976 - INFO - main.py - train - 68 - 【train】 epoch:0 180/2980 loss:67.9334
  4104. 2023-03-16 21:08:50,230 - INFO - main.py - train - 68 - 【train】 epoch:0 181/2980 loss:33.0944
  4105. 2023-03-16 21:08:51,369 - INFO - main.py - train - 68 - 【train】 epoch:0 182/2980 loss:43.5448
  4106. 2023-03-16 21:08:52,553 - INFO - main.py - train - 68 - 【train】 epoch:0 183/2980 loss:8.1395
  4107. 2023-03-16 21:08:53,700 - INFO - main.py - train - 68 - 【train】 epoch:0 184/2980 loss:9.9035
  4108. 2023-03-16 21:08:54,856 - INFO - main.py - train - 68 - 【train】 epoch:0 185/2980 loss:81.2607
  4109. 2023-03-16 21:08:56,013 - INFO - main.py - train - 68 - 【train】 epoch:0 186/2980 loss:13.7687
  4110. 2023-03-16 21:08:57,200 - INFO - main.py - train - 68 - 【train】 epoch:0 187/2980 loss:41.7355
  4111. 2023-03-16 21:08:58,356 - INFO - main.py - train - 68 - 【train】 epoch:0 188/2980 loss:18.9251
  4112. 2023-03-16 21:08:59,542 - INFO - main.py - train - 68 - 【train】 epoch:0 189/2980 loss:10.2060
  4113. 2023-03-16 21:09:00,699 - INFO - main.py - train - 68 - 【train】 epoch:0 190/2980 loss:34.5080
  4114. 2023-03-16 21:09:01,855 - INFO - main.py - train - 68 - 【train】 epoch:0 191/2980 loss:29.0516
  4115. 2023-03-16 21:09:03,022 - INFO - main.py - train - 68 - 【train】 epoch:0 192/2980 loss:57.7112
  4116. 2023-03-16 21:09:04,281 - INFO - main.py - train - 68 - 【train】 epoch:0 193/2980 loss:14.1531
  4117. 2023-03-16 21:09:06,047 - INFO - main.py - train - 68 - 【train】 epoch:0 194/2980 loss:12.5322
  4118. 2023-03-16 21:09:07,510 - INFO - main.py - train - 68 - 【train】 epoch:0 195/2980 loss:24.2218
  4119. 2023-03-16 21:09:08,740 - INFO - main.py - train - 68 - 【train】 epoch:0 196/2980 loss:38.3831
  4120. 2023-03-16 21:09:10,116 - INFO - main.py - train - 68 - 【train】 epoch:0 197/2980 loss:37.1850
  4121. 2023-03-16 21:09:11,365 - INFO - main.py - train - 68 - 【train】 epoch:0 198/2980 loss:31.6422
  4122. 2023-03-16 21:09:12,753 - INFO - main.py - train - 68 - 【train】 epoch:0 199/2980 loss:67.8255
  4123. 2023-03-16 21:09:14,153 - INFO - main.py - train - 68 - 【train】 epoch:0 200/2980 loss:15.9971
  4124. 2023-03-16 21:09:15,471 - INFO - main.py - train - 68 - 【train】 epoch:0 201/2980 loss:37.9586
  4125. 2023-03-16 21:09:16,721 - INFO - main.py - train - 68 - 【train】 epoch:0 202/2980 loss:72.4750
  4126. 2023-03-16 21:09:17,973 - INFO - main.py - train - 68 - 【train】 epoch:0 203/2980 loss:101.6892
  4127. 2023-03-16 21:09:19,202 - INFO - main.py - train - 68 - 【train】 epoch:0 204/2980 loss:77.7654
  4128. 2023-03-16 21:09:20,437 - INFO - main.py - train - 68 - 【train】 epoch:0 205/2980 loss:35.9848
  4129. 2023-03-16 21:09:21,692 - INFO - main.py - train - 68 - 【train】 epoch:0 206/2980 loss:36.1010
  4130. 2023-03-16 21:09:22,884 - INFO - main.py - train - 68 - 【train】 epoch:0 207/2980 loss:8.2663
  4131. 2023-03-16 21:09:24,132 - INFO - main.py - train - 68 - 【train】 epoch:0 208/2980 loss:31.4579
  4132. 2023-03-16 21:09:25,321 - INFO - main.py - train - 68 - 【train】 epoch:0 209/2980 loss:7.3072
  4133. 2023-03-16 21:09:26,571 - INFO - main.py - train - 68 - 【train】 epoch:0 210/2980 loss:38.6991
  4134. 2023-03-16 21:09:27,756 - INFO - main.py - train - 68 - 【train】 epoch:0 211/2980 loss:20.0006
  4135. 2023-03-16 21:09:28,961 - INFO - main.py - train - 68 - 【train】 epoch:0 212/2980 loss:12.8176
  4136. 2023-03-16 21:09:30,205 - INFO - main.py - train - 68 - 【train】 epoch:0 213/2980 loss:25.2830
  4137. 2023-03-16 21:09:31,419 - INFO - main.py - train - 68 - 【train】 epoch:0 214/2980 loss:77.1376
  4138. 2023-03-16 21:09:32,620 - INFO - main.py - train - 68 - 【train】 epoch:0 215/2980 loss:18.8841
  4139. 2023-03-16 21:09:33,878 - INFO - main.py - train - 68 - 【train】 epoch:0 216/2980 loss:58.7222
  4140. 2023-03-16 21:09:35,067 - INFO - main.py - train - 68 - 【train】 epoch:0 217/2980 loss:25.8723
  4141. 2023-03-16 21:09:36,265 - INFO - main.py - train - 68 - 【train】 epoch:0 218/2980 loss:7.5292
  4142. 2023-03-16 21:09:37,504 - INFO - main.py - train - 68 - 【train】 epoch:0 219/2980 loss:16.8791
  4143. 2023-03-16 21:09:38,703 - INFO - main.py - train - 68 - 【train】 epoch:0 220/2980 loss:51.7169
  4144. 2023-03-16 21:09:39,856 - INFO - main.py - train - 68 - 【train】 epoch:0 221/2980 loss:34.9398
  4145. 2023-03-16 21:09:40,999 - INFO - main.py - train - 68 - 【train】 epoch:0 222/2980 loss:9.0985
  4146. 2023-03-16 21:09:42,171 - INFO - main.py - train - 68 - 【train】 epoch:0 223/2980 loss:58.8054
  4147. 2023-03-16 21:09:43,326 - INFO - main.py - train - 68 - 【train】 epoch:0 224/2980 loss:22.9221
  4148. 2023-03-16 21:09:44,715 - INFO - main.py - train - 68 - 【train】 epoch:0 225/2980 loss:26.8199
  4149. 2023-03-16 21:09:46,090 - INFO - main.py - train - 68 - 【train】 epoch:0 226/2980 loss:97.8847
  4150. 2023-03-16 21:09:47,343 - INFO - main.py - train - 68 - 【train】 epoch:0 227/2980 loss:10.9395
  4151. 2023-03-16 21:09:48,591 - INFO - main.py - train - 68 - 【train】 epoch:0 228/2980 loss:56.2990
  4152. 2023-03-16 21:09:49,765 - INFO - main.py - train - 68 - 【train】 epoch:0 229/2980 loss:21.8034
  4153. 2023-03-16 21:09:51,016 - INFO - main.py - train - 68 - 【train】 epoch:0 230/2980 loss:49.2331
  4154. 2023-03-16 21:09:52,373 - INFO - main.py - train - 68 - 【train】 epoch:0 231/2980 loss:21.7202
  4155. 2023-03-16 21:09:53,553 - INFO - main.py - train - 68 - 【train】 epoch:0 232/2980 loss:63.5098
  4156. 2023-03-16 21:09:54,710 - INFO - main.py - train - 68 - 【train】 epoch:0 233/2980 loss:6.4483
  4157. 2023-03-16 21:09:55,899 - INFO - main.py - train - 68 - 【train】 epoch:0 234/2980 loss:28.5372
  4158. 2023-03-16 21:09:57,226 - INFO - main.py - train - 68 - 【train】 epoch:0 235/2980 loss:22.0194
  4159. 2023-03-16 21:09:58,495 - INFO - main.py - train - 68 - 【train】 epoch:0 236/2980 loss:26.0620
  4160. 2023-03-16 21:09:59,985 - INFO - main.py - train - 68 - 【train】 epoch:0 237/2980 loss:43.6152
  4161. 2023-03-16 21:10:01,309 - INFO - main.py - train - 68 - 【train】 epoch:0 238/2980 loss:12.5450
  4162. 2023-03-16 21:10:02,841 - INFO - main.py - train - 68 - 【train】 epoch:0 239/2980 loss:9.5736
  4163. 2023-03-16 21:10:04,443 - INFO - main.py - train - 68 - 【train】 epoch:0 240/2980 loss:48.9775
  4164. 2023-03-16 21:10:06,276 - INFO - main.py - train - 68 - 【train】 epoch:0 241/2980 loss:27.1593
  4165. 2023-03-16 21:10:07,730 - INFO - main.py - train - 68 - 【train】 epoch:0 242/2980 loss:29.7317
  4166. 2023-03-16 21:10:09,629 - INFO - main.py - train - 68 - 【train】 epoch:0 243/2980 loss:22.4911
  4167. 2023-03-16 21:10:11,550 - INFO - main.py - train - 68 - 【train】 epoch:0 244/2980 loss:15.5229
  4168. 2023-03-16 21:10:13,375 - INFO - main.py - train - 68 - 【train】 epoch:0 245/2980 loss:6.0216
  4169. 2023-03-16 21:10:15,165 - INFO - main.py - train - 68 - 【train】 epoch:0 246/2980 loss:34.8837
  4170. 2023-03-16 21:10:17,072 - INFO - main.py - train - 68 - 【train】 epoch:0 247/2980 loss:37.1103
  4171. 2023-03-16 21:10:18,997 - INFO - main.py - train - 68 - 【train】 epoch:0 248/2980 loss:14.1504
  4172. 2023-03-16 21:10:20,700 - INFO - main.py - train - 68 - 【train】 epoch:0 249/2980 loss:6.7566
  4173. 2023-03-16 21:10:22,017 - INFO - main.py - train - 68 - 【train】 epoch:0 250/2980 loss:26.2613
  4174. 2023-03-16 21:10:23,250 - INFO - main.py - train - 68 - 【train】 epoch:0 251/2980 loss:27.5841
  4175. 2023-03-16 21:10:24,525 - INFO - main.py - train - 68 - 【train】 epoch:0 252/2980 loss:15.1011
  4176. 2023-03-16 21:10:25,865 - INFO - main.py - train - 68 - 【train】 epoch:0 253/2980 loss:15.0844
  4177. 2023-03-16 21:10:27,111 - INFO - main.py - train - 68 - 【train】 epoch:0 254/2980 loss:32.6849
  4178. 2023-03-16 21:10:28,329 - INFO - main.py - train - 68 - 【train】 epoch:0 255/2980 loss:27.5293
  4179. 2023-03-16 21:10:29,780 - INFO - main.py - train - 68 - 【train】 epoch:0 256/2980 loss:11.3621
  4180. 2023-03-16 21:10:31,232 - INFO - main.py - train - 68 - 【train】 epoch:0 257/2980 loss:31.2603
  4181. 2023-03-16 21:10:32,798 - INFO - main.py - train - 68 - 【train】 epoch:0 258/2980 loss:23.8830
  4182. 2023-03-16 21:10:34,009 - INFO - main.py - train - 68 - 【train】 epoch:0 259/2980 loss:29.6966
  4183. 2023-03-16 21:10:35,235 - INFO - main.py - train - 68 - 【train】 epoch:0 260/2980 loss:22.0233
  4184. 2023-03-16 21:10:36,524 - INFO - main.py - train - 68 - 【train】 epoch:0 261/2980 loss:20.5501
  4185. 2023-03-16 21:10:37,760 - INFO - main.py - train - 68 - 【train】 epoch:0 262/2980 loss:27.0186
  4186. 2023-03-16 21:10:38,993 - INFO - main.py - train - 68 - 【train】 epoch:0 263/2980 loss:29.4412
  4187. 2023-03-16 21:10:40,159 - INFO - main.py - train - 68 - 【train】 epoch:0 264/2980 loss:11.8931
  4188. 2023-03-16 21:10:41,356 - INFO - main.py - train - 68 - 【train】 epoch:0 265/2980 loss:34.9225
  4189. 2023-03-16 21:10:42,557 - INFO - main.py - train - 68 - 【train】 epoch:0 266/2980 loss:15.8850
  4190. 2023-03-16 21:10:43,746 - INFO - main.py - train - 68 - 【train】 epoch:0 267/2980 loss:9.6454
  4191. 2023-03-16 21:10:44,941 - INFO - main.py - train - 68 - 【train】 epoch:0 268/2980 loss:6.7161
  4192. 2023-03-16 21:10:46,484 - INFO - main.py - train - 68 - 【train】 epoch:0 269/2980 loss:5.6061
  4193. 2023-03-16 21:10:47,814 - INFO - main.py - train - 68 - 【train】 epoch:0 270/2980 loss:8.4371
  4194. 2023-03-16 21:10:49,007 - INFO - main.py - train - 68 - 【train】 epoch:0 271/2980 loss:17.6188
  4195. 2023-03-16 21:10:50,258 - INFO - main.py - train - 68 - 【train】 epoch:0 272/2980 loss:25.9728
  4196. 2023-03-16 21:10:51,917 - INFO - main.py - train - 68 - 【train】 epoch:0 273/2980 loss:46.7719
  4197. 2023-03-16 21:10:53,396 - INFO - main.py - train - 68 - 【train】 epoch:0 274/2980 loss:39.3674
  4198. 2023-03-16 21:10:54,819 - INFO - main.py - train - 68 - 【train】 epoch:0 275/2980 loss:15.5076
  4199. 2023-03-16 21:10:56,361 - INFO - main.py - train - 68 - 【train】 epoch:0 276/2980 loss:22.9901
  4200. 2023-03-16 21:10:57,913 - INFO - main.py - train - 68 - 【train】 epoch:0 277/2980 loss:44.3916
  4201. 2023-03-16 21:10:59,103 - INFO - main.py - train - 68 - 【train】 epoch:0 278/2980 loss:9.4307
  4202. 2023-03-16 21:11:00,264 - INFO - main.py - train - 68 - 【train】 epoch:0 279/2980 loss:21.9690
  4203. 2023-03-16 21:11:01,482 - INFO - main.py - train - 68 - 【train】 epoch:0 280/2980 loss:27.1572
  4204. 2023-03-16 21:11:02,689 - INFO - main.py - train - 68 - 【train】 epoch:0 281/2980 loss:24.6827
  4205. 2023-03-16 21:11:03,920 - INFO - main.py - train - 68 - 【train】 epoch:0 282/2980 loss:94.4164
  4206. 2023-03-16 21:11:05,151 - INFO - main.py - train - 68 - 【train】 epoch:0 283/2980 loss:41.2047
  4207. 2023-03-16 21:11:06,320 - INFO - main.py - train - 68 - 【train】 epoch:0 284/2980 loss:10.0818
  4208. 2023-03-16 21:11:07,537 - INFO - main.py - train - 68 - 【train】 epoch:0 285/2980 loss:23.4411
  4209. 2023-03-16 21:11:08,695 - INFO - main.py - train - 68 - 【train】 epoch:0 286/2980 loss:13.2021
  4210. 2023-03-16 21:11:09,867 - INFO - main.py - train - 68 - 【train】 epoch:0 287/2980 loss:24.6790
  4211. 2023-03-16 21:11:11,042 - INFO - main.py - train - 68 - 【train】 epoch:0 288/2980 loss:15.2184
  4212. 2023-03-16 21:11:12,251 - INFO - main.py - train - 68 - 【train】 epoch:0 289/2980 loss:15.8734
  4213. 2023-03-16 21:11:13,497 - INFO - main.py - train - 68 - 【train】 epoch:0 290/2980 loss:11.6561
  4214. 2023-03-16 21:11:14,736 - INFO - main.py - train - 68 - 【train】 epoch:0 291/2980 loss:5.8440
  4215. 2023-03-16 21:11:15,960 - INFO - main.py - train - 68 - 【train】 epoch:0 292/2980 loss:21.4630
  4216. 2023-03-16 21:11:17,187 - INFO - main.py - train - 68 - 【train】 epoch:0 293/2980 loss:51.0180
  4217. 2023-03-16 21:11:18,399 - INFO - main.py - train - 68 - 【train】 epoch:0 294/2980 loss:3.9437
  4218. 2023-03-16 21:11:19,665 - INFO - main.py - train - 68 - 【train】 epoch:0 295/2980 loss:33.6633
  4219. 2023-03-16 21:11:20,965 - INFO - main.py - train - 68 - 【train】 epoch:0 296/2980 loss:32.8328
  4220. 2023-03-16 21:11:22,171 - INFO - main.py - train - 68 - 【train】 epoch:0 297/2980 loss:18.6636
  4221. 2023-03-16 21:11:23,446 - INFO - main.py - train - 68 - 【train】 epoch:0 298/2980 loss:20.4097
  4222. 2023-03-16 21:11:24,767 - INFO - main.py - train - 68 - 【train】 epoch:0 299/2980 loss:19.0116
  4223. 2023-03-16 21:11:26,017 - INFO - main.py - train - 68 - 【train】 epoch:0 300/2980 loss:26.0302
  4224. 2023-03-16 21:11:27,220 - INFO - main.py - train - 68 - 【train】 epoch:0 301/2980 loss:16.5713
  4225. 2023-03-16 21:11:28,396 - INFO - main.py - train - 68 - 【train】 epoch:0 302/2980 loss:3.2978
  4226. 2023-03-16 21:11:29,591 - INFO - main.py - train - 68 - 【train】 epoch:0 303/2980 loss:28.4707
  4227. 2023-03-16 21:11:33,605 - INFO - main.py - train - 68 - 【train】 epoch:0 304/2980 loss:23.9452
  4228. 2023-03-16 21:11:34,886 - INFO - main.py - train - 68 - 【train】 epoch:0 305/2980 loss:15.1998
  4229. 2023-03-16 21:11:36,212 - INFO - main.py - train - 68 - 【train】 epoch:0 306/2980 loss:18.2498
  4230. 2023-03-16 21:11:37,524 - INFO - main.py - train - 68 - 【train】 epoch:0 307/2980 loss:20.2935
  4231. 2023-03-16 21:11:38,751 - INFO - main.py - train - 68 - 【train】 epoch:0 308/2980 loss:4.2876
  4232. 2023-03-16 21:11:40,065 - INFO - main.py - train - 68 - 【train】 epoch:0 309/2980 loss:35.8935
  4233. 2023-03-16 21:11:41,319 - INFO - main.py - train - 68 - 【train】 epoch:0 310/2980 loss:19.7453
  4234. 2023-03-16 21:11:42,479 - INFO - main.py - train - 68 - 【train】 epoch:0 311/2980 loss:4.9743
  4235. 2023-03-16 21:11:43,737 - INFO - main.py - train - 68 - 【train】 epoch:0 312/2980 loss:11.1914
  4236. 2023-03-16 21:11:44,995 - INFO - main.py - train - 68 - 【train】 epoch:0 313/2980 loss:15.0580
  4237. 2023-03-16 21:11:46,204 - INFO - main.py - train - 68 - 【train】 epoch:0 314/2980 loss:8.0342
  4238. 2023-03-16 21:11:47,440 - INFO - main.py - train - 68 - 【train】 epoch:0 315/2980 loss:58.5555
  4239. 2023-03-16 21:11:48,675 - INFO - main.py - train - 68 - 【train】 epoch:0 316/2980 loss:11.0803
  4240. 2023-03-16 21:11:49,874 - INFO - main.py - train - 68 - 【train】 epoch:0 317/2980 loss:6.8163
  4241. 2023-03-16 21:11:51,062 - INFO - main.py - train - 68 - 【train】 epoch:0 318/2980 loss:9.9293
  4242. 2023-03-16 21:11:52,281 - INFO - main.py - train - 68 - 【train】 epoch:0 319/2980 loss:32.9687
  4243. 2023-03-16 21:11:53,499 - INFO - main.py - train - 68 - 【train】 epoch:0 320/2980 loss:10.5663
  4244. 2023-03-16 21:11:54,716 - INFO - main.py - train - 68 - 【train】 epoch:0 321/2980 loss:7.7108
  4245. 2023-03-16 21:11:56,036 - INFO - main.py - train - 68 - 【train】 epoch:0 322/2980 loss:17.3898
  4246. 2023-03-16 21:11:57,303 - INFO - main.py - train - 68 - 【train】 epoch:0 323/2980 loss:37.2442
  4247. 2023-03-16 21:11:58,482 - INFO - main.py - train - 68 - 【train】 epoch:0 324/2980 loss:10.4463
  4248. 2023-03-16 21:11:59,658 - INFO - main.py - train - 68 - 【train】 epoch:0 325/2980 loss:24.6306
  4249. 2023-03-16 21:12:00,860 - INFO - main.py - train - 68 - 【train】 epoch:0 326/2980 loss:10.0705
  4250. 2023-03-16 21:12:02,078 - INFO - main.py - train - 68 - 【train】 epoch:0 327/2980 loss:3.1745
  4251. 2023-03-16 21:12:03,299 - INFO - main.py - train - 68 - 【train】 epoch:0 328/2980 loss:10.7752
  4252. 2023-03-16 21:12:04,534 - INFO - main.py - train - 68 - 【train】 epoch:0 329/2980 loss:12.7406
  4253. 2023-03-16 21:12:05,819 - INFO - main.py - train - 68 - 【train】 epoch:0 330/2980 loss:5.0985
  4254. 2023-03-16 21:12:07,041 - INFO - main.py - train - 68 - 【train】 epoch:0 331/2980 loss:15.1281
  4255. 2023-03-16 21:12:08,493 - INFO - main.py - train - 68 - 【train】 epoch:0 332/2980 loss:21.7177
  4256. 2023-03-16 21:12:10,278 - INFO - main.py - train - 68 - 【train】 epoch:0 333/2980 loss:34.7830
  4257. 2023-03-16 21:12:12,124 - INFO - main.py - train - 68 - 【train】 epoch:0 334/2980 loss:26.6950
  4258. 2023-03-16 21:12:14,844 - INFO - main.py - train - 68 - 【train】 epoch:0 335/2980 loss:14.1981
  4259. 2023-03-16 21:12:17,453 - INFO - main.py - train - 68 - 【train】 epoch:0 336/2980 loss:3.4254
  4260. 2023-03-16 21:12:20,018 - INFO - main.py - train - 68 - 【train】 epoch:0 337/2980 loss:7.8911
  4261. 2023-03-16 21:12:23,216 - INFO - main.py - train - 68 - 【train】 epoch:0 338/2980 loss:7.6225
  4262. 2023-03-16 21:12:25,703 - INFO - main.py - train - 68 - 【train】 epoch:0 339/2980 loss:8.3907
  4263. 2023-03-16 21:12:28,285 - INFO - main.py - train - 68 - 【train】 epoch:0 340/2980 loss:24.7343
  4264. 2023-03-16 21:12:30,344 - INFO - main.py - train - 68 - 【train】 epoch:0 341/2980 loss:45.6343
  4265. 2023-03-16 21:12:31,981 - INFO - main.py - train - 68 - 【train】 epoch:0 342/2980 loss:18.2606
  4266. 2023-03-16 21:12:34,216 - INFO - main.py - train - 68 - 【train】 epoch:0 343/2980 loss:12.7815
  4267. 2023-03-16 21:12:36,714 - INFO - main.py - train - 68 - 【train】 epoch:0 344/2980 loss:2.8630
  4268. 2023-03-16 21:12:38,436 - INFO - main.py - train - 68 - 【train】 epoch:0 345/2980 loss:9.5653
  4269. 2023-03-16 21:12:40,583 - INFO - main.py - train - 68 - 【train】 epoch:0 346/2980 loss:4.9169
  4270. 2023-03-16 21:12:42,236 - INFO - main.py - train - 68 - 【train】 epoch:0 347/2980 loss:3.9596
  4271. 2023-03-16 21:12:43,724 - INFO - main.py - train - 68 - 【train】 epoch:0 348/2980 loss:6.2192
  4272. 2023-03-16 21:12:45,321 - INFO - main.py - train - 68 - 【train】 epoch:0 349/2980 loss:28.8384
  4273. 2023-03-16 21:12:46,796 - INFO - main.py - train - 68 - 【train】 epoch:0 350/2980 loss:37.1711
  4274. 2023-03-16 21:12:48,234 - INFO - main.py - train - 68 - 【train】 epoch:0 351/2980 loss:35.8574
  4275. 2023-03-16 21:12:50,146 - INFO - main.py - train - 68 - 【train】 epoch:0 352/2980 loss:27.7167
  4276. 2023-03-16 21:12:52,048 - INFO - main.py - train - 68 - 【train】 epoch:0 353/2980 loss:9.9819
  4277. 2023-03-16 21:12:53,560 - INFO - main.py - train - 68 - 【train】 epoch:0 354/2980 loss:21.2560
  4278. 2023-03-16 21:12:54,976 - INFO - main.py - train - 68 - 【train】 epoch:0 355/2980 loss:6.5895
  4279. 2023-03-16 21:12:56,693 - INFO - main.py - train - 68 - 【train】 epoch:0 356/2980 loss:6.1434
  4280. 2023-03-16 21:12:58,261 - INFO - main.py - train - 68 - 【train】 epoch:0 357/2980 loss:4.6459
  4281. 2023-03-16 21:12:59,668 - INFO - main.py - train - 68 - 【train】 epoch:0 358/2980 loss:3.4529
  4282. 2023-03-16 21:13:01,061 - INFO - main.py - train - 68 - 【train】 epoch:0 359/2980 loss:25.1291
  4283. 2023-03-16 21:13:02,433 - INFO - main.py - train - 68 - 【train】 epoch:0 360/2980 loss:7.8235
  4284. 2023-03-16 21:13:03,863 - INFO - main.py - train - 68 - 【train】 epoch:0 361/2980 loss:25.8075
  4285. 2023-03-16 21:13:05,376 - INFO - main.py - train - 68 - 【train】 epoch:0 362/2980 loss:9.3540
  4286. 2023-03-16 21:13:06,691 - INFO - main.py - train - 68 - 【train】 epoch:0 363/2980 loss:6.3975
  4287. 2023-03-16 21:13:08,136 - INFO - main.py - train - 68 - 【train】 epoch:0 364/2980 loss:21.4671
  4288. 2023-03-16 21:13:09,560 - INFO - main.py - train - 68 - 【train】 epoch:0 365/2980 loss:6.9095
  4289. 2023-03-16 21:13:11,005 - INFO - main.py - train - 68 - 【train】 epoch:0 366/2980 loss:17.7087
  4290. 2023-03-16 21:13:12,360 - INFO - main.py - train - 68 - 【train】 epoch:0 367/2980 loss:15.8662
  4291. 2023-03-16 21:13:13,686 - INFO - main.py - train - 68 - 【train】 epoch:0 368/2980 loss:24.2845
  4292. 2023-03-16 21:13:15,048 - INFO - main.py - train - 68 - 【train】 epoch:0 369/2980 loss:28.8256
  4293. 2023-03-16 21:13:16,509 - INFO - main.py - train - 68 - 【train】 epoch:0 370/2980 loss:30.4101
  4294. 2023-03-16 21:13:17,929 - INFO - main.py - train - 68 - 【train】 epoch:0 371/2980 loss:22.2500
  4295. 2023-03-16 21:13:19,330 - INFO - main.py - train - 68 - 【train】 epoch:0 372/2980 loss:8.7104
  4296. 2023-03-16 21:13:20,762 - INFO - main.py - train - 68 - 【train】 epoch:0 373/2980 loss:12.3322
  4297. 2023-03-16 21:13:22,054 - INFO - main.py - train - 68 - 【train】 epoch:0 374/2980 loss:25.6094
  4298. 2023-03-16 21:13:23,391 - INFO - main.py - train - 68 - 【train】 epoch:0 375/2980 loss:10.3744
  4299. 2023-03-16 21:13:24,780 - INFO - main.py - train - 68 - 【train】 epoch:0 376/2980 loss:129.3895
  4300. 2023-03-16 21:13:26,123 - INFO - main.py - train - 68 - 【train】 epoch:0 377/2980 loss:3.6734
  4301. 2023-03-16 21:13:27,509 - INFO - main.py - train - 68 - 【train】 epoch:0 378/2980 loss:15.5641
  4302. 2023-03-16 21:13:28,793 - INFO - main.py - train - 68 - 【train】 epoch:0 379/2980 loss:2.7084
  4303. 2023-03-16 21:13:30,223 - INFO - main.py - train - 68 - 【train】 epoch:0 380/2980 loss:17.5508
  4304. 2023-03-16 21:13:31,521 - INFO - main.py - train - 68 - 【train】 epoch:0 381/2980 loss:17.7952
  4305. 2023-03-16 21:13:32,869 - INFO - main.py - train - 68 - 【train】 epoch:0 382/2980 loss:18.3512
  4306. 2023-03-16 21:13:34,041 - INFO - main.py - train - 68 - 【train】 epoch:0 383/2980 loss:22.5999
  4307. 2023-03-16 21:13:35,253 - INFO - main.py - train - 68 - 【train】 epoch:0 384/2980 loss:20.0758
  4308. 2023-03-16 21:13:36,433 - INFO - main.py - train - 68 - 【train】 epoch:0 385/2980 loss:8.7233
  4309. 2023-03-16 21:13:37,644 - INFO - main.py - train - 68 - 【train】 epoch:0 386/2980 loss:34.8253
  4310. 2023-03-16 21:13:38,820 - INFO - main.py - train - 68 - 【train】 epoch:0 387/2980 loss:35.8328
  4311. 2023-03-16 21:13:40,057 - INFO - main.py - train - 68 - 【train】 epoch:0 388/2980 loss:15.4004
  4312. 2023-03-16 21:13:41,308 - INFO - main.py - train - 68 - 【train】 epoch:0 389/2980 loss:17.8654
  4313. 2023-03-16 21:13:42,574 - INFO - main.py - train - 68 - 【train】 epoch:0 390/2980 loss:23.5963
  4314. 2023-03-16 21:13:43,870 - INFO - main.py - train - 68 - 【train】 epoch:0 391/2980 loss:14.3533
  4315. 2023-03-16 21:13:45,164 - INFO - main.py - train - 68 - 【train】 epoch:0 392/2980 loss:22.4962
  4316. 2023-03-16 21:13:46,445 - INFO - main.py - train - 68 - 【train】 epoch:0 393/2980 loss:5.8102
  4317. 2023-03-16 21:13:47,739 - INFO - main.py - train - 68 - 【train】 epoch:0 394/2980 loss:57.8046
  4318. 2023-03-16 21:13:48,946 - INFO - main.py - train - 68 - 【train】 epoch:0 395/2980 loss:16.7366
  4319. 2023-03-16 21:13:50,238 - INFO - main.py - train - 68 - 【train】 epoch:0 396/2980 loss:11.9630
  4320. 2023-03-16 21:13:51,482 - INFO - main.py - train - 68 - 【train】 epoch:0 397/2980 loss:16.8727
  4321. 2023-03-16 21:13:52,772 - INFO - main.py - train - 68 - 【train】 epoch:0 398/2980 loss:20.0305
  4322. 2023-03-16 21:13:54,090 - INFO - main.py - train - 68 - 【train】 epoch:0 399/2980 loss:7.0684
  4323. 2023-03-16 21:13:55,306 - INFO - main.py - train - 68 - 【train】 epoch:0 400/2980 loss:16.6100
  4324. 2023-03-16 21:13:56,538 - INFO - main.py - train - 68 - 【train】 epoch:0 401/2980 loss:5.4217
  4325. 2023-03-16 21:13:57,763 - INFO - main.py - train - 68 - 【train】 epoch:0 402/2980 loss:7.4266
  4326. 2023-03-16 21:13:59,007 - INFO - main.py - train - 68 - 【train】 epoch:0 403/2980 loss:50.2379
  4327. 2023-03-16 21:14:00,205 - INFO - main.py - train - 68 - 【train】 epoch:0 404/2980 loss:8.9319
  4328. 2023-03-16 21:14:01,411 - INFO - main.py - train - 68 - 【train】 epoch:0 405/2980 loss:15.5982
  4329. 2023-03-16 21:14:02,627 - INFO - main.py - train - 68 - 【train】 epoch:0 406/2980 loss:28.9161
  4330. 2023-03-16 21:14:03,843 - INFO - main.py - train - 68 - 【train】 epoch:0 407/2980 loss:9.2144
  4331. 2023-03-16 21:14:05,088 - INFO - main.py - train - 68 - 【train】 epoch:0 408/2980 loss:8.0829
  4332. 2023-03-16 21:14:06,304 - INFO - main.py - train - 68 - 【train】 epoch:0 409/2980 loss:15.7258
  4333. 2023-03-16 21:14:07,505 - INFO - main.py - train - 68 - 【train】 epoch:0 410/2980 loss:7.9500
  4334. 2023-03-16 21:14:08,680 - INFO - main.py - train - 68 - 【train】 epoch:0 411/2980 loss:13.3663
  4335. 2023-03-16 21:14:09,918 - INFO - main.py - train - 68 - 【train】 epoch:0 412/2980 loss:10.7224
  4336. 2023-03-16 21:14:11,134 - INFO - main.py - train - 68 - 【train】 epoch:0 413/2980 loss:15.6231
  4337. 2023-03-16 21:14:12,316 - INFO - main.py - train - 68 - 【train】 epoch:0 414/2980 loss:7.4302
  4338. 2023-03-16 21:14:13,575 - INFO - main.py - train - 68 - 【train】 epoch:0 415/2980 loss:12.6105
  4339. 2023-03-16 21:14:14,880 - INFO - main.py - train - 68 - 【train】 epoch:0 416/2980 loss:27.8839
  4340. 2023-03-16 21:14:16,183 - INFO - main.py - train - 68 - 【train】 epoch:0 417/2980 loss:5.2524
  4341. 2023-03-16 21:14:17,478 - INFO - main.py - train - 68 - 【train】 epoch:0 418/2980 loss:33.1300
  4342. 2023-03-16 21:14:18,755 - INFO - main.py - train - 68 - 【train】 epoch:0 419/2980 loss:32.3089
  4343. 2023-03-16 21:14:19,910 - INFO - main.py - train - 68 - 【train】 epoch:0 420/2980 loss:1.9897
  4344. 2023-03-16 21:14:21,095 - INFO - main.py - train - 68 - 【train】 epoch:0 421/2980 loss:27.3998
  4345. 2023-03-16 21:14:22,327 - INFO - main.py - train - 68 - 【train】 epoch:0 422/2980 loss:20.1606
  4346. 2023-03-16 21:14:23,591 - INFO - main.py - train - 68 - 【train】 epoch:0 423/2980 loss:10.3827
  4347. 2023-03-16 21:14:24,823 - INFO - main.py - train - 68 - 【train】 epoch:0 424/2980 loss:7.6737
  4348. 2023-03-16 21:14:26,152 - INFO - main.py - train - 68 - 【train】 epoch:0 425/2980 loss:4.3646
  4349. 2023-03-16 21:14:27,375 - INFO - main.py - train - 68 - 【train】 epoch:0 426/2980 loss:14.6461
  4350. 2023-03-16 21:14:28,611 - INFO - main.py - train - 68 - 【train】 epoch:0 427/2980 loss:45.8182
  4351. 2023-03-16 21:14:29,806 - INFO - main.py - train - 68 - 【train】 epoch:0 428/2980 loss:35.3837
  4352. 2023-03-16 21:14:31,113 - INFO - main.py - train - 68 - 【train】 epoch:0 429/2980 loss:22.1009
  4353. 2023-03-16 21:14:32,512 - INFO - main.py - train - 68 - 【train】 epoch:0 430/2980 loss:34.2501
  4354. 2023-03-16 21:14:33,835 - INFO - main.py - train - 68 - 【train】 epoch:0 431/2980 loss:15.9290
  4355. 2023-03-16 21:14:35,012 - INFO - main.py - train - 68 - 【train】 epoch:0 432/2980 loss:17.0621
  4356. 2023-03-16 21:14:36,167 - INFO - main.py - train - 68 - 【train】 epoch:0 433/2980 loss:15.7952
  4357. 2023-03-16 21:14:37,304 - INFO - main.py - train - 68 - 【train】 epoch:0 434/2980 loss:2.7181
  4358. 2023-03-16 21:14:38,471 - INFO - main.py - train - 68 - 【train】 epoch:0 435/2980 loss:13.7342
  4359. 2023-03-16 21:14:39,628 - INFO - main.py - train - 68 - 【train】 epoch:0 436/2980 loss:8.2733
  4360. 2023-03-16 21:14:40,790 - INFO - main.py - train - 68 - 【train】 epoch:0 437/2980 loss:18.2025
  4361. 2023-03-16 21:14:42,011 - INFO - main.py - train - 68 - 【train】 epoch:0 438/2980 loss:1.1177
  4362. 2023-03-16 21:14:43,313 - INFO - main.py - train - 68 - 【train】 epoch:0 439/2980 loss:17.0279
  4363. 2023-03-16 21:14:44,584 - INFO - main.py - train - 68 - 【train】 epoch:0 440/2980 loss:27.2239
  4364. 2023-03-16 21:14:46,723 - INFO - main.py - train - 68 - 【train】 epoch:0 441/2980 loss:16.8283
  4365. 2023-03-16 21:14:48,453 - INFO - main.py - train - 68 - 【train】 epoch:0 442/2980 loss:13.1418
  4366. 2023-03-16 21:14:49,877 - INFO - main.py - train - 68 - 【train】 epoch:0 443/2980 loss:11.0105
  4367. 2023-03-16 21:14:51,128 - INFO - main.py - train - 68 - 【train】 epoch:0 444/2980 loss:9.8930
  4368. 2023-03-16 21:14:52,423 - INFO - main.py - train - 68 - 【train】 epoch:0 445/2980 loss:13.6503
  4369. 2023-03-16 21:14:54,015 - INFO - main.py - train - 68 - 【train】 epoch:0 446/2980 loss:19.7696
  4370. 2023-03-16 21:14:55,387 - INFO - main.py - train - 68 - 【train】 epoch:0 447/2980 loss:22.1109
  4371. 2023-03-16 21:14:57,481 - INFO - main.py - train - 68 - 【train】 epoch:0 448/2980 loss:17.6512
  4372. 2023-03-16 21:14:59,327 - INFO - main.py - train - 68 - 【train】 epoch:0 449/2980 loss:6.6566
  4373. 2023-03-16 21:15:01,091 - INFO - main.py - train - 68 - 【train】 epoch:0 450/2980 loss:15.2295
  4374. 2023-03-16 21:15:02,717 - INFO - main.py - train - 68 - 【train】 epoch:0 451/2980 loss:13.5148
  4375. 2023-03-16 21:15:04,335 - INFO - main.py - train - 68 - 【train】 epoch:0 452/2980 loss:33.3444
  4376. 2023-03-16 21:15:06,273 - INFO - main.py - train - 68 - 【train】 epoch:0 453/2980 loss:8.6862
  4377. 2023-03-16 21:15:08,102 - INFO - main.py - train - 68 - 【train】 epoch:0 454/2980 loss:8.2007
  4378. 2023-03-16 21:15:10,026 - INFO - main.py - train - 68 - 【train】 epoch:0 455/2980 loss:25.5242
  4379. 2023-03-16 21:15:12,074 - INFO - main.py - train - 68 - 【train】 epoch:0 456/2980 loss:23.6701
  4380. 2023-03-16 21:15:14,259 - INFO - main.py - train - 68 - 【train】 epoch:0 457/2980 loss:5.9129
  4381. 2023-03-16 21:15:16,197 - INFO - main.py - train - 68 - 【train】 epoch:0 458/2980 loss:8.8857
  4382. 2023-03-16 21:15:17,421 - INFO - main.py - train - 68 - 【train】 epoch:0 459/2980 loss:9.9320
  4383. 2023-03-16 21:15:18,638 - INFO - main.py - train - 68 - 【train】 epoch:0 460/2980 loss:5.0586
  4384. 2023-03-16 21:15:20,080 - INFO - main.py - train - 68 - 【train】 epoch:0 461/2980 loss:11.8359
  4385. 2023-03-16 21:15:21,585 - INFO - main.py - train - 68 - 【train】 epoch:0 462/2980 loss:12.9242
  4386. 2023-03-16 21:15:22,930 - INFO - main.py - train - 68 - 【train】 epoch:0 463/2980 loss:12.9328
  4387. 2023-03-16 21:15:24,247 - INFO - main.py - train - 68 - 【train】 epoch:0 464/2980 loss:4.0427
  4388. 2023-03-16 21:15:25,503 - INFO - main.py - train - 68 - 【train】 epoch:0 465/2980 loss:11.5799
  4389. 2023-03-16 21:15:26,835 - INFO - main.py - train - 68 - 【train】 epoch:0 466/2980 loss:26.3456
  4390. 2023-03-16 21:15:28,234 - INFO - main.py - train - 68 - 【train】 epoch:0 467/2980 loss:47.3622
  4391. 2023-03-16 21:15:29,678 - INFO - main.py - train - 68 - 【train】 epoch:0 468/2980 loss:8.4193
  4392. 2023-03-16 21:15:30,998 - INFO - main.py - train - 68 - 【train】 epoch:0 469/2980 loss:14.8643
  4393. 2023-03-16 21:15:32,341 - INFO - main.py - train - 68 - 【train】 epoch:0 470/2980 loss:13.1186
  4394. 2023-03-16 21:15:33,736 - INFO - main.py - train - 68 - 【train】 epoch:0 471/2980 loss:14.4389
  4395. 2023-03-16 21:15:35,153 - INFO - main.py - train - 68 - 【train】 epoch:0 472/2980 loss:16.5281
  4396. 2023-03-16 21:15:36,564 - INFO - main.py - train - 68 - 【train】 epoch:0 473/2980 loss:19.9313
  4397. 2023-03-16 21:15:37,891 - INFO - main.py - train - 68 - 【train】 epoch:0 474/2980 loss:19.9587
  4398. 2023-03-16 21:15:39,353 - INFO - main.py - train - 68 - 【train】 epoch:0 475/2980 loss:9.6036
  4399. 2023-03-16 21:15:40,780 - INFO - main.py - train - 68 - 【train】 epoch:0 476/2980 loss:12.5775
  4400. 2023-03-16 21:15:42,124 - INFO - main.py - train - 68 - 【train】 epoch:0 477/2980 loss:2.6016
  4401. 2023-03-16 21:15:43,446 - INFO - main.py - train - 68 - 【train】 epoch:0 478/2980 loss:29.6433
  4402. 2023-03-16 21:15:44,821 - INFO - main.py - train - 68 - 【train】 epoch:0 479/2980 loss:18.0396
  4403. 2023-03-16 21:15:46,283 - INFO - main.py - train - 68 - 【train】 epoch:0 480/2980 loss:7.7002
  4404. 2023-03-16 21:15:47,720 - INFO - main.py - train - 68 - 【train】 epoch:0 481/2980 loss:6.4536
  4405. 2023-03-16 21:15:49,181 - INFO - main.py - train - 68 - 【train】 epoch:0 482/2980 loss:8.7648
  4406. 2023-03-16 21:15:50,793 - INFO - main.py - train - 68 - 【train】 epoch:0 483/2980 loss:15.9649
  4407. 2023-03-16 21:15:52,229 - INFO - main.py - train - 68 - 【train】 epoch:0 484/2980 loss:10.4297
  4408. 2023-03-16 21:15:53,519 - INFO - main.py - train - 68 - 【train】 epoch:0 485/2980 loss:18.5172
  4409. 2023-03-16 21:15:54,797 - INFO - main.py - train - 68 - 【train】 epoch:0 486/2980 loss:11.4213
  4410. 2023-03-16 21:15:56,127 - INFO - main.py - train - 68 - 【train】 epoch:0 487/2980 loss:4.1065
  4411. 2023-03-16 21:15:57,414 - INFO - main.py - train - 68 - 【train】 epoch:0 488/2980 loss:3.4598
  4412. 2023-03-16 21:15:58,664 - INFO - main.py - train - 68 - 【train】 epoch:0 489/2980 loss:17.0290
  4413. 2023-03-16 21:16:00,006 - INFO - main.py - train - 68 - 【train】 epoch:0 490/2980 loss:14.2097
  4414. 2023-03-16 21:16:01,272 - INFO - main.py - train - 68 - 【train】 epoch:0 491/2980 loss:15.0714
  4415. 2023-03-16 21:16:02,544 - INFO - main.py - train - 68 - 【train】 epoch:0 492/2980 loss:7.0322
  4416. 2023-03-16 21:16:03,799 - INFO - main.py - train - 68 - 【train】 epoch:0 493/2980 loss:18.3185
  4417. 2023-03-16 21:16:05,054 - INFO - main.py - train - 68 - 【train】 epoch:0 494/2980 loss:21.8378
  4418. 2023-03-16 21:16:06,365 - INFO - main.py - train - 68 - 【train】 epoch:0 495/2980 loss:27.2275
  4419. 2023-03-16 21:16:07,646 - INFO - main.py - train - 68 - 【train】 epoch:0 496/2980 loss:3.8113
  4420. 2023-03-16 21:16:08,903 - INFO - main.py - train - 68 - 【train】 epoch:0 497/2980 loss:14.3465
  4421. 2023-03-16 21:16:10,161 - INFO - main.py - train - 68 - 【train】 epoch:0 498/2980 loss:2.5892
  4422. 2023-03-16 21:16:17,462 - INFO - main.py - train - 68 - 【train】 epoch:0 499/2980 loss:19.3574
  4423. 2023-03-16 21:16:18,779 - INFO - main.py - train - 68 - 【train】 epoch:0 500/2980 loss:5.8938
  4424. 2023-03-16 21:16:20,034 - INFO - main.py - train - 68 - 【train】 epoch:0 501/2980 loss:6.8626
  4425. 2023-03-16 21:16:21,545 - INFO - main.py - train - 68 - 【train】 epoch:0 502/2980 loss:15.0091
  4426. 2023-03-16 21:16:22,824 - INFO - main.py - train - 68 - 【train】 epoch:0 503/2980 loss:13.5056
  4427. 2023-03-16 21:16:24,112 - INFO - main.py - train - 68 - 【train】 epoch:0 504/2980 loss:35.2388
  4428. 2023-03-16 21:16:25,391 - INFO - main.py - train - 68 - 【train】 epoch:0 505/2980 loss:21.8582
  4429. 2023-03-16 21:17:04,415 - INFO - main.py - train - 68 - 【train】 epoch:0 506/2980 loss:6.9887
  4430. 2023-03-16 21:17:05,585 - INFO - main.py - train - 68 - 【train】 epoch:0 507/2980 loss:7.9342
  4431. 2023-03-16 21:17:06,750 - INFO - main.py - train - 68 - 【train】 epoch:0 508/2980 loss:7.0347
  4432. 2023-03-16 21:17:07,924 - INFO - main.py - train - 68 - 【train】 epoch:0 509/2980 loss:7.3937
  4433. 2023-03-16 21:17:09,174 - INFO - main.py - train - 68 - 【train】 epoch:0 510/2980 loss:21.0368
  4434. 2023-03-16 21:17:10,444 - INFO - main.py - train - 68 - 【train】 epoch:0 511/2980 loss:12.0436
  4435. 2023-03-16 21:17:11,715 - INFO - main.py - train - 68 - 【train】 epoch:0 512/2980 loss:10.3578
  4436. 2023-03-16 21:17:12,948 - INFO - main.py - train - 68 - 【train】 epoch:0 513/2980 loss:14.2552
  4437. 2023-03-16 21:17:14,204 - INFO - main.py - train - 68 - 【train】 epoch:0 514/2980 loss:4.2202
  4438. 2023-03-16 21:17:15,508 - INFO - main.py - train - 68 - 【train】 epoch:0 515/2980 loss:10.5552
  4439. 2023-03-16 21:17:16,813 - INFO - main.py - train - 68 - 【train】 epoch:0 516/2980 loss:20.4400
  4440. 2023-03-16 21:17:18,070 - INFO - main.py - train - 68 - 【train】 epoch:0 517/2980 loss:2.4503
  4441. 2023-03-16 21:17:19,411 - INFO - main.py - train - 68 - 【train】 epoch:0 518/2980 loss:6.0018
  4442. 2023-03-16 21:17:20,737 - INFO - main.py - train - 68 - 【train】 epoch:0 519/2980 loss:16.2588
  4443. 2023-03-16 21:17:22,132 - INFO - main.py - train - 68 - 【train】 epoch:0 520/2980 loss:4.6041
  4444. 2023-03-16 21:17:23,561 - INFO - main.py - train - 68 - 【train】 epoch:0 521/2980 loss:30.9289
  4445. 2023-03-16 21:17:24,960 - INFO - main.py - train - 68 - 【train】 epoch:0 522/2980 loss:9.7810
  4446. 2023-03-16 21:17:26,702 - INFO - main.py - train - 68 - 【train】 epoch:0 523/2980 loss:11.0944
  4447. 2023-03-16 21:17:28,273 - INFO - main.py - train - 68 - 【train】 epoch:0 524/2980 loss:9.6806
  4448. 2023-03-16 21:17:29,619 - INFO - main.py - train - 68 - 【train】 epoch:0 525/2980 loss:8.3397
  4449. 2023-03-16 21:17:31,636 - INFO - main.py - train - 68 - 【train】 epoch:0 526/2980 loss:24.1829
  4450. 2023-03-16 21:17:33,079 - INFO - main.py - train - 68 - 【train】 epoch:0 527/2980 loss:17.1609
  4451. 2023-03-16 21:17:34,175 - INFO - main.py - train - 68 - 【train】 epoch:0 528/2980 loss:0.3175
  4452. 2023-03-16 21:17:35,374 - INFO - main.py - train - 68 - 【train】 epoch:0 529/2980 loss:20.5649
  4453. 2023-03-16 21:17:36,524 - INFO - main.py - train - 68 - 【train】 epoch:0 530/2980 loss:0.9545
  4454. 2023-03-16 21:17:37,773 - INFO - main.py - train - 68 - 【train】 epoch:0 531/2980 loss:2.8110
  4455. 2023-03-16 21:17:39,270 - INFO - main.py - train - 68 - 【train】 epoch:0 532/2980 loss:26.4291
  4456. 2023-03-16 21:17:40,637 - INFO - main.py - train - 68 - 【train】 epoch:0 533/2980 loss:6.1805
  4457. 2023-03-16 21:17:41,956 - INFO - main.py - train - 68 - 【train】 epoch:0 534/2980 loss:6.2984
  4458. 2023-03-16 21:17:43,199 - INFO - main.py - train - 68 - 【train】 epoch:0 535/2980 loss:10.1729
  4459. 2023-03-16 21:17:44,452 - INFO - main.py - train - 68 - 【train】 epoch:0 536/2980 loss:6.7500
  4460. 2023-03-16 21:17:45,672 - INFO - main.py - train - 68 - 【train】 epoch:0 537/2980 loss:13.1835
  4461. 2023-03-16 21:17:47,411 - INFO - main.py - train - 68 - 【train】 epoch:0 538/2980 loss:15.0484
  4462. 2023-03-16 21:17:48,685 - INFO - main.py - train - 68 - 【train】 epoch:0 539/2980 loss:7.7781
  4463. 2023-03-16 21:17:49,949 - INFO - main.py - train - 68 - 【train】 epoch:0 540/2980 loss:9.2828
  4464. 2023-03-16 21:17:51,105 - INFO - main.py - train - 68 - 【train】 epoch:0 541/2980 loss:3.7036
  4465. 2023-03-16 21:17:52,334 - INFO - main.py - train - 68 - 【train】 epoch:0 542/2980 loss:16.4255
  4466. 2023-03-16 21:17:53,525 - INFO - main.py - train - 68 - 【train】 epoch:0 543/2980 loss:6.5075
  4467. 2023-03-16 21:17:54,755 - INFO - main.py - train - 68 - 【train】 epoch:0 544/2980 loss:2.8197
  4468. 2023-03-16 21:17:56,058 - INFO - main.py - train - 68 - 【train】 epoch:0 545/2980 loss:4.3215
  4469. 2023-03-16 21:17:57,304 - INFO - main.py - train - 68 - 【train】 epoch:0 546/2980 loss:7.2371
  4470. 2023-03-16 21:17:58,557 - INFO - main.py - train - 68 - 【train】 epoch:0 547/2980 loss:15.7437
  4471. 2023-03-16 21:17:59,759 - INFO - main.py - train - 68 - 【train】 epoch:0 548/2980 loss:8.9441
  4472. 2023-03-16 21:18:00,993 - INFO - main.py - train - 68 - 【train】 epoch:0 549/2980 loss:15.3036
  4473. 2023-03-16 21:18:02,192 - INFO - main.py - train - 68 - 【train】 epoch:0 550/2980 loss:8.3006
  4474. 2023-03-16 21:18:03,406 - INFO - main.py - train - 68 - 【train】 epoch:0 551/2980 loss:14.1203
  4475. 2023-03-16 21:18:04,611 - INFO - main.py - train - 68 - 【train】 epoch:0 552/2980 loss:10.5329
  4476. 2023-03-16 21:18:05,786 - INFO - main.py - train - 68 - 【train】 epoch:0 553/2980 loss:13.2013
  4477. 2023-03-16 21:18:07,116 - INFO - main.py - train - 68 - 【train】 epoch:0 554/2980 loss:18.4743
  4478. 2023-03-16 21:18:08,321 - INFO - main.py - train - 68 - 【train】 epoch:0 555/2980 loss:19.9635
  4479. 2023-03-16 21:18:09,516 - INFO - main.py - train - 68 - 【train】 epoch:0 556/2980 loss:7.7630
  4480. 2023-03-16 21:18:10,796 - INFO - main.py - train - 68 - 【train】 epoch:0 557/2980 loss:44.7654
  4481. 2023-03-16 21:18:11,995 - INFO - main.py - train - 68 - 【train】 epoch:0 558/2980 loss:25.7385
  4482. 2023-03-16 21:18:13,235 - INFO - main.py - train - 68 - 【train】 epoch:0 559/2980 loss:24.2017
  4483. 2023-03-16 21:18:14,438 - INFO - main.py - train - 68 - 【train】 epoch:0 560/2980 loss:30.6703
  4484. 2023-03-16 21:18:15,639 - INFO - main.py - train - 68 - 【train】 epoch:0 561/2980 loss:6.6498
  4485. 2023-03-16 21:18:16,785 - INFO - main.py - train - 68 - 【train】 epoch:0 562/2980 loss:8.6917
  4486. 2023-03-16 21:18:17,965 - INFO - main.py - train - 68 - 【train】 epoch:0 563/2980 loss:22.3868
  4487. 2023-03-16 21:18:19,177 - INFO - main.py - train - 68 - 【train】 epoch:0 564/2980 loss:12.9180
  4488. 2023-03-16 21:18:20,383 - INFO - main.py - train - 68 - 【train】 epoch:0 565/2980 loss:65.0096
  4489. 2023-03-16 21:18:21,544 - INFO - main.py - train - 68 - 【train】 epoch:0 566/2980 loss:9.1619
  4490. 2023-03-16 21:18:22,693 - INFO - main.py - train - 68 - 【train】 epoch:0 567/2980 loss:6.1738
  4491. 2023-03-16 21:18:23,867 - INFO - main.py - train - 68 - 【train】 epoch:0 568/2980 loss:12.3473
  4492. 2023-03-16 21:18:25,066 - INFO - main.py - train - 68 - 【train】 epoch:0 569/2980 loss:9.6583
  4493. 2023-03-16 21:18:26,289 - INFO - main.py - train - 68 - 【train】 epoch:0 570/2980 loss:23.5286
  4494. 2023-03-16 21:18:27,462 - INFO - main.py - train - 68 - 【train】 epoch:0 571/2980 loss:10.1396
  4495. 2023-03-16 21:18:28,666 - INFO - main.py - train - 68 - 【train】 epoch:0 572/2980 loss:33.9949
  4496. 2023-03-16 21:18:29,909 - INFO - main.py - train - 68 - 【train】 epoch:0 573/2980 loss:28.4890
  4497. 2023-03-16 21:18:31,121 - INFO - main.py - train - 68 - 【train】 epoch:0 574/2980 loss:17.1327
  4498. 2023-03-16 21:18:32,298 - INFO - main.py - train - 68 - 【train】 epoch:0 575/2980 loss:17.3517
  4499. 2023-03-16 21:18:33,454 - INFO - main.py - train - 68 - 【train】 epoch:0 576/2980 loss:9.2085
  4500. 2023-03-16 21:18:34,617 - INFO - main.py - train - 68 - 【train】 epoch:0 577/2980 loss:8.5573
  4501. 2023-03-16 21:18:35,792 - INFO - main.py - train - 68 - 【train】 epoch:0 578/2980 loss:1.6400
  4502. 2023-03-16 21:18:36,962 - INFO - main.py - train - 68 - 【train】 epoch:0 579/2980 loss:11.5193
  4503. 2023-03-16 21:18:38,126 - INFO - main.py - train - 68 - 【train】 epoch:0 580/2980 loss:9.0851
  4504. 2023-03-16 21:18:39,322 - INFO - main.py - train - 68 - 【train】 epoch:0 581/2980 loss:12.4722
  4505. 2023-03-16 21:18:40,513 - INFO - main.py - train - 68 - 【train】 epoch:0 582/2980 loss:30.6609
  4506. 2023-03-16 21:18:41,694 - INFO - main.py - train - 68 - 【train】 epoch:0 583/2980 loss:19.9569
  4507. 2023-03-16 21:18:42,872 - INFO - main.py - train - 68 - 【train】 epoch:0 584/2980 loss:6.4368
  4508. 2023-03-16 21:18:44,043 - INFO - main.py - train - 68 - 【train】 epoch:0 585/2980 loss:9.3990
  4509. 2023-03-16 21:18:45,292 - INFO - main.py - train - 68 - 【train】 epoch:0 586/2980 loss:33.0984
  4510. 2023-03-16 21:18:46,470 - INFO - main.py - train - 68 - 【train】 epoch:0 587/2980 loss:13.6693
  4511. 2023-03-16 21:18:47,653 - INFO - main.py - train - 68 - 【train】 epoch:0 588/2980 loss:11.1325
  4512. 2023-03-16 21:18:48,826 - INFO - main.py - train - 68 - 【train】 epoch:0 589/2980 loss:20.1584
  4513. 2023-03-16 21:18:50,010 - INFO - main.py - train - 68 - 【train】 epoch:0 590/2980 loss:7.5028
  4514. 2023-03-16 21:18:51,223 - INFO - main.py - train - 68 - 【train】 epoch:0 591/2980 loss:11.5522
  4515. 2023-03-16 21:18:52,402 - INFO - main.py - train - 68 - 【train】 epoch:0 592/2980 loss:37.5614
  4516. 2023-03-16 21:18:53,572 - INFO - main.py - train - 68 - 【train】 epoch:0 593/2980 loss:9.2568
  4517. 2023-03-16 21:18:54,742 - INFO - main.py - train - 68 - 【train】 epoch:0 594/2980 loss:3.1813
  4518. 2023-03-16 21:18:55,915 - INFO - main.py - train - 68 - 【train】 epoch:0 595/2980 loss:6.4217
  4519. 2023-03-16 21:19:09,015 - INFO - main.py - train - 68 - 【train】 epoch:1 596/2980 loss:11.8903
  4520. 2023-03-16 21:19:10,276 - INFO - main.py - train - 68 - 【train】 epoch:1 597/2980 loss:29.6980
  4521. 2023-03-16 21:19:11,447 - INFO - main.py - train - 68 - 【train】 epoch:1 598/2980 loss:20.3260
  4522. 2023-03-16 21:19:12,592 - INFO - main.py - train - 68 - 【train】 epoch:1 599/2980 loss:7.7117
  4523. 2023-03-16 21:19:13,778 - INFO - main.py - train - 68 - 【train】 epoch:1 600/2980 loss:9.2595
  4524. 2023-03-16 21:19:14,924 - INFO - main.py - train - 68 - 【train】 epoch:1 601/2980 loss:5.6742
  4525. 2023-03-16 21:19:16,109 - INFO - main.py - train - 68 - 【train】 epoch:1 602/2980 loss:13.4239
  4526. 2023-03-16 21:19:17,333 - INFO - main.py - train - 68 - 【train】 epoch:1 603/2980 loss:10.9104
  4527. 2023-03-16 21:19:18,619 - INFO - main.py - train - 68 - 【train】 epoch:1 604/2980 loss:25.3164
  4528. 2023-03-16 21:19:20,055 - INFO - main.py - train - 68 - 【train】 epoch:1 605/2980 loss:10.7384
  4529. 2023-03-16 21:19:21,516 - INFO - main.py - train - 68 - 【train】 epoch:1 606/2980 loss:5.5898
  4530. 2023-03-16 21:19:22,739 - INFO - main.py - train - 68 - 【train】 epoch:1 607/2980 loss:8.1314
  4531. 2023-03-16 21:19:23,924 - INFO - main.py - train - 68 - 【train】 epoch:1 608/2980 loss:10.7422
  4532. 2023-03-16 21:19:25,103 - INFO - main.py - train - 68 - 【train】 epoch:1 609/2980 loss:10.2580
  4533. 2023-03-16 21:19:26,347 - INFO - main.py - train - 68 - 【train】 epoch:1 610/2980 loss:16.5079
  4534. 2023-03-16 21:19:27,577 - INFO - main.py - train - 68 - 【train】 epoch:1 611/2980 loss:32.0096
  4535. 2023-03-16 21:19:28,953 - INFO - main.py - train - 68 - 【train】 epoch:1 612/2980 loss:6.6002
  4536. 2023-03-16 21:19:30,154 - INFO - main.py - train - 68 - 【train】 epoch:1 613/2980 loss:10.7792
  4537. 2023-03-16 21:19:31,511 - INFO - main.py - train - 68 - 【train】 epoch:1 614/2980 loss:29.6166
  4538. 2023-03-16 21:19:32,672 - INFO - main.py - train - 68 - 【train】 epoch:1 615/2980 loss:11.6804
  4539. 2023-03-16 21:19:33,863 - INFO - main.py - train - 68 - 【train】 epoch:1 616/2980 loss:18.2329
  4540. 2023-03-16 21:19:35,035 - INFO - main.py - train - 68 - 【train】 epoch:1 617/2980 loss:8.2215
  4541. 2023-03-16 21:19:36,236 - INFO - main.py - train - 68 - 【train】 epoch:1 618/2980 loss:8.3225
  4542. 2023-03-16 21:19:37,451 - INFO - main.py - train - 68 - 【train】 epoch:1 619/2980 loss:13.4221
  4543. 2023-03-16 21:19:38,621 - INFO - main.py - train - 68 - 【train】 epoch:1 620/2980 loss:14.5174
  4544. 2023-03-16 21:19:39,815 - INFO - main.py - train - 68 - 【train】 epoch:1 621/2980 loss:25.5435
  4545. 2023-03-16 21:19:40,966 - INFO - main.py - train - 68 - 【train】 epoch:1 622/2980 loss:9.7030
  4546. 2023-03-16 21:19:42,193 - INFO - main.py - train - 68 - 【train】 epoch:1 623/2980 loss:40.4357
  4547. 2023-03-16 21:19:43,380 - INFO - main.py - train - 68 - 【train】 epoch:1 624/2980 loss:8.1521
  4548. 2023-03-16 21:19:44,532 - INFO - main.py - train - 68 - 【train】 epoch:1 625/2980 loss:16.0721
  4549. 2023-03-16 21:19:45,706 - INFO - main.py - train - 68 - 【train】 epoch:1 626/2980 loss:13.7051
  4550. 2023-03-16 21:19:46,900 - INFO - main.py - train - 68 - 【train】 epoch:1 627/2980 loss:12.6481
  4551. 2023-03-16 21:19:48,051 - INFO - main.py - train - 68 - 【train】 epoch:1 628/2980 loss:1.4989
  4552. 2023-03-16 21:19:49,236 - INFO - main.py - train - 68 - 【train】 epoch:1 629/2980 loss:9.7115
  4553. 2023-03-16 21:19:50,387 - INFO - main.py - train - 68 - 【train】 epoch:1 630/2980 loss:18.0126
  4554. 2023-03-16 21:19:51,553 - INFO - main.py - train - 68 - 【train】 epoch:1 631/2980 loss:6.0096
  4555. 2023-03-16 21:19:52,742 - INFO - main.py - train - 68 - 【train】 epoch:1 632/2980 loss:11.1035
  4556. 2023-03-16 21:19:53,918 - INFO - main.py - train - 68 - 【train】 epoch:1 633/2980 loss:6.5516
  4557. 2023-03-16 21:19:55,102 - INFO - main.py - train - 68 - 【train】 epoch:1 634/2980 loss:20.9710
  4558. 2023-03-16 21:19:56,273 - INFO - main.py - train - 68 - 【train】 epoch:1 635/2980 loss:6.0218
  4559. 2023-03-16 21:19:57,442 - INFO - main.py - train - 68 - 【train】 epoch:1 636/2980 loss:9.1083
  4560. 2023-03-16 21:19:58,660 - INFO - main.py - train - 68 - 【train】 epoch:1 637/2980 loss:9.1322
  4561. 2023-03-16 21:19:59,921 - INFO - main.py - train - 68 - 【train】 epoch:1 638/2980 loss:27.5642
  4562. 2023-03-16 21:20:01,177 - INFO - main.py - train - 68 - 【train】 epoch:1 639/2980 loss:8.5936
  4563. 2023-03-16 21:20:02,465 - INFO - main.py - train - 68 - 【train】 epoch:1 640/2980 loss:12.6590
  4564. 2023-03-16 21:20:03,723 - INFO - main.py - train - 68 - 【train】 epoch:1 641/2980 loss:6.8397
  4565. 2023-03-16 21:20:04,959 - INFO - main.py - train - 68 - 【train】 epoch:1 642/2980 loss:7.5573
  4566. 2023-03-16 21:20:06,238 - INFO - main.py - train - 68 - 【train】 epoch:1 643/2980 loss:1.8208
  4567. 2023-03-16 21:20:07,447 - INFO - main.py - train - 68 - 【train】 epoch:1 644/2980 loss:18.5110
  4568. 2023-03-16 21:20:08,757 - INFO - main.py - train - 68 - 【train】 epoch:1 645/2980 loss:3.3916
  4569. 2023-03-16 21:20:10,205 - INFO - main.py - train - 68 - 【train】 epoch:1 646/2980 loss:6.1912
  4570. 2023-03-16 21:20:11,724 - INFO - main.py - train - 68 - 【train】 epoch:1 647/2980 loss:14.2665
  4571. 2023-03-16 21:20:13,150 - INFO - main.py - train - 68 - 【train】 epoch:1 648/2980 loss:8.4199
  4572. 2023-03-16 21:20:15,091 - INFO - main.py - train - 68 - 【train】 epoch:1 649/2980 loss:15.8845
  4573. 2023-03-16 21:20:16,393 - INFO - main.py - train - 68 - 【train】 epoch:1 650/2980 loss:5.6616
  4574. 2023-03-16 21:20:17,689 - INFO - main.py - train - 68 - 【train】 epoch:1 651/2980 loss:29.5941
  4575. 2023-03-16 21:20:18,993 - INFO - main.py - train - 68 - 【train】 epoch:1 652/2980 loss:14.4964
  4576. 2023-03-16 21:20:20,216 - INFO - main.py - train - 68 - 【train】 epoch:1 653/2980 loss:2.8785
  4577. 2023-03-16 21:20:21,605 - INFO - main.py - train - 68 - 【train】 epoch:1 654/2980 loss:9.2908
  4578. 2023-03-16 21:20:22,869 - INFO - main.py - train - 68 - 【train】 epoch:1 655/2980 loss:37.6071
  4579. 2023-03-16 21:20:24,085 - INFO - main.py - train - 68 - 【train】 epoch:1 656/2980 loss:10.2228
  4580. 2023-03-16 21:20:25,350 - INFO - main.py - train - 68 - 【train】 epoch:1 657/2980 loss:20.7091
  4581. 2023-03-16 21:20:26,619 - INFO - main.py - train - 68 - 【train】 epoch:1 658/2980 loss:18.0765
  4582. 2023-03-16 21:20:27,988 - INFO - main.py - train - 68 - 【train】 epoch:1 659/2980 loss:16.1134
  4583. 2023-03-16 21:20:29,251 - INFO - main.py - train - 68 - 【train】 epoch:1 660/2980 loss:37.6055
  4584. 2023-03-16 21:20:30,531 - INFO - main.py - train - 68 - 【train】 epoch:1 661/2980 loss:5.8542
  4585. 2023-03-16 21:20:31,880 - INFO - main.py - train - 68 - 【train】 epoch:1 662/2980 loss:2.7508
  4586. 2023-03-16 21:20:33,175 - INFO - main.py - train - 68 - 【train】 epoch:1 663/2980 loss:7.0957
  4587. 2023-03-16 21:20:34,548 - INFO - main.py - train - 68 - 【train】 epoch:1 664/2980 loss:8.2153
  4588. 2023-03-16 21:20:35,827 - INFO - main.py - train - 68 - 【train】 epoch:1 665/2980 loss:36.4290
  4589. 2023-03-16 21:20:37,025 - INFO - main.py - train - 68 - 【train】 epoch:1 666/2980 loss:10.7933
  4590. 2023-03-16 21:20:38,225 - INFO - main.py - train - 68 - 【train】 epoch:1 667/2980 loss:6.3761
  4591. 2023-03-16 21:20:39,451 - INFO - main.py - train - 68 - 【train】 epoch:1 668/2980 loss:29.8878
  4592. 2023-03-16 21:20:40,626 - INFO - main.py - train - 68 - 【train】 epoch:1 669/2980 loss:29.3685
  4593. 2023-03-16 21:20:41,851 - INFO - main.py - train - 68 - 【train】 epoch:1 670/2980 loss:3.5335
  4594. 2023-03-16 21:20:43,043 - INFO - main.py - train - 68 - 【train】 epoch:1 671/2980 loss:7.3499
  4595. 2023-03-16 21:20:44,252 - INFO - main.py - train - 68 - 【train】 epoch:1 672/2980 loss:12.1745
  4596. 2023-03-16 21:20:45,552 - INFO - main.py - train - 68 - 【train】 epoch:1 673/2980 loss:2.8894
  4597. 2023-03-16 21:20:46,857 - INFO - main.py - train - 68 - 【train】 epoch:1 674/2980 loss:26.3045
  4598. 2023-03-16 21:20:48,134 - INFO - main.py - train - 68 - 【train】 epoch:1 675/2980 loss:5.9081
  4599. 2023-03-16 21:20:49,414 - INFO - main.py - train - 68 - 【train】 epoch:1 676/2980 loss:2.3484
  4600. 2023-03-16 21:20:50,717 - INFO - main.py - train - 68 - 【train】 epoch:1 677/2980 loss:6.3284
  4601. 2023-03-16 21:20:52,026 - INFO - main.py - train - 68 - 【train】 epoch:1 678/2980 loss:17.0351
  4602. 2023-03-16 21:20:53,293 - INFO - main.py - train - 68 - 【train】 epoch:1 679/2980 loss:17.5630
  4603. 2023-03-16 21:20:54,503 - INFO - main.py - train - 68 - 【train】 epoch:1 680/2980 loss:15.7480
  4604. 2023-03-16 21:20:55,787 - INFO - main.py - train - 68 - 【train】 epoch:1 681/2980 loss:5.8431
  4605. 2023-03-16 21:20:56,987 - INFO - main.py - train - 68 - 【train】 epoch:1 682/2980 loss:7.1427
  4606. 2023-03-16 21:20:58,221 - INFO - main.py - train - 68 - 【train】 epoch:1 683/2980 loss:13.5630
  4607. 2023-03-16 21:20:59,397 - INFO - main.py - train - 68 - 【train】 epoch:1 684/2980 loss:3.3000
  4608. 2023-03-16 21:21:00,572 - INFO - main.py - train - 68 - 【train】 epoch:1 685/2980 loss:10.5838
  4609. 2023-03-16 21:21:01,792 - INFO - main.py - train - 68 - 【train】 epoch:1 686/2980 loss:19.5643
  4610. 2023-03-16 21:21:03,006 - INFO - main.py - train - 68 - 【train】 epoch:1 687/2980 loss:13.5175
  4611. 2023-03-16 21:21:04,245 - INFO - main.py - train - 68 - 【train】 epoch:1 688/2980 loss:15.8004
  4612. 2023-03-16 21:21:05,471 - INFO - main.py - train - 68 - 【train】 epoch:1 689/2980 loss:18.8306
  4613. 2023-03-16 21:21:06,689 - INFO - main.py - train - 68 - 【train】 epoch:1 690/2980 loss:17.0704
  4614. 2023-03-16 21:21:07,890 - INFO - main.py - train - 68 - 【train】 epoch:1 691/2980 loss:46.9783
  4615. 2023-03-16 21:21:09,092 - INFO - main.py - train - 68 - 【train】 epoch:1 692/2980 loss:26.5937
  4616. 2023-03-16 21:21:10,255 - INFO - main.py - train - 68 - 【train】 epoch:1 693/2980 loss:12.5134
  4617. 2023-03-16 21:21:11,526 - INFO - main.py - train - 68 - 【train】 epoch:1 694/2980 loss:1.8299
  4618. 2023-03-16 21:21:12,763 - INFO - main.py - train - 68 - 【train】 epoch:1 695/2980 loss:12.3633
  4619. 2023-03-16 21:21:14,014 - INFO - main.py - train - 68 - 【train】 epoch:1 696/2980 loss:17.1757
  4620. 2023-03-16 21:21:15,286 - INFO - main.py - train - 68 - 【train】 epoch:1 697/2980 loss:11.7258
  4621. 2023-03-16 21:21:16,520 - INFO - main.py - train - 68 - 【train】 epoch:1 698/2980 loss:3.9970
  4622. 2023-03-16 21:21:17,688 - INFO - main.py - train - 68 - 【train】 epoch:1 699/2980 loss:8.9746
  4623. 2023-03-16 21:21:18,858 - INFO - main.py - train - 68 - 【train】 epoch:1 700/2980 loss:2.4339
  4624. 2023-03-16 21:21:20,102 - INFO - main.py - train - 68 - 【train】 epoch:1 701/2980 loss:5.9310
  4625. 2023-03-16 21:21:21,282 - INFO - main.py - train - 68 - 【train】 epoch:1 702/2980 loss:4.2835
  4626. 2023-03-16 21:21:22,475 - INFO - main.py - train - 68 - 【train】 epoch:1 703/2980 loss:2.4128
  4627. 2023-03-16 21:21:23,630 - INFO - main.py - train - 68 - 【train】 epoch:1 704/2980 loss:2.4158
  4628. 2023-03-16 21:21:24,850 - INFO - main.py - train - 68 - 【train】 epoch:1 705/2980 loss:19.2276
  4629. 2023-03-16 21:21:26,132 - INFO - main.py - train - 68 - 【train】 epoch:1 706/2980 loss:1.4450
  4630. 2023-03-16 21:21:27,425 - INFO - main.py - train - 68 - 【train】 epoch:1 707/2980 loss:28.6022
  4631. 2023-03-16 21:21:28,756 - INFO - main.py - train - 68 - 【train】 epoch:1 708/2980 loss:4.7588
  4632. 2023-03-16 21:21:29,985 - INFO - main.py - train - 68 - 【train】 epoch:1 709/2980 loss:10.8759
  4633. 2023-03-16 21:21:31,203 - INFO - main.py - train - 68 - 【train】 epoch:1 710/2980 loss:6.9136
  4634. 2023-03-16 21:21:32,384 - INFO - main.py - train - 68 - 【train】 epoch:1 711/2980 loss:25.2221
  4635. 2023-03-16 21:21:33,566 - INFO - main.py - train - 68 - 【train】 epoch:1 712/2980 loss:13.3747
  4636. 2023-03-16 21:21:34,723 - INFO - main.py - train - 68 - 【train】 epoch:1 713/2980 loss:9.8986
  4637. 2023-03-16 21:21:35,912 - INFO - main.py - train - 68 - 【train】 epoch:1 714/2980 loss:30.3528
  4638. 2023-03-16 21:21:37,072 - INFO - main.py - train - 68 - 【train】 epoch:1 715/2980 loss:4.5912
  4639. 2023-03-16 21:21:38,203 - INFO - main.py - train - 68 - 【train】 epoch:1 716/2980 loss:5.6087
  4640. 2023-03-16 21:21:39,363 - INFO - main.py - train - 68 - 【train】 epoch:1 717/2980 loss:7.6379
  4641. 2023-03-16 21:21:40,552 - INFO - main.py - train - 68 - 【train】 epoch:1 718/2980 loss:14.5990
  4642. 2023-03-16 21:21:41,713 - INFO - main.py - train - 68 - 【train】 epoch:1 719/2980 loss:12.4378
  4643. 2023-03-16 21:21:42,879 - INFO - main.py - train - 68 - 【train】 epoch:1 720/2980 loss:32.6132
  4644. 2023-03-16 21:21:44,015 - INFO - main.py - train - 68 - 【train】 epoch:1 721/2980 loss:2.6358
  4645. 2023-03-16 21:21:45,261 - INFO - main.py - train - 68 - 【train】 epoch:1 722/2980 loss:12.4881
  4646. 2023-03-16 21:21:46,502 - INFO - main.py - train - 68 - 【train】 epoch:1 723/2980 loss:16.2877
  4647. 2023-03-16 21:21:47,782 - INFO - main.py - train - 68 - 【train】 epoch:1 724/2980 loss:31.0411
  4648. 2023-03-16 21:21:48,950 - INFO - main.py - train - 68 - 【train】 epoch:1 725/2980 loss:7.5659
  4649. 2023-03-16 21:21:50,123 - INFO - main.py - train - 68 - 【train】 epoch:1 726/2980 loss:19.9330
  4650. 2023-03-16 21:21:51,309 - INFO - main.py - train - 68 - 【train】 epoch:1 727/2980 loss:12.5881
  4651. 2023-03-16 21:21:52,624 - INFO - main.py - train - 68 - 【train】 epoch:1 728/2980 loss:9.1243
  4652. 2023-03-16 21:21:53,938 - INFO - main.py - train - 68 - 【train】 epoch:1 729/2980 loss:12.0057
  4653. 2023-03-16 21:21:55,165 - INFO - main.py - train - 68 - 【train】 epoch:1 730/2980 loss:7.0086
  4654. 2023-03-16 21:21:56,439 - INFO - main.py - train - 68 - 【train】 epoch:1 731/2980 loss:30.2739
  4655. 2023-03-16 21:21:57,682 - INFO - main.py - train - 68 - 【train】 epoch:1 732/2980 loss:2.9122
  4656. 2023-03-16 21:21:58,917 - INFO - main.py - train - 68 - 【train】 epoch:1 733/2980 loss:11.5953
  4657. 2023-03-16 21:22:00,102 - INFO - main.py - train - 68 - 【train】 epoch:1 734/2980 loss:4.8598
  4658. 2023-03-16 21:22:01,386 - INFO - main.py - train - 68 - 【train】 epoch:1 735/2980 loss:5.2986
  4659. 2023-03-16 21:22:02,666 - INFO - main.py - train - 68 - 【train】 epoch:1 736/2980 loss:12.3235
  4660. 2023-03-16 21:22:03,995 - INFO - main.py - train - 68 - 【train】 epoch:1 737/2980 loss:5.0070
  4661. 2023-03-16 21:22:05,296 - INFO - main.py - train - 68 - 【train】 epoch:1 738/2980 loss:2.7488
  4662. 2023-03-16 21:22:06,513 - INFO - main.py - train - 68 - 【train】 epoch:1 739/2980 loss:25.9514
  4663. 2023-03-16 21:22:07,791 - INFO - main.py - train - 68 - 【train】 epoch:1 740/2980 loss:21.1913
  4664. 2023-03-16 21:22:08,988 - INFO - main.py - train - 68 - 【train】 epoch:1 741/2980 loss:9.8388
  4665. 2023-03-16 21:22:10,332 - INFO - main.py - train - 68 - 【train】 epoch:1 742/2980 loss:41.3227
  4666. 2023-03-16 21:22:11,601 - INFO - main.py - train - 68 - 【train】 epoch:1 743/2980 loss:4.3239
  4667. 2023-03-16 21:22:12,884 - INFO - main.py - train - 68 - 【train】 epoch:1 744/2980 loss:2.8999
  4668. 2023-03-16 21:22:14,137 - INFO - main.py - train - 68 - 【train】 epoch:1 745/2980 loss:9.0953
  4669. 2023-03-16 21:22:15,425 - INFO - main.py - train - 68 - 【train】 epoch:1 746/2980 loss:11.9606
  4670. 2023-03-16 21:22:16,693 - INFO - main.py - train - 68 - 【train】 epoch:1 747/2980 loss:10.4436
  4671. 2023-03-16 21:22:17,921 - INFO - main.py - train - 68 - 【train】 epoch:1 748/2980 loss:11.4600
  4672. 2023-03-16 21:22:19,211 - INFO - main.py - train - 68 - 【train】 epoch:1 749/2980 loss:7.9763
  4673. 2023-03-16 21:22:20,484 - INFO - main.py - train - 68 - 【train】 epoch:1 750/2980 loss:11.8811
  4674. 2023-03-16 21:22:21,896 - INFO - main.py - train - 68 - 【train】 epoch:1 751/2980 loss:12.5655
  4675. 2023-03-16 21:22:23,194 - INFO - main.py - train - 68 - 【train】 epoch:1 752/2980 loss:16.2784
  4676. 2023-03-16 21:22:24,430 - INFO - main.py - train - 68 - 【train】 epoch:1 753/2980 loss:1.9916
  4677. 2023-03-16 21:22:25,604 - INFO - main.py - train - 68 - 【train】 epoch:1 754/2980 loss:15.1151
  4678. 2023-03-16 21:22:26,836 - INFO - main.py - train - 68 - 【train】 epoch:1 755/2980 loss:7.3609
  4679. 2023-03-16 21:22:28,059 - INFO - main.py - train - 68 - 【train】 epoch:1 756/2980 loss:6.1054
  4680. 2023-03-16 21:22:29,248 - INFO - main.py - train - 68 - 【train】 epoch:1 757/2980 loss:8.0768
  4681. 2023-03-16 21:22:30,455 - INFO - main.py - train - 68 - 【train】 epoch:1 758/2980 loss:10.8162
  4682. 2023-03-16 21:22:31,662 - INFO - main.py - train - 68 - 【train】 epoch:1 759/2980 loss:5.3799
  4683. 2023-03-16 21:22:32,971 - INFO - main.py - train - 68 - 【train】 epoch:1 760/2980 loss:8.9973
  4684. 2023-03-16 21:22:34,190 - INFO - main.py - train - 68 - 【train】 epoch:1 761/2980 loss:7.1573
  4685. 2023-03-16 21:22:35,363 - INFO - main.py - train - 68 - 【train】 epoch:1 762/2980 loss:4.8129
  4686. 2023-03-16 21:22:36,632 - INFO - main.py - train - 68 - 【train】 epoch:1 763/2980 loss:16.9112
  4687. 2023-03-16 21:22:37,867 - INFO - main.py - train - 68 - 【train】 epoch:1 764/2980 loss:4.3026
  4688. 2023-03-16 21:22:39,077 - INFO - main.py - train - 68 - 【train】 epoch:1 765/2980 loss:4.4883
  4689. 2023-03-16 21:22:40,334 - INFO - main.py - train - 68 - 【train】 epoch:1 766/2980 loss:12.1781
  4690. 2023-03-16 21:22:41,586 - INFO - main.py - train - 68 - 【train】 epoch:1 767/2980 loss:4.4706
  4691. 2023-03-16 21:22:42,766 - INFO - main.py - train - 68 - 【train】 epoch:1 768/2980 loss:15.6917
  4692. 2023-03-16 21:22:43,956 - INFO - main.py - train - 68 - 【train】 epoch:1 769/2980 loss:15.8762
  4693. 2023-03-16 21:22:45,226 - INFO - main.py - train - 68 - 【train】 epoch:1 770/2980 loss:40.7061
  4694. 2023-03-16 21:22:46,485 - INFO - main.py - train - 68 - 【train】 epoch:1 771/2980 loss:46.1340
  4695. 2023-03-16 21:22:47,762 - INFO - main.py - train - 68 - 【train】 epoch:1 772/2980 loss:8.5547
  4696. 2023-03-16 21:22:49,010 - INFO - main.py - train - 68 - 【train】 epoch:1 773/2980 loss:16.2804
  4697. 2023-03-16 21:22:50,260 - INFO - main.py - train - 68 - 【train】 epoch:1 774/2980 loss:13.1682
  4698. 2023-03-16 21:22:51,415 - INFO - main.py - train - 68 - 【train】 epoch:1 775/2980 loss:12.4728
  4699. 2023-03-16 21:22:52,580 - INFO - main.py - train - 68 - 【train】 epoch:1 776/2980 loss:16.4466
  4700. 2023-03-16 21:22:53,758 - INFO - main.py - train - 68 - 【train】 epoch:1 777/2980 loss:4.9125
  4701. 2023-03-16 21:22:54,902 - INFO - main.py - train - 68 - 【train】 epoch:1 778/2980 loss:1.0234
  4702. 2023-03-16 21:22:56,077 - INFO - main.py - train - 68 - 【train】 epoch:1 779/2980 loss:17.2257
  4703. 2023-03-16 21:22:57,283 - INFO - main.py - train - 68 - 【train】 epoch:1 780/2980 loss:40.0740
  4704. 2023-03-16 21:22:58,480 - INFO - main.py - train - 68 - 【train】 epoch:1 781/2980 loss:7.5385
  4705. 2023-03-16 21:22:59,666 - INFO - main.py - train - 68 - 【train】 epoch:1 782/2980 loss:37.7955
  4706. 2023-03-16 21:23:00,838 - INFO - main.py - train - 68 - 【train】 epoch:1 783/2980 loss:17.6796
  4707. 2023-03-16 21:23:02,017 - INFO - main.py - train - 68 - 【train】 epoch:1 784/2980 loss:34.7633
  4708. 2023-03-16 21:23:03,207 - INFO - main.py - train - 68 - 【train】 epoch:1 785/2980 loss:20.5010
  4709. 2023-03-16 21:23:04,415 - INFO - main.py - train - 68 - 【train】 epoch:1 786/2980 loss:16.3644
  4710. 2023-03-16 21:23:05,552 - INFO - main.py - train - 68 - 【train】 epoch:1 787/2980 loss:16.2704
  4711. 2023-03-16 21:23:06,722 - INFO - main.py - train - 68 - 【train】 epoch:1 788/2980 loss:17.0867
  4712. 2023-03-16 21:23:07,896 - INFO - main.py - train - 68 - 【train】 epoch:1 789/2980 loss:8.1634
  4713. 2023-03-16 21:23:09,054 - INFO - main.py - train - 68 - 【train】 epoch:1 790/2980 loss:8.5207
  4714. 2023-03-16 21:23:10,211 - INFO - main.py - train - 68 - 【train】 epoch:1 791/2980 loss:27.7208
  4715. 2023-03-16 21:23:11,372 - INFO - main.py - train - 68 - 【train】 epoch:1 792/2980 loss:3.3938
  4716. 2023-03-16 21:23:12,551 - INFO - main.py - train - 68 - 【train】 epoch:1 793/2980 loss:4.3196
  4717. 2023-03-16 21:23:13,716 - INFO - main.py - train - 68 - 【train】 epoch:1 794/2980 loss:3.6783
  4718. 2023-03-16 21:23:14,887 - INFO - main.py - train - 68 - 【train】 epoch:1 795/2980 loss:17.7766
  4719. 2023-03-16 21:23:16,063 - INFO - main.py - train - 68 - 【train】 epoch:1 796/2980 loss:4.7623
  4720. 2023-03-16 21:23:17,244 - INFO - main.py - train - 68 - 【train】 epoch:1 797/2980 loss:3.0485
  4721. 2023-03-16 21:23:18,413 - INFO - main.py - train - 68 - 【train】 epoch:1 798/2980 loss:12.2162
  4722. 2023-03-16 21:23:19,569 - INFO - main.py - train - 68 - 【train】 epoch:1 799/2980 loss:6.5325
  4723. 2023-03-16 21:23:20,749 - INFO - main.py - train - 68 - 【train】 epoch:1 800/2980 loss:37.4440
  4724. 2023-03-16 21:23:21,926 - INFO - main.py - train - 68 - 【train】 epoch:1 801/2980 loss:6.3086
  4725. 2023-03-16 21:23:23,090 - INFO - main.py - train - 68 - 【train】 epoch:1 802/2980 loss:8.2225
  4726. 2023-03-16 21:23:24,288 - INFO - main.py - train - 68 - 【train】 epoch:1 803/2980 loss:19.0452
  4727. 2023-03-16 21:23:25,447 - INFO - main.py - train - 68 - 【train】 epoch:1 804/2980 loss:11.6260
  4728. 2023-03-16 21:23:26,615 - INFO - main.py - train - 68 - 【train】 epoch:1 805/2980 loss:12.2319
  4729. 2023-03-16 21:23:27,774 - INFO - main.py - train - 68 - 【train】 epoch:1 806/2980 loss:1.4763
  4730. 2023-03-16 21:23:28,928 - INFO - main.py - train - 68 - 【train】 epoch:1 807/2980 loss:11.1832
  4731. 2023-03-16 21:23:30,130 - INFO - main.py - train - 68 - 【train】 epoch:1 808/2980 loss:19.3759
  4732. 2023-03-16 21:23:31,287 - INFO - main.py - train - 68 - 【train】 epoch:1 809/2980 loss:11.2155
  4733. 2023-03-16 21:23:32,519 - INFO - main.py - train - 68 - 【train】 epoch:1 810/2980 loss:26.6383
  4734. 2023-03-16 21:23:33,672 - INFO - main.py - train - 68 - 【train】 epoch:1 811/2980 loss:1.9100
  4735. 2023-03-16 21:23:34,815 - INFO - main.py - train - 68 - 【train】 epoch:1 812/2980 loss:16.8028
  4736. 2023-03-16 21:23:35,997 - INFO - main.py - train - 68 - 【train】 epoch:1 813/2980 loss:2.8864
  4737. 2023-03-16 21:23:37,152 - INFO - main.py - train - 68 - 【train】 epoch:1 814/2980 loss:6.9423
  4738. 2023-03-16 21:23:38,325 - INFO - main.py - train - 68 - 【train】 epoch:1 815/2980 loss:10.7015
  4739. 2023-03-16 21:23:39,486 - INFO - main.py - train - 68 - 【train】 epoch:1 816/2980 loss:11.3230
  4740. 2023-03-16 21:23:40,629 - INFO - main.py - train - 68 - 【train】 epoch:1 817/2980 loss:11.0376
  4741. 2023-03-16 21:23:41,807 - INFO - main.py - train - 68 - 【train】 epoch:1 818/2980 loss:17.0333
  4742. 2023-03-16 21:23:42,963 - INFO - main.py - train - 68 - 【train】 epoch:1 819/2980 loss:6.5125
  4743. 2023-03-16 21:23:44,117 - INFO - main.py - train - 68 - 【train】 epoch:1 820/2980 loss:20.2860
  4744. 2023-03-16 21:23:45,298 - INFO - main.py - train - 68 - 【train】 epoch:1 821/2980 loss:26.9181
  4745. 2023-03-16 21:23:46,464 - INFO - main.py - train - 68 - 【train】 epoch:1 822/2980 loss:5.8557
  4746. 2023-03-16 21:23:47,635 - INFO - main.py - train - 68 - 【train】 epoch:1 823/2980 loss:11.0616
  4747. 2023-03-16 21:23:48,836 - INFO - main.py - train - 68 - 【train】 epoch:1 824/2980 loss:6.7365
  4748. 2023-03-16 21:23:50,008 - INFO - main.py - train - 68 - 【train】 epoch:1 825/2980 loss:9.9340
  4749. 2023-03-16 21:23:51,160 - INFO - main.py - train - 68 - 【train】 epoch:1 826/2980 loss:3.1134
  4750. 2023-03-16 21:23:52,319 - INFO - main.py - train - 68 - 【train】 epoch:1 827/2980 loss:20.9181
  4751. 2023-03-16 21:23:53,483 - INFO - main.py - train - 68 - 【train】 epoch:1 828/2980 loss:22.4428
  4752. 2023-03-16 21:23:54,675 - INFO - main.py - train - 68 - 【train】 epoch:1 829/2980 loss:4.7122
  4753. 2023-03-16 21:23:55,932 - INFO - main.py - train - 68 - 【train】 epoch:1 830/2980 loss:6.3038
  4754. 2023-03-16 21:23:57,170 - INFO - main.py - train - 68 - 【train】 epoch:1 831/2980 loss:11.0370
  4755. 2023-03-16 21:23:58,401 - INFO - main.py - train - 68 - 【train】 epoch:1 832/2980 loss:5.4910
  4756. 2023-03-16 21:23:59,656 - INFO - main.py - train - 68 - 【train】 epoch:1 833/2980 loss:15.5757
  4757. 2023-03-16 21:24:00,886 - INFO - main.py - train - 68 - 【train】 epoch:1 834/2980 loss:9.5229
  4758. 2023-03-16 21:24:02,059 - INFO - main.py - train - 68 - 【train】 epoch:1 835/2980 loss:2.4195
  4759. 2023-03-16 21:24:03,211 - INFO - main.py - train - 68 - 【train】 epoch:1 836/2980 loss:4.6106
  4760. 2023-03-16 21:24:04,435 - INFO - main.py - train - 68 - 【train】 epoch:1 837/2980 loss:13.5998
  4761. 2023-03-16 21:24:05,721 - INFO - main.py - train - 68 - 【train】 epoch:1 838/2980 loss:33.5517
  4762. 2023-03-16 21:24:06,974 - INFO - main.py - train - 68 - 【train】 epoch:1 839/2980 loss:1.9641
  4763. 2023-03-16 21:24:08,255 - INFO - main.py - train - 68 - 【train】 epoch:1 840/2980 loss:7.1972
  4764. 2023-03-16 21:24:09,464 - INFO - main.py - train - 68 - 【train】 epoch:1 841/2980 loss:13.7219
  4765. 2023-03-16 21:24:10,623 - INFO - main.py - train - 68 - 【train】 epoch:1 842/2980 loss:5.3116
  4766. 2023-03-16 21:24:11,772 - INFO - main.py - train - 68 - 【train】 epoch:1 843/2980 loss:12.0242
  4767. 2023-03-16 21:24:12,959 - INFO - main.py - train - 68 - 【train】 epoch:1 844/2980 loss:12.3622
  4768. 2023-03-16 21:24:14,120 - INFO - main.py - train - 68 - 【train】 epoch:1 845/2980 loss:25.6771
  4769. 2023-03-16 21:24:15,307 - INFO - main.py - train - 68 - 【train】 epoch:1 846/2980 loss:22.7579
  4770. 2023-03-16 21:24:16,456 - INFO - main.py - train - 68 - 【train】 epoch:1 847/2980 loss:5.4517
  4771. 2023-03-16 21:24:17,602 - INFO - main.py - train - 68 - 【train】 epoch:1 848/2980 loss:7.3275
  4772. 2023-03-16 21:24:18,766 - INFO - main.py - train - 68 - 【train】 epoch:1 849/2980 loss:7.6939
  4773. 2023-03-16 21:24:19,952 - INFO - main.py - train - 68 - 【train】 epoch:1 850/2980 loss:30.8666
  4774. 2023-03-16 21:24:21,121 - INFO - main.py - train - 68 - 【train】 epoch:1 851/2980 loss:17.1702
  4775. 2023-03-16 21:24:22,299 - INFO - main.py - train - 68 - 【train】 epoch:1 852/2980 loss:5.8983
  4776. 2023-03-16 21:24:23,505 - INFO - main.py - train - 68 - 【train】 epoch:1 853/2980 loss:8.6600
  4777. 2023-03-16 21:24:24,681 - INFO - main.py - train - 68 - 【train】 epoch:1 854/2980 loss:14.9725
  4778. 2023-03-16 21:24:25,845 - INFO - main.py - train - 68 - 【train】 epoch:1 855/2980 loss:4.0867
  4779. 2023-03-16 21:24:27,017 - INFO - main.py - train - 68 - 【train】 epoch:1 856/2980 loss:5.4487
  4780. 2023-03-16 21:24:28,179 - INFO - main.py - train - 68 - 【train】 epoch:1 857/2980 loss:9.6852
  4781. 2023-03-16 21:24:29,341 - INFO - main.py - train - 68 - 【train】 epoch:1 858/2980 loss:5.2932
  4782. 2023-03-16 21:24:30,500 - INFO - main.py - train - 68 - 【train】 epoch:1 859/2980 loss:8.4299
  4783. 2023-03-16 21:24:31,682 - INFO - main.py - train - 68 - 【train】 epoch:1 860/2980 loss:14.3233
  4784. 2023-03-16 21:24:32,854 - INFO - main.py - train - 68 - 【train】 epoch:1 861/2980 loss:10.2139
  4785. 2023-03-16 21:24:34,019 - INFO - main.py - train - 68 - 【train】 epoch:1 862/2980 loss:7.0440
  4786. 2023-03-16 21:24:35,211 - INFO - main.py - train - 68 - 【train】 epoch:1 863/2980 loss:17.1010
  4787. 2023-03-16 21:24:36,379 - INFO - main.py - train - 68 - 【train】 epoch:1 864/2980 loss:15.8947
  4788. 2023-03-16 21:24:37,553 - INFO - main.py - train - 68 - 【train】 epoch:1 865/2980 loss:7.8091
  4789. 2023-03-16 21:24:38,703 - INFO - main.py - train - 68 - 【train】 epoch:1 866/2980 loss:1.8139
  4790. 2023-03-16 21:24:39,866 - INFO - main.py - train - 68 - 【train】 epoch:1 867/2980 loss:0.8685
  4791. 2023-03-16 21:24:41,081 - INFO - main.py - train - 68 - 【train】 epoch:1 868/2980 loss:22.1125
  4792. 2023-03-16 21:24:42,255 - INFO - main.py - train - 68 - 【train】 epoch:1 869/2980 loss:6.2334
  4793. 2023-03-16 21:24:43,410 - INFO - main.py - train - 68 - 【train】 epoch:1 870/2980 loss:7.3608
  4794. 2023-03-16 21:24:44,580 - INFO - main.py - train - 68 - 【train】 epoch:1 871/2980 loss:16.5752
  4795. 2023-03-16 21:24:45,753 - INFO - main.py - train - 68 - 【train】 epoch:1 872/2980 loss:4.0646
  4796. 2023-03-16 21:24:46,956 - INFO - main.py - train - 68 - 【train】 epoch:1 873/2980 loss:12.8060
  4797. 2023-03-16 21:24:48,133 - INFO - main.py - train - 68 - 【train】 epoch:1 874/2980 loss:6.9908
  4798. 2023-03-16 21:24:49,315 - INFO - main.py - train - 68 - 【train】 epoch:1 875/2980 loss:6.1350
  4799. 2023-03-16 21:24:50,478 - INFO - main.py - train - 68 - 【train】 epoch:1 876/2980 loss:10.0853
  4800. 2023-03-16 21:24:51,669 - INFO - main.py - train - 68 - 【train】 epoch:1 877/2980 loss:4.7250
  4801. 2023-03-16 21:24:52,819 - INFO - main.py - train - 68 - 【train】 epoch:1 878/2980 loss:7.5014
  4802. 2023-03-16 21:24:53,983 - INFO - main.py - train - 68 - 【train】 epoch:1 879/2980 loss:3.5525
  4803. 2023-03-16 21:24:55,170 - INFO - main.py - train - 68 - 【train】 epoch:1 880/2980 loss:6.6661
  4804. 2023-03-16 21:24:56,345 - INFO - main.py - train - 68 - 【train】 epoch:1 881/2980 loss:12.5966
  4805. 2023-03-16 21:24:57,505 - INFO - main.py - train - 68 - 【train】 epoch:1 882/2980 loss:45.5526
  4806. 2023-03-16 21:24:58,681 - INFO - main.py - train - 68 - 【train】 epoch:1 883/2980 loss:15.0019
  4807. 2023-03-16 21:24:59,871 - INFO - main.py - train - 68 - 【train】 epoch:1 884/2980 loss:9.5437
  4808. 2023-03-16 21:25:01,057 - INFO - main.py - train - 68 - 【train】 epoch:1 885/2980 loss:8.4430
  4809. 2023-03-16 21:25:02,229 - INFO - main.py - train - 68 - 【train】 epoch:1 886/2980 loss:9.8869
  4810. 2023-03-16 21:25:03,424 - INFO - main.py - train - 68 - 【train】 epoch:1 887/2980 loss:9.8428
  4811. 2023-03-16 21:25:04,582 - INFO - main.py - train - 68 - 【train】 epoch:1 888/2980 loss:2.5904
  4812. 2023-03-16 21:25:05,859 - INFO - main.py - train - 68 - 【train】 epoch:1 889/2980 loss:5.2787
  4813. 2023-03-16 21:25:07,112 - INFO - main.py - train - 68 - 【train】 epoch:1 890/2980 loss:12.6770
  4814. 2023-03-16 21:25:08,353 - INFO - main.py - train - 68 - 【train】 epoch:1 891/2980 loss:4.1335
  4815. 2023-03-16 21:25:09,588 - INFO - main.py - train - 68 - 【train】 epoch:1 892/2980 loss:12.0632
  4816. 2023-03-16 21:25:10,819 - INFO - main.py - train - 68 - 【train】 epoch:1 893/2980 loss:8.2006
  4817. 2023-03-16 21:25:12,008 - INFO - main.py - train - 68 - 【train】 epoch:1 894/2980 loss:4.4985
  4818. 2023-03-16 21:25:13,234 - INFO - main.py - train - 68 - 【train】 epoch:1 895/2980 loss:4.6090
  4819. 2023-03-16 21:25:14,394 - INFO - main.py - train - 68 - 【train】 epoch:1 896/2980 loss:10.3261
  4820. 2023-03-16 21:25:15,559 - INFO - main.py - train - 68 - 【train】 epoch:1 897/2980 loss:10.8926
  4821. 2023-03-16 21:25:16,733 - INFO - main.py - train - 68 - 【train】 epoch:1 898/2980 loss:2.5892
  4822. 2023-03-16 21:25:17,940 - INFO - main.py - train - 68 - 【train】 epoch:1 899/2980 loss:23.2615
  4823. 2023-03-16 21:25:19,109 - INFO - main.py - train - 68 - 【train】 epoch:1 900/2980 loss:3.1381
  4824. 2023-03-16 21:25:20,268 - INFO - main.py - train - 68 - 【train】 epoch:1 901/2980 loss:3.0390
  4825. 2023-03-16 21:25:21,442 - INFO - main.py - train - 68 - 【train】 epoch:1 902/2980 loss:46.2667
  4826. 2023-03-16 21:25:22,623 - INFO - main.py - train - 68 - 【train】 epoch:1 903/2980 loss:10.7988
  4827. 2023-03-16 21:25:23,782 - INFO - main.py - train - 68 - 【train】 epoch:1 904/2980 loss:7.5624
  4828. 2023-03-16 21:25:24,941 - INFO - main.py - train - 68 - 【train】 epoch:1 905/2980 loss:1.9034
  4829. 2023-03-16 21:25:26,113 - INFO - main.py - train - 68 - 【train】 epoch:1 906/2980 loss:9.8041
  4830. 2023-03-16 21:25:27,278 - INFO - main.py - train - 68 - 【train】 epoch:1 907/2980 loss:4.0562
  4831. 2023-03-16 21:25:28,429 - INFO - main.py - train - 68 - 【train】 epoch:1 908/2980 loss:5.1410
  4832. 2023-03-16 21:25:29,604 - INFO - main.py - train - 68 - 【train】 epoch:1 909/2980 loss:41.0842
  4833. 2023-03-16 21:25:30,770 - INFO - main.py - train - 68 - 【train】 epoch:1 910/2980 loss:26.0479
  4834. 2023-03-16 21:25:31,940 - INFO - main.py - train - 68 - 【train】 epoch:1 911/2980 loss:4.9701
  4835. 2023-03-16 21:25:33,114 - INFO - main.py - train - 68 - 【train】 epoch:1 912/2980 loss:17.0175
  4836. 2023-03-16 21:25:34,287 - INFO - main.py - train - 68 - 【train】 epoch:1 913/2980 loss:34.0656
  4837. 2023-03-16 21:25:35,460 - INFO - main.py - train - 68 - 【train】 epoch:1 914/2980 loss:4.0802
  4838. 2023-03-16 21:25:36,608 - INFO - main.py - train - 68 - 【train】 epoch:1 915/2980 loss:8.1017
  4839. 2023-03-16 21:25:37,774 - INFO - main.py - train - 68 - 【train】 epoch:1 916/2980 loss:5.9723
  4840. 2023-03-16 21:25:38,973 - INFO - main.py - train - 68 - 【train】 epoch:1 917/2980 loss:25.0234
  4841. 2023-03-16 21:25:40,135 - INFO - main.py - train - 68 - 【train】 epoch:1 918/2980 loss:23.4948
  4842. 2023-03-16 21:25:41,298 - INFO - main.py - train - 68 - 【train】 epoch:1 919/2980 loss:13.0681
  4843. 2023-03-16 21:25:42,476 - INFO - main.py - train - 68 - 【train】 epoch:1 920/2980 loss:23.9551
  4844. 2023-03-16 21:25:43,643 - INFO - main.py - train - 68 - 【train】 epoch:1 921/2980 loss:8.5182
  4845. 2023-03-16 21:25:44,804 - INFO - main.py - train - 68 - 【train】 epoch:1 922/2980 loss:4.8479
  4846. 2023-03-16 21:25:46,010 - INFO - main.py - train - 68 - 【train】 epoch:1 923/2980 loss:16.9887
  4847. 2023-03-16 21:25:47,279 - INFO - main.py - train - 68 - 【train】 epoch:1 924/2980 loss:20.8684
  4848. 2023-03-16 21:25:48,523 - INFO - main.py - train - 68 - 【train】 epoch:1 925/2980 loss:12.3059
  4849. 2023-03-16 21:25:49,808 - INFO - main.py - train - 68 - 【train】 epoch:1 926/2980 loss:24.4947
  4850. 2023-03-16 21:25:51,039 - INFO - main.py - train - 68 - 【train】 epoch:1 927/2980 loss:1.7010
  4851. 2023-03-16 21:25:52,231 - INFO - main.py - train - 68 - 【train】 epoch:1 928/2980 loss:7.9068
  4852. 2023-03-16 21:25:53,397 - INFO - main.py - train - 68 - 【train】 epoch:1 929/2980 loss:14.3887
  4853. 2023-03-16 21:25:54,558 - INFO - main.py - train - 68 - 【train】 epoch:1 930/2980 loss:7.7047
  4854. 2023-03-16 21:25:55,820 - INFO - main.py - train - 68 - 【train】 epoch:1 931/2980 loss:3.9440
  4855. 2023-03-16 21:25:57,064 - INFO - main.py - train - 68 - 【train】 epoch:1 932/2980 loss:9.0692
  4856. 2023-03-16 21:25:58,298 - INFO - main.py - train - 68 - 【train】 epoch:1 933/2980 loss:8.3168
  4857. 2023-03-16 21:25:59,630 - INFO - main.py - train - 68 - 【train】 epoch:1 934/2980 loss:7.4417
  4858. 2023-03-16 21:26:00,844 - INFO - main.py - train - 68 - 【train】 epoch:1 935/2980 loss:7.3447
  4859. 2023-03-16 21:26:02,006 - INFO - main.py - train - 68 - 【train】 epoch:1 936/2980 loss:2.3301
  4860. 2023-03-16 21:26:03,173 - INFO - main.py - train - 68 - 【train】 epoch:1 937/2980 loss:22.7720
  4861. 2023-03-16 21:26:04,341 - INFO - main.py - train - 68 - 【train】 epoch:1 938/2980 loss:7.1020
  4862. 2023-03-16 21:26:05,525 - INFO - main.py - train - 68 - 【train】 epoch:1 939/2980 loss:11.1207
  4863. 2023-03-16 21:26:06,695 - INFO - main.py - train - 68 - 【train】 epoch:1 940/2980 loss:33.9585
  4864. 2023-03-16 21:26:07,863 - INFO - main.py - train - 68 - 【train】 epoch:1 941/2980 loss:7.4323
  4865. 2023-03-16 21:26:09,049 - INFO - main.py - train - 68 - 【train】 epoch:1 942/2980 loss:12.8753
  4866. 2023-03-16 21:26:10,278 - INFO - main.py - train - 68 - 【train】 epoch:1 943/2980 loss:16.6492
  4867. 2023-03-16 21:26:11,529 - INFO - main.py - train - 68 - 【train】 epoch:1 944/2980 loss:4.6062
  4868. 2023-03-16 21:26:12,766 - INFO - main.py - train - 68 - 【train】 epoch:1 945/2980 loss:17.1335
  4869. 2023-03-16 21:26:14,026 - INFO - main.py - train - 68 - 【train】 epoch:1 946/2980 loss:20.4014
  4870. 2023-03-16 21:26:15,313 - INFO - main.py - train - 68 - 【train】 epoch:1 947/2980 loss:2.9355
  4871. 2023-03-16 21:26:16,487 - INFO - main.py - train - 68 - 【train】 epoch:1 948/2980 loss:12.9464
  4872. 2023-03-16 21:26:17,690 - INFO - main.py - train - 68 - 【train】 epoch:1 949/2980 loss:10.5312
  4873. 2023-03-16 21:26:18,836 - INFO - main.py - train - 68 - 【train】 epoch:1 950/2980 loss:1.4170
  4874. 2023-03-16 21:26:19,975 - INFO - main.py - train - 68 - 【train】 epoch:1 951/2980 loss:5.6205
  4875. 2023-03-16 21:26:21,115 - INFO - main.py - train - 68 - 【train】 epoch:1 952/2980 loss:4.5153
  4876. 2023-03-16 21:26:22,315 - INFO - main.py - train - 68 - 【train】 epoch:1 953/2980 loss:6.7097
  4877. 2023-03-16 21:26:23,507 - INFO - main.py - train - 68 - 【train】 epoch:1 954/2980 loss:10.1345
  4878. 2023-03-16 21:26:24,670 - INFO - main.py - train - 68 - 【train】 epoch:1 955/2980 loss:6.4045
  4879. 2023-03-16 21:26:25,846 - INFO - main.py - train - 68 - 【train】 epoch:1 956/2980 loss:5.5349
  4880. 2023-03-16 21:26:27,030 - INFO - main.py - train - 68 - 【train】 epoch:1 957/2980 loss:1.0568
  4881. 2023-03-16 21:26:28,181 - INFO - main.py - train - 68 - 【train】 epoch:1 958/2980 loss:15.4548
  4882. 2023-03-16 21:26:29,369 - INFO - main.py - train - 68 - 【train】 epoch:1 959/2980 loss:8.8255
  4883. 2023-03-16 21:26:30,552 - INFO - main.py - train - 68 - 【train】 epoch:1 960/2980 loss:16.9590
  4884. 2023-03-16 21:26:31,731 - INFO - main.py - train - 68 - 【train】 epoch:1 961/2980 loss:5.2106
  4885. 2023-03-16 21:26:32,896 - INFO - main.py - train - 68 - 【train】 epoch:1 962/2980 loss:3.7401
  4886. 2023-03-16 21:26:34,066 - INFO - main.py - train - 68 - 【train】 epoch:1 963/2980 loss:6.6729
  4887. 2023-03-16 21:26:35,331 - INFO - main.py - train - 68 - 【train】 epoch:1 964/2980 loss:3.3921
  4888. 2023-03-16 21:26:36,523 - INFO - main.py - train - 68 - 【train】 epoch:1 965/2980 loss:13.0937
  4889. 2023-03-16 21:26:37,689 - INFO - main.py - train - 68 - 【train】 epoch:1 966/2980 loss:2.8900
  4890. 2023-03-16 21:26:38,867 - INFO - main.py - train - 68 - 【train】 epoch:1 967/2980 loss:21.6395
  4891. 2023-03-16 21:26:40,045 - INFO - main.py - train - 68 - 【train】 epoch:1 968/2980 loss:5.1927
  4892. 2023-03-16 21:26:41,218 - INFO - main.py - train - 68 - 【train】 epoch:1 969/2980 loss:3.4095
  4893. 2023-03-16 21:26:42,375 - INFO - main.py - train - 68 - 【train】 epoch:1 970/2980 loss:3.7087
  4894. 2023-03-16 21:26:43,530 - INFO - main.py - train - 68 - 【train】 epoch:1 971/2980 loss:13.0443
  4895. 2023-03-16 21:26:44,717 - INFO - main.py - train - 68 - 【train】 epoch:1 972/2980 loss:5.0912
  4896. 2023-03-16 21:26:45,908 - INFO - main.py - train - 68 - 【train】 epoch:1 973/2980 loss:22.9319
  4897. 2023-03-16 21:26:47,069 - INFO - main.py - train - 68 - 【train】 epoch:1 974/2980 loss:13.3754
  4898. 2023-03-16 21:26:48,321 - INFO - main.py - train - 68 - 【train】 epoch:1 975/2980 loss:19.4254
  4899. 2023-03-16 21:26:49,502 - INFO - main.py - train - 68 - 【train】 epoch:1 976/2980 loss:5.8023
  4900. 2023-03-16 21:26:50,665 - INFO - main.py - train - 68 - 【train】 epoch:1 977/2980 loss:8.0756
  4901. 2023-03-16 21:26:51,831 - INFO - main.py - train - 68 - 【train】 epoch:1 978/2980 loss:9.1064
  4902. 2023-03-16 21:26:53,000 - INFO - main.py - train - 68 - 【train】 epoch:1 979/2980 loss:2.4792
  4903. 2023-03-16 21:26:54,290 - INFO - main.py - train - 68 - 【train】 epoch:1 980/2980 loss:20.8361
  4904. 2023-03-16 21:26:55,500 - INFO - main.py - train - 68 - 【train】 epoch:1 981/2980 loss:6.7424
  4905. 2023-03-16 21:26:56,755 - INFO - main.py - train - 68 - 【train】 epoch:1 982/2980 loss:11.3103
  4906. 2023-03-16 21:26:58,041 - INFO - main.py - train - 68 - 【train】 epoch:1 983/2980 loss:11.3612
  4907. 2023-03-16 21:26:59,281 - INFO - main.py - train - 68 - 【train】 epoch:1 984/2980 loss:14.3723
  4908. 2023-03-16 21:27:00,447 - INFO - main.py - train - 68 - 【train】 epoch:1 985/2980 loss:5.5423
  4909. 2023-03-16 21:27:01,609 - INFO - main.py - train - 68 - 【train】 epoch:1 986/2980 loss:7.2181
  4910. 2023-03-16 21:27:02,764 - INFO - main.py - train - 68 - 【train】 epoch:1 987/2980 loss:6.8480
  4911. 2023-03-16 21:27:03,938 - INFO - main.py - train - 68 - 【train】 epoch:1 988/2980 loss:12.2105
  4912. 2023-03-16 21:27:05,182 - INFO - main.py - train - 68 - 【train】 epoch:1 989/2980 loss:10.8887
  4913. 2023-03-16 21:27:06,354 - INFO - main.py - train - 68 - 【train】 epoch:1 990/2980 loss:5.0457
  4914. 2023-03-16 21:27:07,600 - INFO - main.py - train - 68 - 【train】 epoch:1 991/2980 loss:7.0606
  4915. 2023-03-16 21:27:09,038 - INFO - main.py - train - 68 - 【train】 epoch:1 992/2980 loss:22.2888
  4916. 2023-03-16 21:27:10,298 - INFO - main.py - train - 68 - 【train】 epoch:1 993/2980 loss:11.3698
  4917. 2023-03-16 21:27:11,759 - INFO - main.py - train - 68 - 【train】 epoch:1 994/2980 loss:3.8253
  4918. 2023-03-16 21:27:13,288 - INFO - main.py - train - 68 - 【train】 epoch:1 995/2980 loss:2.6482
  4919. 2023-03-16 21:27:14,919 - INFO - main.py - train - 68 - 【train】 epoch:1 996/2980 loss:3.4792
  4920. 2023-03-16 21:27:16,649 - INFO - main.py - train - 68 - 【train】 epoch:1 997/2980 loss:7.9052
  4921. 2023-03-16 21:27:18,454 - INFO - main.py - train - 68 - 【train】 epoch:1 998/2980 loss:7.4092
  4922. 2023-03-16 21:27:20,164 - INFO - main.py - train - 68 - 【train】 epoch:1 999/2980 loss:9.9498
  4923. 2023-03-16 21:27:21,948 - INFO - main.py - train - 68 - 【train】 epoch:1 1000/2980 loss:5.4523
  4924. 2023-03-16 21:27:23,658 - INFO - main.py - train - 68 - 【train】 epoch:1 1001/2980 loss:3.0378
  4925. 2023-03-16 21:27:25,240 - INFO - main.py - train - 68 - 【train】 epoch:1 1002/2980 loss:11.7100
  4926. 2023-03-16 21:27:26,563 - INFO - main.py - train - 68 - 【train】 epoch:1 1003/2980 loss:10.3319
  4927. 2023-03-16 21:27:27,797 - INFO - main.py - train - 68 - 【train】 epoch:1 1004/2980 loss:9.8397
  4928. 2023-03-16 21:27:29,057 - INFO - main.py - train - 68 - 【train】 epoch:1 1005/2980 loss:4.5418
  4929. 2023-03-16 21:27:30,323 - INFO - main.py - train - 68 - 【train】 epoch:1 1006/2980 loss:5.3447
  4930. 2023-03-16 21:27:31,540 - INFO - main.py - train - 68 - 【train】 epoch:1 1007/2980 loss:8.0962
  4931. 2023-03-16 21:27:32,733 - INFO - main.py - train - 68 - 【train】 epoch:1 1008/2980 loss:31.9592
  4932. 2023-03-16 21:27:33,906 - INFO - main.py - train - 68 - 【train】 epoch:1 1009/2980 loss:11.0324
  4933. 2023-03-16 21:27:35,102 - INFO - main.py - train - 68 - 【train】 epoch:1 1010/2980 loss:6.4683
  4934. 2023-03-16 21:27:36,282 - INFO - main.py - train - 68 - 【train】 epoch:1 1011/2980 loss:3.2541
  4935. 2023-03-16 21:27:37,458 - INFO - main.py - train - 68 - 【train】 epoch:1 1012/2980 loss:4.6102
  4936. 2023-03-16 21:27:38,620 - INFO - main.py - train - 68 - 【train】 epoch:1 1013/2980 loss:4.5517
  4937. 2023-03-16 21:27:39,809 - INFO - main.py - train - 68 - 【train】 epoch:1 1014/2980 loss:8.4781
  4938. 2023-03-16 21:27:40,978 - INFO - main.py - train - 68 - 【train】 epoch:1 1015/2980 loss:16.3725
  4939. 2023-03-16 21:27:42,607 - INFO - main.py - train - 68 - 【train】 epoch:1 1016/2980 loss:19.5878
  4940. 2023-03-16 21:27:44,536 - INFO - main.py - train - 68 - 【train】 epoch:1 1017/2980 loss:3.4806
  4941. 2023-03-16 21:27:46,576 - INFO - main.py - train - 68 - 【train】 epoch:1 1018/2980 loss:7.1065
  4942. 2023-03-16 21:27:48,485 - INFO - main.py - train - 68 - 【train】 epoch:1 1019/2980 loss:19.2018
  4943. 2023-03-16 21:27:50,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1020/2980 loss:31.9195
  4944. 2023-03-16 21:27:52,000 - INFO - main.py - train - 68 - 【train】 epoch:1 1021/2980 loss:6.1052
  4945. 2023-03-16 21:27:53,739 - INFO - main.py - train - 68 - 【train】 epoch:1 1022/2980 loss:1.8741
  4946. 2023-03-16 21:27:55,472 - INFO - main.py - train - 68 - 【train】 epoch:1 1023/2980 loss:4.1490
  4947. 2023-03-16 21:27:57,170 - INFO - main.py - train - 68 - 【train】 epoch:1 1024/2980 loss:7.5306
  4948. 2023-03-16 21:27:58,854 - INFO - main.py - train - 68 - 【train】 epoch:1 1025/2980 loss:9.3527
  4949. 2023-03-16 21:28:00,531 - INFO - main.py - train - 68 - 【train】 epoch:1 1026/2980 loss:10.8367
  4950. 2023-03-16 21:28:02,248 - INFO - main.py - train - 68 - 【train】 epoch:1 1027/2980 loss:2.3944
  4951. 2023-03-16 21:28:03,913 - INFO - main.py - train - 68 - 【train】 epoch:1 1028/2980 loss:12.2109
  4952. 2023-03-16 21:28:05,624 - INFO - main.py - train - 68 - 【train】 epoch:1 1029/2980 loss:25.4460
  4953. 2023-03-16 21:28:07,345 - INFO - main.py - train - 68 - 【train】 epoch:1 1030/2980 loss:9.9273
  4954. 2023-03-16 21:28:09,028 - INFO - main.py - train - 68 - 【train】 epoch:1 1031/2980 loss:34.8388
  4955. 2023-03-16 21:28:10,775 - INFO - main.py - train - 68 - 【train】 epoch:1 1032/2980 loss:5.9995
  4956. 2023-03-16 21:28:12,493 - INFO - main.py - train - 68 - 【train】 epoch:1 1033/2980 loss:8.2287
  4957. 2023-03-16 21:28:14,141 - INFO - main.py - train - 68 - 【train】 epoch:1 1034/2980 loss:1.7975
  4958. 2023-03-16 21:28:15,710 - INFO - main.py - train - 68 - 【train】 epoch:1 1035/2980 loss:4.8540
  4959. 2023-03-16 21:28:17,399 - INFO - main.py - train - 68 - 【train】 epoch:1 1036/2980 loss:2.8431
  4960. 2023-03-16 21:28:19,089 - INFO - main.py - train - 68 - 【train】 epoch:1 1037/2980 loss:3.6557
  4961. 2023-03-16 21:28:20,889 - INFO - main.py - train - 68 - 【train】 epoch:1 1038/2980 loss:20.7675
  4962. 2023-03-16 21:28:22,643 - INFO - main.py - train - 68 - 【train】 epoch:1 1039/2980 loss:7.9315
  4963. 2023-03-16 21:28:24,248 - INFO - main.py - train - 68 - 【train】 epoch:1 1040/2980 loss:4.8369
  4964. 2023-03-16 21:28:25,650 - INFO - main.py - train - 68 - 【train】 epoch:1 1041/2980 loss:9.5495
  4965. 2023-03-16 21:28:26,983 - INFO - main.py - train - 68 - 【train】 epoch:1 1042/2980 loss:11.5837
  4966. 2023-03-16 21:28:28,276 - INFO - main.py - train - 68 - 【train】 epoch:1 1043/2980 loss:11.3224
  4967. 2023-03-16 21:28:29,503 - INFO - main.py - train - 68 - 【train】 epoch:1 1044/2980 loss:12.9109
  4968. 2023-03-16 21:28:30,716 - INFO - main.py - train - 68 - 【train】 epoch:1 1045/2980 loss:5.8566
  4969. 2023-03-16 21:28:31,923 - INFO - main.py - train - 68 - 【train】 epoch:1 1046/2980 loss:3.1199
  4970. 2023-03-16 21:28:33,124 - INFO - main.py - train - 68 - 【train】 epoch:1 1047/2980 loss:5.0180
  4971. 2023-03-16 21:28:34,363 - INFO - main.py - train - 68 - 【train】 epoch:1 1048/2980 loss:22.2296
  4972. 2023-03-16 21:28:35,585 - INFO - main.py - train - 68 - 【train】 epoch:1 1049/2980 loss:11.5404
  4973. 2023-03-16 21:28:36,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1050/2980 loss:9.2469
  4974. 2023-03-16 21:28:38,041 - INFO - main.py - train - 68 - 【train】 epoch:1 1051/2980 loss:7.8254
  4975. 2023-03-16 21:28:39,267 - INFO - main.py - train - 68 - 【train】 epoch:1 1052/2980 loss:5.6085
  4976. 2023-03-16 21:28:40,444 - INFO - main.py - train - 68 - 【train】 epoch:1 1053/2980 loss:9.5167
  4977. 2023-03-16 21:28:41,659 - INFO - main.py - train - 68 - 【train】 epoch:1 1054/2980 loss:6.8025
  4978. 2023-03-16 21:28:42,884 - INFO - main.py - train - 68 - 【train】 epoch:1 1055/2980 loss:4.0214
  4979. 2023-03-16 21:28:44,088 - INFO - main.py - train - 68 - 【train】 epoch:1 1056/2980 loss:3.1575
  4980. 2023-03-16 21:28:45,297 - INFO - main.py - train - 68 - 【train】 epoch:1 1057/2980 loss:11.6980
  4981. 2023-03-16 21:28:46,524 - INFO - main.py - train - 68 - 【train】 epoch:1 1058/2980 loss:10.1202
  4982. 2023-03-16 21:28:47,720 - INFO - main.py - train - 68 - 【train】 epoch:1 1059/2980 loss:6.5442
  4983. 2023-03-16 21:28:48,973 - INFO - main.py - train - 68 - 【train】 epoch:1 1060/2980 loss:36.0562
  4984. 2023-03-16 21:28:50,235 - INFO - main.py - train - 68 - 【train】 epoch:1 1061/2980 loss:12.4579
  4985. 2023-03-16 21:28:51,458 - INFO - main.py - train - 68 - 【train】 epoch:1 1062/2980 loss:16.2296
  4986. 2023-03-16 21:28:52,656 - INFO - main.py - train - 68 - 【train】 epoch:1 1063/2980 loss:21.0582
  4987. 2023-03-16 21:28:53,861 - INFO - main.py - train - 68 - 【train】 epoch:1 1064/2980 loss:3.6436
  4988. 2023-03-16 21:28:55,047 - INFO - main.py - train - 68 - 【train】 epoch:1 1065/2980 loss:1.1470
  4989. 2023-03-16 21:28:56,280 - INFO - main.py - train - 68 - 【train】 epoch:1 1066/2980 loss:12.3317
  4990. 2023-03-16 21:28:57,517 - INFO - main.py - train - 68 - 【train】 epoch:1 1067/2980 loss:5.9994
  4991. 2023-03-16 21:28:58,718 - INFO - main.py - train - 68 - 【train】 epoch:1 1068/2980 loss:3.6014
  4992. 2023-03-16 21:28:59,954 - INFO - main.py - train - 68 - 【train】 epoch:1 1069/2980 loss:10.1524
  4993. 2023-03-16 21:29:01,186 - INFO - main.py - train - 68 - 【train】 epoch:1 1070/2980 loss:14.0748
  4994. 2023-03-16 21:29:02,373 - INFO - main.py - train - 68 - 【train】 epoch:1 1071/2980 loss:20.8607
  4995. 2023-03-16 21:29:03,633 - INFO - main.py - train - 68 - 【train】 epoch:1 1072/2980 loss:12.8983
  4996. 2023-03-16 21:29:04,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1073/2980 loss:5.0374
  4997. 2023-03-16 21:29:06,056 - INFO - main.py - train - 68 - 【train】 epoch:1 1074/2980 loss:11.9300
  4998. 2023-03-16 21:29:07,264 - INFO - main.py - train - 68 - 【train】 epoch:1 1075/2980 loss:13.5688
  4999. 2023-03-16 21:29:08,425 - INFO - main.py - train - 68 - 【train】 epoch:1 1076/2980 loss:11.6208
  5000. 2023-03-16 21:29:09,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1077/2980 loss:14.2926
  5001. 2023-03-16 21:29:10,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1078/2980 loss:3.2680
  5002. 2023-03-16 21:29:12,100 - INFO - main.py - train - 68 - 【train】 epoch:1 1079/2980 loss:16.0455
  5003. 2023-03-16 21:29:13,306 - INFO - main.py - train - 68 - 【train】 epoch:1 1080/2980 loss:3.6666
  5004. 2023-03-16 21:29:14,488 - INFO - main.py - train - 68 - 【train】 epoch:1 1081/2980 loss:1.8089
  5005. 2023-03-16 21:29:15,738 - INFO - main.py - train - 68 - 【train】 epoch:1 1082/2980 loss:17.3301
  5006. 2023-03-16 21:29:16,912 - INFO - main.py - train - 68 - 【train】 epoch:1 1083/2980 loss:2.3934
  5007. 2023-03-16 21:29:18,164 - INFO - main.py - train - 68 - 【train】 epoch:1 1084/2980 loss:15.6766
  5008. 2023-03-16 21:29:19,388 - INFO - main.py - train - 68 - 【train】 epoch:1 1085/2980 loss:5.7828
  5009. 2023-03-16 21:29:20,605 - INFO - main.py - train - 68 - 【train】 epoch:1 1086/2980 loss:2.7940
  5010. 2023-03-16 21:29:21,824 - INFO - main.py - train - 68 - 【train】 epoch:1 1087/2980 loss:8.7797
  5011. 2023-03-16 21:29:23,038 - INFO - main.py - train - 68 - 【train】 epoch:1 1088/2980 loss:6.3215
  5012. 2023-03-16 21:29:24,256 - INFO - main.py - train - 68 - 【train】 epoch:1 1089/2980 loss:8.2025
  5013. 2023-03-16 21:29:25,477 - INFO - main.py - train - 68 - 【train】 epoch:1 1090/2980 loss:14.7418
  5014. 2023-03-16 21:29:26,692 - INFO - main.py - train - 68 - 【train】 epoch:1 1091/2980 loss:5.4914
  5015. 2023-03-16 21:29:27,909 - INFO - main.py - train - 68 - 【train】 epoch:1 1092/2980 loss:13.0514
  5016. 2023-03-16 21:29:29,157 - INFO - main.py - train - 68 - 【train】 epoch:1 1093/2980 loss:54.5407
  5017. 2023-03-16 21:29:30,416 - INFO - main.py - train - 68 - 【train】 epoch:1 1094/2980 loss:8.9920
  5018. 2023-03-16 21:29:31,638 - INFO - main.py - train - 68 - 【train】 epoch:1 1095/2980 loss:11.8192
  5019. 2023-03-16 21:29:32,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1096/2980 loss:9.7146
  5020. 2023-03-16 21:29:34,074 - INFO - main.py - train - 68 - 【train】 epoch:1 1097/2980 loss:3.8483
  5021. 2023-03-16 21:29:35,274 - INFO - main.py - train - 68 - 【train】 epoch:1 1098/2980 loss:2.4621
  5022. 2023-03-16 21:29:36,506 - INFO - main.py - train - 68 - 【train】 epoch:1 1099/2980 loss:7.6119
  5023. 2023-03-16 21:29:37,723 - INFO - main.py - train - 68 - 【train】 epoch:1 1100/2980 loss:5.7739
  5024. 2023-03-16 21:29:38,930 - INFO - main.py - train - 68 - 【train】 epoch:1 1101/2980 loss:14.0892
  5025. 2023-03-16 21:29:40,157 - INFO - main.py - train - 68 - 【train】 epoch:1 1102/2980 loss:21.4813
  5026. 2023-03-16 21:29:41,382 - INFO - main.py - train - 68 - 【train】 epoch:1 1103/2980 loss:17.4829
  5027. 2023-03-16 21:29:42,645 - INFO - main.py - train - 68 - 【train】 epoch:1 1104/2980 loss:0.9325
  5028. 2023-03-16 21:29:43,869 - INFO - main.py - train - 68 - 【train】 epoch:1 1105/2980 loss:5.6382
  5029. 2023-03-16 21:29:45,075 - INFO - main.py - train - 68 - 【train】 epoch:1 1106/2980 loss:13.1270
  5030. 2023-03-16 21:29:46,280 - INFO - main.py - train - 68 - 【train】 epoch:1 1107/2980 loss:17.6311
  5031. 2023-03-16 21:29:47,486 - INFO - main.py - train - 68 - 【train】 epoch:1 1108/2980 loss:13.5287
  5032. 2023-03-16 21:29:48,668 - INFO - main.py - train - 68 - 【train】 epoch:1 1109/2980 loss:13.6544
  5033. 2023-03-16 21:29:49,858 - INFO - main.py - train - 68 - 【train】 epoch:1 1110/2980 loss:2.0089
  5034. 2023-03-16 21:29:51,047 - INFO - main.py - train - 68 - 【train】 epoch:1 1111/2980 loss:0.7823
  5035. 2023-03-16 21:29:52,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1112/2980 loss:14.4291
  5036. 2023-03-16 21:29:53,484 - INFO - main.py - train - 68 - 【train】 epoch:1 1113/2980 loss:4.0845
  5037. 2023-03-16 21:29:54,715 - INFO - main.py - train - 68 - 【train】 epoch:1 1114/2980 loss:3.9165
  5038. 2023-03-16 21:29:56,013 - INFO - main.py - train - 68 - 【train】 epoch:1 1115/2980 loss:0.5240
  5039. 2023-03-16 21:29:57,231 - INFO - main.py - train - 68 - 【train】 epoch:1 1116/2980 loss:11.1321
  5040. 2023-03-16 21:29:58,422 - INFO - main.py - train - 68 - 【train】 epoch:1 1117/2980 loss:12.3669
  5041. 2023-03-16 21:29:59,627 - INFO - main.py - train - 68 - 【train】 epoch:1 1118/2980 loss:4.6577
  5042. 2023-03-16 21:30:00,870 - INFO - main.py - train - 68 - 【train】 epoch:1 1119/2980 loss:18.1888
  5043. 2023-03-16 21:30:02,078 - INFO - main.py - train - 68 - 【train】 epoch:1 1120/2980 loss:5.4895
  5044. 2023-03-16 21:30:03,283 - INFO - main.py - train - 68 - 【train】 epoch:1 1121/2980 loss:6.5037
  5045. 2023-03-16 21:30:04,470 - INFO - main.py - train - 68 - 【train】 epoch:1 1122/2980 loss:6.1368
  5046. 2023-03-16 21:30:05,700 - INFO - main.py - train - 68 - 【train】 epoch:1 1123/2980 loss:11.0347
  5047. 2023-03-16 21:30:06,910 - INFO - main.py - train - 68 - 【train】 epoch:1 1124/2980 loss:8.8248
  5048. 2023-03-16 21:30:08,119 - INFO - main.py - train - 68 - 【train】 epoch:1 1125/2980 loss:9.3793
  5049. 2023-03-16 21:30:09,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1126/2980 loss:9.2755
  5050. 2023-03-16 21:30:10,534 - INFO - main.py - train - 68 - 【train】 epoch:1 1127/2980 loss:2.7854
  5051. 2023-03-16 21:30:11,747 - INFO - main.py - train - 68 - 【train】 epoch:1 1128/2980 loss:14.8346
  5052. 2023-03-16 21:30:12,935 - INFO - main.py - train - 68 - 【train】 epoch:1 1129/2980 loss:1.4060
  5053. 2023-03-16 21:30:14,144 - INFO - main.py - train - 68 - 【train】 epoch:1 1130/2980 loss:17.0023
  5054. 2023-03-16 21:30:15,357 - INFO - main.py - train - 68 - 【train】 epoch:1 1131/2980 loss:6.1267
  5055. 2023-03-16 21:30:16,569 - INFO - main.py - train - 68 - 【train】 epoch:1 1132/2980 loss:12.0294
  5056. 2023-03-16 21:30:17,819 - INFO - main.py - train - 68 - 【train】 epoch:1 1133/2980 loss:15.1824
  5057. 2023-03-16 21:30:19,026 - INFO - main.py - train - 68 - 【train】 epoch:1 1134/2980 loss:4.6587
  5058. 2023-03-16 21:30:20,213 - INFO - main.py - train - 68 - 【train】 epoch:1 1135/2980 loss:1.3477
  5059. 2023-03-16 21:30:21,407 - INFO - main.py - train - 68 - 【train】 epoch:1 1136/2980 loss:13.1562
  5060. 2023-03-16 21:30:22,606 - INFO - main.py - train - 68 - 【train】 epoch:1 1137/2980 loss:7.0271
  5061. 2023-03-16 21:30:23,817 - INFO - main.py - train - 68 - 【train】 epoch:1 1138/2980 loss:13.3018
  5062. 2023-03-16 21:30:25,014 - INFO - main.py - train - 68 - 【train】 epoch:1 1139/2980 loss:49.4670
  5063. 2023-03-16 21:30:26,252 - INFO - main.py - train - 68 - 【train】 epoch:1 1140/2980 loss:5.7692
  5064. 2023-03-16 21:30:27,480 - INFO - main.py - train - 68 - 【train】 epoch:1 1141/2980 loss:16.0039
  5065. 2023-03-16 21:30:28,671 - INFO - main.py - train - 68 - 【train】 epoch:1 1142/2980 loss:6.5459
  5066. 2023-03-16 21:30:29,883 - INFO - main.py - train - 68 - 【train】 epoch:1 1143/2980 loss:8.9637
  5067. 2023-03-16 21:30:31,089 - INFO - main.py - train - 68 - 【train】 epoch:1 1144/2980 loss:6.6863
  5068. 2023-03-16 21:30:32,339 - INFO - main.py - train - 68 - 【train】 epoch:1 1145/2980 loss:17.7117
  5069. 2023-03-16 21:30:33,547 - INFO - main.py - train - 68 - 【train】 epoch:1 1146/2980 loss:8.5278
  5070. 2023-03-16 21:30:34,811 - INFO - main.py - train - 68 - 【train】 epoch:1 1147/2980 loss:2.6222
  5071. 2023-03-16 21:30:36,085 - INFO - main.py - train - 68 - 【train】 epoch:1 1148/2980 loss:36.1017
  5072. 2023-03-16 21:30:37,288 - INFO - main.py - train - 68 - 【train】 epoch:1 1149/2980 loss:2.5007
  5073. 2023-03-16 21:30:38,478 - INFO - main.py - train - 68 - 【train】 epoch:1 1150/2980 loss:1.6031
  5074. 2023-03-16 21:30:39,685 - INFO - main.py - train - 68 - 【train】 epoch:1 1151/2980 loss:3.2295
  5075. 2023-03-16 21:30:40,879 - INFO - main.py - train - 68 - 【train】 epoch:1 1152/2980 loss:20.8805
  5076. 2023-03-16 21:30:42,111 - INFO - main.py - train - 68 - 【train】 epoch:1 1153/2980 loss:30.2213
  5077. 2023-03-16 21:30:43,316 - INFO - main.py - train - 68 - 【train】 epoch:1 1154/2980 loss:12.4474
  5078. 2023-03-16 21:30:44,508 - INFO - main.py - train - 68 - 【train】 epoch:1 1155/2980 loss:11.0843
  5079. 2023-03-16 21:30:45,742 - INFO - main.py - train - 68 - 【train】 epoch:1 1156/2980 loss:30.3947
  5080. 2023-03-16 21:30:46,947 - INFO - main.py - train - 68 - 【train】 epoch:1 1157/2980 loss:8.6804
  5081. 2023-03-16 21:30:48,149 - INFO - main.py - train - 68 - 【train】 epoch:1 1158/2980 loss:37.6159
  5082. 2023-03-16 21:30:49,368 - INFO - main.py - train - 68 - 【train】 epoch:1 1159/2980 loss:1.2366
  5083. 2023-03-16 21:30:50,584 - INFO - main.py - train - 68 - 【train】 epoch:1 1160/2980 loss:17.4860
  5084. 2023-03-16 21:30:51,793 - INFO - main.py - train - 68 - 【train】 epoch:1 1161/2980 loss:4.4211
  5085. 2023-03-16 21:30:52,961 - INFO - main.py - train - 68 - 【train】 epoch:1 1162/2980 loss:1.9216
  5086. 2023-03-16 21:30:54,196 - INFO - main.py - train - 68 - 【train】 epoch:1 1163/2980 loss:19.1180
  5087. 2023-03-16 21:30:55,401 - INFO - main.py - train - 68 - 【train】 epoch:1 1164/2980 loss:26.4997
  5088. 2023-03-16 21:30:56,597 - INFO - main.py - train - 68 - 【train】 epoch:1 1165/2980 loss:4.6092
  5089. 2023-03-16 21:30:57,840 - INFO - main.py - train - 68 - 【train】 epoch:1 1166/2980 loss:14.9145
  5090. 2023-03-16 21:30:59,060 - INFO - main.py - train - 68 - 【train】 epoch:1 1167/2980 loss:16.1700
  5091. 2023-03-16 21:31:00,291 - INFO - main.py - train - 68 - 【train】 epoch:1 1168/2980 loss:3.2075
  5092. 2023-03-16 21:31:01,532 - INFO - main.py - train - 68 - 【train】 epoch:1 1169/2980 loss:18.4410
  5093. 2023-03-16 21:31:02,738 - INFO - main.py - train - 68 - 【train】 epoch:1 1170/2980 loss:5.4525
  5094. 2023-03-16 21:31:03,973 - INFO - main.py - train - 68 - 【train】 epoch:1 1171/2980 loss:10.0224
  5095. 2023-03-16 21:31:05,192 - INFO - main.py - train - 68 - 【train】 epoch:1 1172/2980 loss:13.8551
  5096. 2023-03-16 21:31:06,437 - INFO - main.py - train - 68 - 【train】 epoch:1 1173/2980 loss:6.0661
  5097. 2023-03-16 21:31:07,667 - INFO - main.py - train - 68 - 【train】 epoch:1 1174/2980 loss:4.1318
  5098. 2023-03-16 21:31:08,915 - INFO - main.py - train - 68 - 【train】 epoch:1 1175/2980 loss:5.9358
  5099. 2023-03-16 21:31:10,156 - INFO - main.py - train - 68 - 【train】 epoch:1 1176/2980 loss:15.0139
  5100. 2023-03-16 21:31:11,366 - INFO - main.py - train - 68 - 【train】 epoch:1 1177/2980 loss:7.6333
  5101. 2023-03-16 21:31:12,654 - INFO - main.py - train - 68 - 【train】 epoch:1 1178/2980 loss:14.6435
  5102. 2023-03-16 21:31:13,878 - INFO - main.py - train - 68 - 【train】 epoch:1 1179/2980 loss:4.0548
  5103. 2023-03-16 21:31:15,101 - INFO - main.py - train - 68 - 【train】 epoch:1 1180/2980 loss:8.0483
  5104. 2023-03-16 21:31:16,344 - INFO - main.py - train - 68 - 【train】 epoch:1 1181/2980 loss:9.2244
  5105. 2023-03-16 21:31:17,578 - INFO - main.py - train - 68 - 【train】 epoch:1 1182/2980 loss:9.3697
  5106. 2023-03-16 21:31:18,795 - INFO - main.py - train - 68 - 【train】 epoch:1 1183/2980 loss:11.7489
  5107. 2023-03-16 21:31:20,025 - INFO - main.py - train - 68 - 【train】 epoch:1 1184/2980 loss:21.0323
  5108. 2023-03-16 21:31:21,262 - INFO - main.py - train - 68 - 【train】 epoch:1 1185/2980 loss:13.4797
  5109. 2023-03-16 21:31:22,508 - INFO - main.py - train - 68 - 【train】 epoch:1 1186/2980 loss:6.8740
  5110. 2023-03-16 21:31:23,719 - INFO - main.py - train - 68 - 【train】 epoch:1 1187/2980 loss:27.0627
  5111. 2023-03-16 21:31:24,943 - INFO - main.py - train - 68 - 【train】 epoch:1 1188/2980 loss:0.6708
  5112. 2023-03-16 21:31:26,207 - INFO - main.py - train - 68 - 【train】 epoch:1 1189/2980 loss:7.4321
  5113. 2023-03-16 21:31:27,521 - INFO - main.py - train - 68 - 【train】 epoch:1 1190/2980 loss:4.4549
  5114. 2023-03-16 21:31:28,740 - INFO - main.py - train - 68 - 【train】 epoch:1 1191/2980 loss:22.6290
  5115. 2023-03-16 21:31:40,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1192/2980 loss:13.5099
  5116. 2023-03-16 21:31:42,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1193/2980 loss:4.3807
  5117. 2023-03-16 21:31:43,344 - INFO - main.py - train - 68 - 【train】 epoch:2 1194/2980 loss:4.9485
  5118. 2023-03-16 21:31:44,545 - INFO - main.py - train - 68 - 【train】 epoch:2 1195/2980 loss:4.6944
  5119. 2023-03-16 21:31:45,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1196/2980 loss:1.2047
  5120. 2023-03-16 21:31:47,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1197/2980 loss:2.8347
  5121. 2023-03-16 21:31:48,252 - INFO - main.py - train - 68 - 【train】 epoch:2 1198/2980 loss:23.8334
  5122. 2023-03-16 21:31:49,466 - INFO - main.py - train - 68 - 【train】 epoch:2 1199/2980 loss:7.2499
  5123. 2023-03-16 21:31:50,706 - INFO - main.py - train - 68 - 【train】 epoch:2 1200/2980 loss:11.4501
  5124. 2023-03-16 21:31:51,905 - INFO - main.py - train - 68 - 【train】 epoch:2 1201/2980 loss:6.8961
  5125. 2023-03-16 21:31:53,116 - INFO - main.py - train - 68 - 【train】 epoch:2 1202/2980 loss:5.4155
  5126. 2023-03-16 21:31:54,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1203/2980 loss:8.0607
  5127. 2023-03-16 21:31:55,557 - INFO - main.py - train - 68 - 【train】 epoch:2 1204/2980 loss:18.6957
  5128. 2023-03-16 21:31:56,755 - INFO - main.py - train - 68 - 【train】 epoch:2 1205/2980 loss:4.3178
  5129. 2023-03-16 21:31:57,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1206/2980 loss:8.3773
  5130. 2023-03-16 21:31:59,157 - INFO - main.py - train - 68 - 【train】 epoch:2 1207/2980 loss:5.3528
  5131. 2023-03-16 21:32:00,357 - INFO - main.py - train - 68 - 【train】 epoch:2 1208/2980 loss:17.9999
  5132. 2023-03-16 21:32:01,597 - INFO - main.py - train - 68 - 【train】 epoch:2 1209/2980 loss:9.7303
  5133. 2023-03-16 21:32:02,808 - INFO - main.py - train - 68 - 【train】 epoch:2 1210/2980 loss:11.3181
  5134. 2023-03-16 21:32:03,989 - INFO - main.py - train - 68 - 【train】 epoch:2 1211/2980 loss:3.7254
  5135. 2023-03-16 21:32:05,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1212/2980 loss:14.8951
  5136. 2023-03-16 21:32:06,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1213/2980 loss:10.8947
  5137. 2023-03-16 21:32:07,654 - INFO - main.py - train - 68 - 【train】 epoch:2 1214/2980 loss:4.1388
  5138. 2023-03-16 21:32:08,870 - INFO - main.py - train - 68 - 【train】 epoch:2 1215/2980 loss:22.1698
  5139. 2023-03-16 21:32:10,065 - INFO - main.py - train - 68 - 【train】 epoch:2 1216/2980 loss:13.1849
  5140. 2023-03-16 21:32:11,271 - INFO - main.py - train - 68 - 【train】 epoch:2 1217/2980 loss:17.6139
  5141. 2023-03-16 21:32:12,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1218/2980 loss:10.8990
  5142. 2023-03-16 21:32:13,647 - INFO - main.py - train - 68 - 【train】 epoch:2 1219/2980 loss:8.1892
  5143. 2023-03-16 21:32:14,814 - INFO - main.py - train - 68 - 【train】 epoch:2 1220/2980 loss:1.0251
  5144. 2023-03-16 21:32:16,031 - INFO - main.py - train - 68 - 【train】 epoch:2 1221/2980 loss:13.4918
  5145. 2023-03-16 21:32:17,244 - INFO - main.py - train - 68 - 【train】 epoch:2 1222/2980 loss:14.0736
  5146. 2023-03-16 21:32:18,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1223/2980 loss:3.7286
  5147. 2023-03-16 21:32:19,646 - INFO - main.py - train - 68 - 【train】 epoch:2 1224/2980 loss:33.4549
  5148. 2023-03-16 21:32:20,850 - INFO - main.py - train - 68 - 【train】 epoch:2 1225/2980 loss:14.7013
  5149. 2023-03-16 21:32:22,044 - INFO - main.py - train - 68 - 【train】 epoch:2 1226/2980 loss:11.2534
  5150. 2023-03-16 21:32:23,238 - INFO - main.py - train - 68 - 【train】 epoch:2 1227/2980 loss:25.0290
  5151. 2023-03-16 21:32:24,421 - INFO - main.py - train - 68 - 【train】 epoch:2 1228/2980 loss:9.7487
  5152. 2023-03-16 21:32:25,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1229/2980 loss:6.4470
  5153. 2023-03-16 21:32:26,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1230/2980 loss:4.9624
  5154. 2023-03-16 21:32:28,022 - INFO - main.py - train - 68 - 【train】 epoch:2 1231/2980 loss:15.2565
  5155. 2023-03-16 21:32:29,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1232/2980 loss:10.8770
  5156. 2023-03-16 21:32:30,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1233/2980 loss:16.2843
  5157. 2023-03-16 21:32:31,629 - INFO - main.py - train - 68 - 【train】 epoch:2 1234/2980 loss:3.3308
  5158. 2023-03-16 21:32:32,869 - INFO - main.py - train - 68 - 【train】 epoch:2 1235/2980 loss:0.6216
  5159. 2023-03-16 21:32:34,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1236/2980 loss:9.3732
  5160. 2023-03-16 21:32:35,350 - INFO - main.py - train - 68 - 【train】 epoch:2 1237/2980 loss:11.0916
  5161. 2023-03-16 21:32:36,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1238/2980 loss:9.1960
  5162. 2023-03-16 21:32:37,745 - INFO - main.py - train - 68 - 【train】 epoch:2 1239/2980 loss:2.7332
  5163. 2023-03-16 21:32:38,958 - INFO - main.py - train - 68 - 【train】 epoch:2 1240/2980 loss:26.6099
  5164. 2023-03-16 21:32:40,152 - INFO - main.py - train - 68 - 【train】 epoch:2 1241/2980 loss:3.6064
  5165. 2023-03-16 21:32:41,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1242/2980 loss:2.0976
  5166. 2023-03-16 21:32:42,591 - INFO - main.py - train - 68 - 【train】 epoch:2 1243/2980 loss:6.9365
  5167. 2023-03-16 21:32:43,806 - INFO - main.py - train - 68 - 【train】 epoch:2 1244/2980 loss:5.5320
  5168. 2023-03-16 21:32:45,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1245/2980 loss:15.9915
  5169. 2023-03-16 21:32:46,248 - INFO - main.py - train - 68 - 【train】 epoch:2 1246/2980 loss:11.8440
  5170. 2023-03-16 21:32:47,457 - INFO - main.py - train - 68 - 【train】 epoch:2 1247/2980 loss:5.6106
  5171. 2023-03-16 21:32:48,703 - INFO - main.py - train - 68 - 【train】 epoch:2 1248/2980 loss:19.7798
  5172. 2023-03-16 21:32:49,951 - INFO - main.py - train - 68 - 【train】 epoch:2 1249/2980 loss:4.9664
  5173. 2023-03-16 21:32:51,170 - INFO - main.py - train - 68 - 【train】 epoch:2 1250/2980 loss:3.7754
  5174. 2023-03-16 21:32:52,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1251/2980 loss:6.6033
  5175. 2023-03-16 21:32:53,583 - INFO - main.py - train - 68 - 【train】 epoch:2 1252/2980 loss:5.2703
  5176. 2023-03-16 21:32:54,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1253/2980 loss:4.5447
  5177. 2023-03-16 21:32:56,043 - INFO - main.py - train - 68 - 【train】 epoch:2 1254/2980 loss:8.8444
  5178. 2023-03-16 21:32:57,275 - INFO - main.py - train - 68 - 【train】 epoch:2 1255/2980 loss:21.0195
  5179. 2023-03-16 21:32:58,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1256/2980 loss:12.5418
  5180. 2023-03-16 21:32:59,660 - INFO - main.py - train - 68 - 【train】 epoch:2 1257/2980 loss:10.3191
  5181. 2023-03-16 21:33:00,860 - INFO - main.py - train - 68 - 【train】 epoch:2 1258/2980 loss:6.6393
  5182. 2023-03-16 21:33:02,063 - INFO - main.py - train - 68 - 【train】 epoch:2 1259/2980 loss:12.9807
  5183. 2023-03-16 21:33:03,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1260/2980 loss:3.4823
  5184. 2023-03-16 21:33:04,488 - INFO - main.py - train - 68 - 【train】 epoch:2 1261/2980 loss:18.6990
  5185. 2023-03-16 21:33:05,702 - INFO - main.py - train - 68 - 【train】 epoch:2 1262/2980 loss:9.6151
  5186. 2023-03-16 21:33:06,878 - INFO - main.py - train - 68 - 【train】 epoch:2 1263/2980 loss:0.4665
  5187. 2023-03-16 21:33:08,076 - INFO - main.py - train - 68 - 【train】 epoch:2 1264/2980 loss:3.6923
  5188. 2023-03-16 21:33:09,287 - INFO - main.py - train - 68 - 【train】 epoch:2 1265/2980 loss:14.7167
  5189. 2023-03-16 21:33:10,502 - INFO - main.py - train - 68 - 【train】 epoch:2 1266/2980 loss:4.1433
  5190. 2023-03-16 21:33:11,719 - INFO - main.py - train - 68 - 【train】 epoch:2 1267/2980 loss:44.2059
  5191. 2023-03-16 21:33:12,949 - INFO - main.py - train - 68 - 【train】 epoch:2 1268/2980 loss:2.9530
  5192. 2023-03-16 21:33:14,155 - INFO - main.py - train - 68 - 【train】 epoch:2 1269/2980 loss:10.9387
  5193. 2023-03-16 21:33:15,376 - INFO - main.py - train - 68 - 【train】 epoch:2 1270/2980 loss:2.6468
  5194. 2023-03-16 21:33:16,605 - INFO - main.py - train - 68 - 【train】 epoch:2 1271/2980 loss:2.3594
  5195. 2023-03-16 21:33:17,836 - INFO - main.py - train - 68 - 【train】 epoch:2 1272/2980 loss:1.0312
  5196. 2023-03-16 21:33:19,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1273/2980 loss:17.0614
  5197. 2023-03-16 21:33:20,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1274/2980 loss:14.6351
  5198. 2023-03-16 21:33:21,524 - INFO - main.py - train - 68 - 【train】 epoch:2 1275/2980 loss:4.9410
  5199. 2023-03-16 21:33:22,770 - INFO - main.py - train - 68 - 【train】 epoch:2 1276/2980 loss:2.9046
  5200. 2023-03-16 21:33:23,998 - INFO - main.py - train - 68 - 【train】 epoch:2 1277/2980 loss:32.6521
  5201. 2023-03-16 21:33:25,201 - INFO - main.py - train - 68 - 【train】 epoch:2 1278/2980 loss:1.8814
  5202. 2023-03-16 21:33:26,458 - INFO - main.py - train - 68 - 【train】 epoch:2 1279/2980 loss:10.1598
  5203. 2023-03-16 21:33:27,705 - INFO - main.py - train - 68 - 【train】 epoch:2 1280/2980 loss:10.0977
  5204. 2023-03-16 21:33:28,924 - INFO - main.py - train - 68 - 【train】 epoch:2 1281/2980 loss:9.3832
  5205. 2023-03-16 21:33:30,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1282/2980 loss:18.7211
  5206. 2023-03-16 21:33:31,358 - INFO - main.py - train - 68 - 【train】 epoch:2 1283/2980 loss:4.4916
  5207. 2023-03-16 21:33:32,544 - INFO - main.py - train - 68 - 【train】 epoch:2 1284/2980 loss:0.8200
  5208. 2023-03-16 21:33:33,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1285/2980 loss:21.8070
  5209. 2023-03-16 21:33:35,039 - INFO - main.py - train - 68 - 【train】 epoch:2 1286/2980 loss:18.7672
  5210. 2023-03-16 21:33:36,295 - INFO - main.py - train - 68 - 【train】 epoch:2 1287/2980 loss:6.0488
  5211. 2023-03-16 21:33:37,489 - INFO - main.py - train - 68 - 【train】 epoch:2 1288/2980 loss:2.2506
  5212. 2023-03-16 21:33:38,691 - INFO - main.py - train - 68 - 【train】 epoch:2 1289/2980 loss:2.7838
  5213. 2023-03-16 21:33:39,899 - INFO - main.py - train - 68 - 【train】 epoch:2 1290/2980 loss:2.5372
  5214. 2023-03-16 21:33:41,112 - INFO - main.py - train - 68 - 【train】 epoch:2 1291/2980 loss:8.6087
  5215. 2023-03-16 21:33:42,352 - INFO - main.py - train - 68 - 【train】 epoch:2 1292/2980 loss:9.5183
  5216. 2023-03-16 21:33:43,574 - INFO - main.py - train - 68 - 【train】 epoch:2 1293/2980 loss:7.0374
  5217. 2023-03-16 21:33:44,769 - INFO - main.py - train - 68 - 【train】 epoch:2 1294/2980 loss:8.6686
  5218. 2023-03-16 21:33:46,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1295/2980 loss:13.6365
  5219. 2023-03-16 21:33:47,228 - INFO - main.py - train - 68 - 【train】 epoch:2 1296/2980 loss:19.5039
  5220. 2023-03-16 21:33:48,429 - INFO - main.py - train - 68 - 【train】 epoch:2 1297/2980 loss:5.9272
  5221. 2023-03-16 21:33:49,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1298/2980 loss:5.9241
  5222. 2023-03-16 21:33:50,861 - INFO - main.py - train - 68 - 【train】 epoch:2 1299/2980 loss:4.6917
  5223. 2023-03-16 21:33:52,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1300/2980 loss:14.6437
  5224. 2023-03-16 21:33:53,296 - INFO - main.py - train - 68 - 【train】 epoch:2 1301/2980 loss:11.3493
  5225. 2023-03-16 21:33:54,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1302/2980 loss:1.7714
  5226. 2023-03-16 21:33:55,710 - INFO - main.py - train - 68 - 【train】 epoch:2 1303/2980 loss:10.7773
  5227. 2023-03-16 21:33:56,910 - INFO - main.py - train - 68 - 【train】 epoch:2 1304/2980 loss:10.3668
  5228. 2023-03-16 21:33:58,096 - INFO - main.py - train - 68 - 【train】 epoch:2 1305/2980 loss:0.3002
  5229. 2023-03-16 21:33:59,294 - INFO - main.py - train - 68 - 【train】 epoch:2 1306/2980 loss:11.5673
  5230. 2023-03-16 21:34:00,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1307/2980 loss:5.1136
  5231. 2023-03-16 21:34:01,684 - INFO - main.py - train - 68 - 【train】 epoch:2 1308/2980 loss:9.6174
  5232. 2023-03-16 21:34:02,906 - INFO - main.py - train - 68 - 【train】 epoch:2 1309/2980 loss:15.5952
  5233. 2023-03-16 21:34:04,103 - INFO - main.py - train - 68 - 【train】 epoch:2 1310/2980 loss:11.3975
  5234. 2023-03-16 21:34:05,278 - INFO - main.py - train - 68 - 【train】 epoch:2 1311/2980 loss:3.5153
  5235. 2023-03-16 21:34:06,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1312/2980 loss:14.5036
  5236. 2023-03-16 21:34:07,675 - INFO - main.py - train - 68 - 【train】 epoch:2 1313/2980 loss:5.4831
  5237. 2023-03-16 21:34:08,887 - INFO - main.py - train - 68 - 【train】 epoch:2 1314/2980 loss:4.7720
  5238. 2023-03-16 21:34:10,099 - INFO - main.py - train - 68 - 【train】 epoch:2 1315/2980 loss:5.0106
  5239. 2023-03-16 21:34:11,277 - INFO - main.py - train - 68 - 【train】 epoch:2 1316/2980 loss:14.7221
  5240. 2023-03-16 21:34:12,574 - INFO - main.py - train - 68 - 【train】 epoch:2 1317/2980 loss:7.2484
  5241. 2023-03-16 21:34:13,762 - INFO - main.py - train - 68 - 【train】 epoch:2 1318/2980 loss:7.8291
  5242. 2023-03-16 21:34:14,959 - INFO - main.py - train - 68 - 【train】 epoch:2 1319/2980 loss:18.8564
  5243. 2023-03-16 21:34:16,194 - INFO - main.py - train - 68 - 【train】 epoch:2 1320/2980 loss:3.3622
  5244. 2023-03-16 21:34:17,389 - INFO - main.py - train - 68 - 【train】 epoch:2 1321/2980 loss:3.4018
  5245. 2023-03-16 21:34:18,579 - INFO - main.py - train - 68 - 【train】 epoch:2 1322/2980 loss:2.1882
  5246. 2023-03-16 21:34:19,770 - INFO - main.py - train - 68 - 【train】 epoch:2 1323/2980 loss:1.0690
  5247. 2023-03-16 21:34:20,982 - INFO - main.py - train - 68 - 【train】 epoch:2 1324/2980 loss:2.0623
  5248. 2023-03-16 21:34:22,192 - INFO - main.py - train - 68 - 【train】 epoch:2 1325/2980 loss:31.3422
  5249. 2023-03-16 21:34:23,413 - INFO - main.py - train - 68 - 【train】 epoch:2 1326/2980 loss:6.3044
  5250. 2023-03-16 21:34:24,608 - INFO - main.py - train - 68 - 【train】 epoch:2 1327/2980 loss:4.6260
  5251. 2023-03-16 21:34:25,810 - INFO - main.py - train - 68 - 【train】 epoch:2 1328/2980 loss:2.2901
  5252. 2023-03-16 21:34:27,026 - INFO - main.py - train - 68 - 【train】 epoch:2 1329/2980 loss:16.1281
  5253. 2023-03-16 21:34:28,224 - INFO - main.py - train - 68 - 【train】 epoch:2 1330/2980 loss:2.9241
  5254. 2023-03-16 21:34:29,442 - INFO - main.py - train - 68 - 【train】 epoch:2 1331/2980 loss:10.8236
  5255. 2023-03-16 21:34:30,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1332/2980 loss:7.7905
  5256. 2023-03-16 21:34:31,892 - INFO - main.py - train - 68 - 【train】 epoch:2 1333/2980 loss:18.0086
  5257. 2023-03-16 21:34:33,110 - INFO - main.py - train - 68 - 【train】 epoch:2 1334/2980 loss:23.4874
  5258. 2023-03-16 21:34:34,349 - INFO - main.py - train - 68 - 【train】 epoch:2 1335/2980 loss:14.2575
  5259. 2023-03-16 21:34:35,537 - INFO - main.py - train - 68 - 【train】 epoch:2 1336/2980 loss:5.7591
  5260. 2023-03-16 21:34:36,753 - INFO - main.py - train - 68 - 【train】 epoch:2 1337/2980 loss:10.8144
  5261. 2023-03-16 21:34:37,941 - INFO - main.py - train - 68 - 【train】 epoch:2 1338/2980 loss:17.7967
  5262. 2023-03-16 21:34:39,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1339/2980 loss:10.1867
  5263. 2023-03-16 21:34:40,364 - INFO - main.py - train - 68 - 【train】 epoch:2 1340/2980 loss:10.0042
  5264. 2023-03-16 21:34:41,567 - INFO - main.py - train - 68 - 【train】 epoch:2 1341/2980 loss:5.9889
  5265. 2023-03-16 21:34:42,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1342/2980 loss:8.2094
  5266. 2023-03-16 21:34:43,997 - INFO - main.py - train - 68 - 【train】 epoch:2 1343/2980 loss:23.3700
  5267. 2023-03-16 21:34:45,202 - INFO - main.py - train - 68 - 【train】 epoch:2 1344/2980 loss:33.3359
  5268. 2023-03-16 21:34:46,448 - INFO - main.py - train - 68 - 【train】 epoch:2 1345/2980 loss:12.3713
  5269. 2023-03-16 21:34:47,667 - INFO - main.py - train - 68 - 【train】 epoch:2 1346/2980 loss:8.9423
  5270. 2023-03-16 21:34:48,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1347/2980 loss:14.1378
  5271. 2023-03-16 21:34:50,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1348/2980 loss:8.2214
  5272. 2023-03-16 21:34:51,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1349/2980 loss:8.0259
  5273. 2023-03-16 21:34:52,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1350/2980 loss:6.3914
  5274. 2023-03-16 21:34:54,321 - INFO - main.py - train - 68 - 【train】 epoch:2 1351/2980 loss:12.7190
  5275. 2023-03-16 21:34:55,650 - INFO - main.py - train - 68 - 【train】 epoch:2 1352/2980 loss:3.4638
  5276. 2023-03-16 21:34:57,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1353/2980 loss:5.0209
  5277. 2023-03-16 21:34:58,349 - INFO - main.py - train - 68 - 【train】 epoch:2 1354/2980 loss:14.4373
  5278. 2023-03-16 21:34:59,674 - INFO - main.py - train - 68 - 【train】 epoch:2 1355/2980 loss:9.0832
  5279. 2023-03-16 21:35:01,005 - INFO - main.py - train - 68 - 【train】 epoch:2 1356/2980 loss:7.3633
  5280. 2023-03-16 21:35:02,302 - INFO - main.py - train - 68 - 【train】 epoch:2 1357/2980 loss:6.4021
  5281. 2023-03-16 21:35:03,653 - INFO - main.py - train - 68 - 【train】 epoch:2 1358/2980 loss:4.4316
  5282. 2023-03-16 21:35:04,995 - INFO - main.py - train - 68 - 【train】 epoch:2 1359/2980 loss:6.9391
  5283. 2023-03-16 21:35:06,426 - INFO - main.py - train - 68 - 【train】 epoch:2 1360/2980 loss:6.6329
  5284. 2023-03-16 21:35:07,758 - INFO - main.py - train - 68 - 【train】 epoch:2 1361/2980 loss:5.2503
  5285. 2023-03-16 21:35:09,078 - INFO - main.py - train - 68 - 【train】 epoch:2 1362/2980 loss:6.9053
  5286. 2023-03-16 21:35:10,351 - INFO - main.py - train - 68 - 【train】 epoch:2 1363/2980 loss:1.4683
  5287. 2023-03-16 21:35:11,672 - INFO - main.py - train - 68 - 【train】 epoch:2 1364/2980 loss:3.9011
  5288. 2023-03-16 21:35:12,999 - INFO - main.py - train - 68 - 【train】 epoch:2 1365/2980 loss:4.3293
  5289. 2023-03-16 21:35:14,303 - INFO - main.py - train - 68 - 【train】 epoch:2 1366/2980 loss:4.2992
  5290. 2023-03-16 21:35:15,601 - INFO - main.py - train - 68 - 【train】 epoch:2 1367/2980 loss:1.5219
  5291. 2023-03-16 21:35:16,898 - INFO - main.py - train - 68 - 【train】 epoch:2 1368/2980 loss:3.0923
  5292. 2023-03-16 21:35:18,187 - INFO - main.py - train - 68 - 【train】 epoch:2 1369/2980 loss:1.3260
  5293. 2023-03-16 21:35:19,495 - INFO - main.py - train - 68 - 【train】 epoch:2 1370/2980 loss:4.5070
  5294. 2023-03-16 21:35:20,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1371/2980 loss:6.0422
  5295. 2023-03-16 21:35:22,111 - INFO - main.py - train - 68 - 【train】 epoch:2 1372/2980 loss:9.0056
  5296. 2023-03-16 21:35:23,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1373/2980 loss:7.3751
  5297. 2023-03-16 21:35:24,754 - INFO - main.py - train - 68 - 【train】 epoch:2 1374/2980 loss:11.9881
  5298. 2023-03-16 21:35:26,048 - INFO - main.py - train - 68 - 【train】 epoch:2 1375/2980 loss:6.5128
  5299. 2023-03-16 21:35:27,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1376/2980 loss:3.4521
  5300. 2023-03-16 21:35:28,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1377/2980 loss:6.2817
  5301. 2023-03-16 21:35:30,041 - INFO - main.py - train - 68 - 【train】 epoch:2 1378/2980 loss:21.1292
  5302. 2023-03-16 21:35:31,369 - INFO - main.py - train - 68 - 【train】 epoch:2 1379/2980 loss:5.5861
  5303. 2023-03-16 21:35:32,654 - INFO - main.py - train - 68 - 【train】 epoch:2 1380/2980 loss:11.3056
  5304. 2023-03-16 21:35:33,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1381/2980 loss:7.4495
  5305. 2023-03-16 21:35:35,286 - INFO - main.py - train - 68 - 【train】 epoch:2 1382/2980 loss:12.3866
  5306. 2023-03-16 21:35:36,573 - INFO - main.py - train - 68 - 【train】 epoch:2 1383/2980 loss:4.2125
  5307. 2023-03-16 21:35:37,874 - INFO - main.py - train - 68 - 【train】 epoch:2 1384/2980 loss:3.0662
  5308. 2023-03-16 21:35:39,108 - INFO - main.py - train - 68 - 【train】 epoch:2 1385/2980 loss:4.6263
  5309. 2023-03-16 21:35:40,290 - INFO - main.py - train - 68 - 【train】 epoch:2 1386/2980 loss:6.9178
  5310. 2023-03-16 21:35:41,508 - INFO - main.py - train - 68 - 【train】 epoch:2 1387/2980 loss:4.4033
  5311. 2023-03-16 21:35:42,723 - INFO - main.py - train - 68 - 【train】 epoch:2 1388/2980 loss:14.1681
  5312. 2023-03-16 21:35:43,900 - INFO - main.py - train - 68 - 【train】 epoch:2 1389/2980 loss:4.1819
  5313. 2023-03-16 21:35:45,098 - INFO - main.py - train - 68 - 【train】 epoch:2 1390/2980 loss:5.2591
  5314. 2023-03-16 21:35:46,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1391/2980 loss:23.3524
  5315. 2023-03-16 21:35:47,489 - INFO - main.py - train - 68 - 【train】 epoch:2 1392/2980 loss:8.9163
  5316. 2023-03-16 21:35:48,681 - INFO - main.py - train - 68 - 【train】 epoch:2 1393/2980 loss:7.8144
  5317. 2023-03-16 21:35:49,904 - INFO - main.py - train - 68 - 【train】 epoch:2 1394/2980 loss:12.5432
  5318. 2023-03-16 21:35:51,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1395/2980 loss:4.1569
  5319. 2023-03-16 21:35:52,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1396/2980 loss:4.6851
  5320. 2023-03-16 21:35:53,511 - INFO - main.py - train - 68 - 【train】 epoch:2 1397/2980 loss:5.3859
  5321. 2023-03-16 21:35:54,688 - INFO - main.py - train - 68 - 【train】 epoch:2 1398/2980 loss:5.6046
  5322. 2023-03-16 21:35:55,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1399/2980 loss:9.5589
  5323. 2023-03-16 21:35:57,136 - INFO - main.py - train - 68 - 【train】 epoch:2 1400/2980 loss:9.3398
  5324. 2023-03-16 21:35:58,330 - INFO - main.py - train - 68 - 【train】 epoch:2 1401/2980 loss:11.4046
  5325. 2023-03-16 21:35:59,514 - INFO - main.py - train - 68 - 【train】 epoch:2 1402/2980 loss:7.5389
  5326. 2023-03-16 21:36:00,774 - INFO - main.py - train - 68 - 【train】 epoch:2 1403/2980 loss:4.5237
  5327. 2023-03-16 21:36:01,979 - INFO - main.py - train - 68 - 【train】 epoch:2 1404/2980 loss:10.7373
  5328. 2023-03-16 21:36:03,167 - INFO - main.py - train - 68 - 【train】 epoch:2 1405/2980 loss:3.0427
  5329. 2023-03-16 21:36:04,373 - INFO - main.py - train - 68 - 【train】 epoch:2 1406/2980 loss:2.3149
  5330. 2023-03-16 21:36:05,566 - INFO - main.py - train - 68 - 【train】 epoch:2 1407/2980 loss:6.6341
  5331. 2023-03-16 21:36:06,761 - INFO - main.py - train - 68 - 【train】 epoch:2 1408/2980 loss:11.1287
  5332. 2023-03-16 21:36:07,962 - INFO - main.py - train - 68 - 【train】 epoch:2 1409/2980 loss:0.4568
  5333. 2023-03-16 21:36:09,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1410/2980 loss:8.1639
  5334. 2023-03-16 21:36:10,387 - INFO - main.py - train - 68 - 【train】 epoch:2 1411/2980 loss:3.9305
  5335. 2023-03-16 21:36:11,572 - INFO - main.py - train - 68 - 【train】 epoch:2 1412/2980 loss:4.2719
  5336. 2023-03-16 21:36:12,816 - INFO - main.py - train - 68 - 【train】 epoch:2 1413/2980 loss:15.4982
  5337. 2023-03-16 21:36:13,997 - INFO - main.py - train - 68 - 【train】 epoch:2 1414/2980 loss:6.4394
  5338. 2023-03-16 21:36:15,254 - INFO - main.py - train - 68 - 【train】 epoch:2 1415/2980 loss:14.1558
  5339. 2023-03-16 21:36:16,446 - INFO - main.py - train - 68 - 【train】 epoch:2 1416/2980 loss:7.7133
  5340. 2023-03-16 21:36:17,662 - INFO - main.py - train - 68 - 【train】 epoch:2 1417/2980 loss:3.4439
  5341. 2023-03-16 21:36:18,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1418/2980 loss:8.5958
  5342. 2023-03-16 21:36:20,063 - INFO - main.py - train - 68 - 【train】 epoch:2 1419/2980 loss:5.8719
  5343. 2023-03-16 21:36:21,273 - INFO - main.py - train - 68 - 【train】 epoch:2 1420/2980 loss:17.1736
  5344. 2023-03-16 21:36:22,456 - INFO - main.py - train - 68 - 【train】 epoch:2 1421/2980 loss:7.7948
  5345. 2023-03-16 21:36:23,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1422/2980 loss:19.7102
  5346. 2023-03-16 21:36:24,882 - INFO - main.py - train - 68 - 【train】 epoch:2 1423/2980 loss:4.3234
  5347. 2023-03-16 21:36:26,085 - INFO - main.py - train - 68 - 【train】 epoch:2 1424/2980 loss:3.2527
  5348. 2023-03-16 21:36:27,283 - INFO - main.py - train - 68 - 【train】 epoch:2 1425/2980 loss:20.0218
  5349. 2023-03-16 21:36:28,453 - INFO - main.py - train - 68 - 【train】 epoch:2 1426/2980 loss:7.2606
  5350. 2023-03-16 21:36:29,646 - INFO - main.py - train - 68 - 【train】 epoch:2 1427/2980 loss:3.4223
  5351. 2023-03-16 21:36:30,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1428/2980 loss:2.1249
  5352. 2023-03-16 21:36:32,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1429/2980 loss:24.5935
  5353. 2023-03-16 21:36:33,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1430/2980 loss:2.0856
  5354. 2023-03-16 21:36:34,407 - INFO - main.py - train - 68 - 【train】 epoch:2 1431/2980 loss:19.1300
  5355. 2023-03-16 21:36:35,612 - INFO - main.py - train - 68 - 【train】 epoch:2 1432/2980 loss:26.3421
  5356. 2023-03-16 21:36:36,801 - INFO - main.py - train - 68 - 【train】 epoch:2 1433/2980 loss:10.5403
  5357. 2023-03-16 21:36:38,003 - INFO - main.py - train - 68 - 【train】 epoch:2 1434/2980 loss:6.8728
  5358. 2023-03-16 21:36:39,177 - INFO - main.py - train - 68 - 【train】 epoch:2 1435/2980 loss:8.5302
  5359. 2023-03-16 21:36:40,345 - INFO - main.py - train - 68 - 【train】 epoch:2 1436/2980 loss:2.0019
  5360. 2023-03-16 21:36:41,529 - INFO - main.py - train - 68 - 【train】 epoch:2 1437/2980 loss:3.4568
  5361. 2023-03-16 21:36:42,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1438/2980 loss:6.7516
  5362. 2023-03-16 21:36:43,880 - INFO - main.py - train - 68 - 【train】 epoch:2 1439/2980 loss:3.2615
  5363. 2023-03-16 21:36:45,033 - INFO - main.py - train - 68 - 【train】 epoch:2 1440/2980 loss:12.9076
  5364. 2023-03-16 21:36:46,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1441/2980 loss:15.6714
  5365. 2023-03-16 21:36:47,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1442/2980 loss:24.9074
  5366. 2023-03-16 21:36:48,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1443/2980 loss:29.8391
  5367. 2023-03-16 21:36:49,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1444/2980 loss:2.8508
  5368. 2023-03-16 21:36:51,017 - INFO - main.py - train - 68 - 【train】 epoch:2 1445/2980 loss:4.1556
  5369. 2023-03-16 21:36:52,277 - INFO - main.py - train - 68 - 【train】 epoch:2 1446/2980 loss:10.4155
  5370. 2023-03-16 21:36:53,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1447/2980 loss:5.2246
  5371. 2023-03-16 21:36:54,633 - INFO - main.py - train - 68 - 【train】 epoch:2 1448/2980 loss:4.9863
  5372. 2023-03-16 21:36:55,829 - INFO - main.py - train - 68 - 【train】 epoch:2 1449/2980 loss:10.8736
  5373. 2023-03-16 21:36:57,088 - INFO - main.py - train - 68 - 【train】 epoch:2 1450/2980 loss:37.3624
  5374. 2023-03-16 21:36:58,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1451/2980 loss:10.7769
  5375. 2023-03-16 21:36:59,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1452/2980 loss:2.2204
  5376. 2023-03-16 21:37:00,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1453/2980 loss:6.1006
  5377. 2023-03-16 21:37:01,891 - INFO - main.py - train - 68 - 【train】 epoch:2 1454/2980 loss:2.7149
  5378. 2023-03-16 21:37:03,101 - INFO - main.py - train - 68 - 【train】 epoch:2 1455/2980 loss:6.0150
  5379. 2023-03-16 21:37:04,299 - INFO - main.py - train - 68 - 【train】 epoch:2 1456/2980 loss:5.6269
  5380. 2023-03-16 21:37:05,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1457/2980 loss:4.5735
  5381. 2023-03-16 21:37:06,716 - INFO - main.py - train - 68 - 【train】 epoch:2 1458/2980 loss:5.1174
  5382. 2023-03-16 21:37:07,932 - INFO - main.py - train - 68 - 【train】 epoch:2 1459/2980 loss:32.0809
  5383. 2023-03-16 21:37:09,182 - INFO - main.py - train - 68 - 【train】 epoch:2 1460/2980 loss:3.5306
  5384. 2023-03-16 21:37:10,363 - INFO - main.py - train - 68 - 【train】 epoch:2 1461/2980 loss:15.6505
  5385. 2023-03-16 21:37:11,577 - INFO - main.py - train - 68 - 【train】 epoch:2 1462/2980 loss:14.3950
  5386. 2023-03-16 21:37:12,793 - INFO - main.py - train - 68 - 【train】 epoch:2 1463/2980 loss:0.4040
  5387. 2023-03-16 21:37:14,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1464/2980 loss:12.9298
  5388. 2023-03-16 21:37:15,212 - INFO - main.py - train - 68 - 【train】 epoch:2 1465/2980 loss:3.0695
  5389. 2023-03-16 21:37:16,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1466/2980 loss:11.1549
  5390. 2023-03-16 21:37:17,632 - INFO - main.py - train - 68 - 【train】 epoch:2 1467/2980 loss:7.1413
  5391. 2023-03-16 21:37:18,802 - INFO - main.py - train - 68 - 【train】 epoch:2 1468/2980 loss:2.3232
  5392. 2023-03-16 21:37:20,023 - INFO - main.py - train - 68 - 【train】 epoch:2 1469/2980 loss:7.9684
  5393. 2023-03-16 21:37:21,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1470/2980 loss:10.0671
  5394. 2023-03-16 21:37:22,425 - INFO - main.py - train - 68 - 【train】 epoch:2 1471/2980 loss:25.6235
  5395. 2023-03-16 21:37:23,616 - INFO - main.py - train - 68 - 【train】 epoch:2 1472/2980 loss:2.1980
  5396. 2023-03-16 21:37:24,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1473/2980 loss:4.6328
  5397. 2023-03-16 21:37:26,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1474/2980 loss:8.8649
  5398. 2023-03-16 21:37:27,202 - INFO - main.py - train - 68 - 【train】 epoch:2 1475/2980 loss:1.3144
  5399. 2023-03-16 21:37:28,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1476/2980 loss:4.4509
  5400. 2023-03-16 21:37:29,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1477/2980 loss:10.8373
  5401. 2023-03-16 21:37:30,824 - INFO - main.py - train - 68 - 【train】 epoch:2 1478/2980 loss:6.5888
  5402. 2023-03-16 21:37:32,067 - INFO - main.py - train - 68 - 【train】 epoch:2 1479/2980 loss:4.5621
  5403. 2023-03-16 21:37:33,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1480/2980 loss:8.4015
  5404. 2023-03-16 21:37:34,632 - INFO - main.py - train - 68 - 【train】 epoch:2 1481/2980 loss:4.3279
  5405. 2023-03-16 21:37:35,863 - INFO - main.py - train - 68 - 【train】 epoch:2 1482/2980 loss:7.0528
  5406. 2023-03-16 21:37:37,064 - INFO - main.py - train - 68 - 【train】 epoch:2 1483/2980 loss:12.8562
  5407. 2023-03-16 21:37:38,245 - INFO - main.py - train - 68 - 【train】 epoch:2 1484/2980 loss:5.1816
  5408. 2023-03-16 21:37:39,462 - INFO - main.py - train - 68 - 【train】 epoch:2 1485/2980 loss:7.1397
  5409. 2023-03-16 21:37:40,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1486/2980 loss:9.8651
  5410. 2023-03-16 21:37:41,852 - INFO - main.py - train - 68 - 【train】 epoch:2 1487/2980 loss:6.6549
  5411. 2023-03-16 21:37:43,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1488/2980 loss:5.0542
  5412. 2023-03-16 21:37:44,278 - INFO - main.py - train - 68 - 【train】 epoch:2 1489/2980 loss:2.9532
  5413. 2023-03-16 21:37:45,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1490/2980 loss:3.7446
  5414. 2023-03-16 21:37:46,691 - INFO - main.py - train - 68 - 【train】 epoch:2 1491/2980 loss:16.4262
  5415. 2023-03-16 21:37:47,887 - INFO - main.py - train - 68 - 【train】 epoch:2 1492/2980 loss:9.6074
  5416. 2023-03-16 21:37:49,062 - INFO - main.py - train - 68 - 【train】 epoch:2 1493/2980 loss:16.9088
  5417. 2023-03-16 21:37:50,276 - INFO - main.py - train - 68 - 【train】 epoch:2 1494/2980 loss:5.3994
  5418. 2023-03-16 21:37:51,470 - INFO - main.py - train - 68 - 【train】 epoch:2 1495/2980 loss:4.2582
  5419. 2023-03-16 21:37:52,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1496/2980 loss:1.0900
  5420. 2023-03-16 21:37:53,816 - INFO - main.py - train - 68 - 【train】 epoch:2 1497/2980 loss:1.7439
  5421. 2023-03-16 21:37:55,008 - INFO - main.py - train - 68 - 【train】 epoch:2 1498/2980 loss:10.4488
  5422. 2023-03-16 21:37:56,251 - INFO - main.py - train - 68 - 【train】 epoch:2 1499/2980 loss:6.5972
  5423. 2023-03-16 21:37:57,435 - INFO - main.py - train - 68 - 【train】 epoch:2 1500/2980 loss:2.6698
  5424. 2023-03-16 21:37:58,620 - INFO - main.py - train - 68 - 【train】 epoch:2 1501/2980 loss:3.7002
  5425. 2023-03-16 21:37:59,823 - INFO - main.py - train - 68 - 【train】 epoch:2 1502/2980 loss:22.0185
  5426. 2023-03-16 21:38:01,015 - INFO - main.py - train - 68 - 【train】 epoch:2 1503/2980 loss:5.7545
  5427. 2023-03-16 21:38:02,210 - INFO - main.py - train - 68 - 【train】 epoch:2 1504/2980 loss:10.5314
  5428. 2023-03-16 21:38:03,411 - INFO - main.py - train - 68 - 【train】 epoch:2 1505/2980 loss:10.2834
  5429. 2023-03-16 21:38:04,604 - INFO - main.py - train - 68 - 【train】 epoch:2 1506/2980 loss:6.7648
  5430. 2023-03-16 21:38:05,805 - INFO - main.py - train - 68 - 【train】 epoch:2 1507/2980 loss:0.7375
  5431. 2023-03-16 21:38:07,010 - INFO - main.py - train - 68 - 【train】 epoch:2 1508/2980 loss:14.2582
  5432. 2023-03-16 21:38:08,234 - INFO - main.py - train - 68 - 【train】 epoch:2 1509/2980 loss:12.4440
  5433. 2023-03-16 21:38:09,439 - INFO - main.py - train - 68 - 【train】 epoch:2 1510/2980 loss:7.4602
  5434. 2023-03-16 21:38:10,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1511/2980 loss:9.7202
  5435. 2023-03-16 21:38:11,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1512/2980 loss:0.7599
  5436. 2023-03-16 21:38:13,014 - INFO - main.py - train - 68 - 【train】 epoch:2 1513/2980 loss:6.1208
  5437. 2023-03-16 21:38:14,229 - INFO - main.py - train - 68 - 【train】 epoch:2 1514/2980 loss:6.3555
  5438. 2023-03-16 21:38:15,410 - INFO - main.py - train - 68 - 【train】 epoch:2 1515/2980 loss:5.5425
  5439. 2023-03-16 21:38:16,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1516/2980 loss:5.9202
  5440. 2023-03-16 21:38:17,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1517/2980 loss:9.0018
  5441. 2023-03-16 21:38:19,068 - INFO - main.py - train - 68 - 【train】 epoch:2 1518/2980 loss:10.1155
  5442. 2023-03-16 21:38:20,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1519/2980 loss:7.6478
  5443. 2023-03-16 21:38:21,523 - INFO - main.py - train - 68 - 【train】 epoch:2 1520/2980 loss:9.4367
  5444. 2023-03-16 21:38:22,775 - INFO - main.py - train - 68 - 【train】 epoch:2 1521/2980 loss:19.2199
  5445. 2023-03-16 21:38:23,984 - INFO - main.py - train - 68 - 【train】 epoch:2 1522/2980 loss:8.4400
  5446. 2023-03-16 21:38:25,185 - INFO - main.py - train - 68 - 【train】 epoch:2 1523/2980 loss:4.9196
  5447. 2023-03-16 21:38:26,400 - INFO - main.py - train - 68 - 【train】 epoch:2 1524/2980 loss:3.4935
  5448. 2023-03-16 21:38:27,699 - INFO - main.py - train - 68 - 【train】 epoch:2 1525/2980 loss:10.5845
  5449. 2023-03-16 21:38:28,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1526/2980 loss:7.5861
  5450. 2023-03-16 21:38:30,183 - INFO - main.py - train - 68 - 【train】 epoch:2 1527/2980 loss:5.2630
  5451. 2023-03-16 21:38:31,417 - INFO - main.py - train - 68 - 【train】 epoch:2 1528/2980 loss:8.6196
  5452. 2023-03-16 21:38:32,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1529/2980 loss:6.2829
  5453. 2023-03-16 21:38:33,866 - INFO - main.py - train - 68 - 【train】 epoch:2 1530/2980 loss:7.0320
  5454. 2023-03-16 21:38:35,060 - INFO - main.py - train - 68 - 【train】 epoch:2 1531/2980 loss:1.6202
  5455. 2023-03-16 21:38:36,398 - INFO - main.py - train - 68 - 【train】 epoch:2 1532/2980 loss:42.1277
  5456. 2023-03-16 21:38:37,585 - INFO - main.py - train - 68 - 【train】 epoch:2 1533/2980 loss:16.6208
  5457. 2023-03-16 21:38:38,796 - INFO - main.py - train - 68 - 【train】 epoch:2 1534/2980 loss:3.1652
  5458. 2023-03-16 21:38:40,009 - INFO - main.py - train - 68 - 【train】 epoch:2 1535/2980 loss:5.7317
  5459. 2023-03-16 21:38:41,258 - INFO - main.py - train - 68 - 【train】 epoch:2 1536/2980 loss:4.7012
  5460. 2023-03-16 21:38:42,487 - INFO - main.py - train - 68 - 【train】 epoch:2 1537/2980 loss:1.5822
  5461. 2023-03-16 21:38:43,725 - INFO - main.py - train - 68 - 【train】 epoch:2 1538/2980 loss:7.7928
  5462. 2023-03-16 21:38:45,062 - INFO - main.py - train - 68 - 【train】 epoch:2 1539/2980 loss:0.3735
  5463. 2023-03-16 21:38:46,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1540/2980 loss:6.7250
  5464. 2023-03-16 21:38:47,633 - INFO - main.py - train - 68 - 【train】 epoch:2 1541/2980 loss:1.8695
  5465. 2023-03-16 21:38:48,822 - INFO - main.py - train - 68 - 【train】 epoch:2 1542/2980 loss:15.3184
  5466. 2023-03-16 21:38:50,016 - INFO - main.py - train - 68 - 【train】 epoch:2 1543/2980 loss:9.3845
  5467. 2023-03-16 21:38:51,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1544/2980 loss:12.4501
  5468. 2023-03-16 21:38:52,418 - INFO - main.py - train - 68 - 【train】 epoch:2 1545/2980 loss:3.1117
  5469. 2023-03-16 21:38:53,619 - INFO - main.py - train - 68 - 【train】 epoch:2 1546/2980 loss:6.0340
  5470. 2023-03-16 21:38:54,788 - INFO - main.py - train - 68 - 【train】 epoch:2 1547/2980 loss:12.6368
  5471. 2023-03-16 21:38:56,059 - INFO - main.py - train - 68 - 【train】 epoch:2 1548/2980 loss:10.3989
  5472. 2023-03-16 21:38:57,253 - INFO - main.py - train - 68 - 【train】 epoch:2 1549/2980 loss:7.6922
  5473. 2023-03-16 21:38:58,482 - INFO - main.py - train - 68 - 【train】 epoch:2 1550/2980 loss:11.4438
  5474. 2023-03-16 21:39:08,447 - INFO - main.py - train - 68 - 【train】 epoch:2 1551/2980 loss:12.5599
  5475. 2023-03-16 21:39:09,663 - INFO - main.py - train - 68 - 【train】 epoch:2 1552/2980 loss:10.6456
  5476. 2023-03-16 21:39:10,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1553/2980 loss:0.7569
  5477. 2023-03-16 21:39:12,113 - INFO - main.py - train - 68 - 【train】 epoch:2 1554/2980 loss:7.1520
  5478. 2023-03-16 21:39:13,302 - INFO - main.py - train - 68 - 【train】 epoch:2 1555/2980 loss:17.4165
  5479. 2023-03-16 21:39:14,510 - INFO - main.py - train - 68 - 【train】 epoch:2 1556/2980 loss:51.5392
  5480. 2023-03-16 21:39:15,724 - INFO - main.py - train - 68 - 【train】 epoch:2 1557/2980 loss:5.9367
  5481. 2023-03-16 21:39:17,021 - INFO - main.py - train - 68 - 【train】 epoch:2 1558/2980 loss:1.8951
  5482. 2023-03-16 21:39:18,282 - INFO - main.py - train - 68 - 【train】 epoch:2 1559/2980 loss:2.2204
  5483. 2023-03-16 21:39:19,547 - INFO - main.py - train - 68 - 【train】 epoch:2 1560/2980 loss:4.2002
  5484. 2023-03-16 21:39:20,812 - INFO - main.py - train - 68 - 【train】 epoch:2 1561/2980 loss:9.4125
  5485. 2023-03-16 21:39:22,322 - INFO - main.py - train - 68 - 【train】 epoch:2 1562/2980 loss:1.2759
  5486. 2023-03-16 21:39:23,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1563/2980 loss:5.2563
  5487. 2023-03-16 21:39:24,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1564/2980 loss:17.9659
  5488. 2023-03-16 21:39:26,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1565/2980 loss:13.6612
  5489. 2023-03-16 21:39:27,972 - INFO - main.py - train - 68 - 【train】 epoch:2 1566/2980 loss:1.6733
  5490. 2023-03-16 21:39:29,519 - INFO - main.py - train - 68 - 【train】 epoch:2 1567/2980 loss:21.9406
  5491. 2023-03-16 21:39:30,821 - INFO - main.py - train - 68 - 【train】 epoch:2 1568/2980 loss:19.2929
  5492. 2023-03-16 21:39:32,023 - INFO - main.py - train - 68 - 【train】 epoch:2 1569/2980 loss:12.6861
  5493. 2023-03-16 21:39:33,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1570/2980 loss:3.6480
  5494. 2023-03-16 21:39:34,501 - INFO - main.py - train - 68 - 【train】 epoch:2 1571/2980 loss:5.6568
  5495. 2023-03-16 21:39:35,793 - INFO - main.py - train - 68 - 【train】 epoch:2 1572/2980 loss:12.7883
  5496. 2023-03-16 21:39:36,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1573/2980 loss:6.9040
  5497. 2023-03-16 21:39:38,206 - INFO - main.py - train - 68 - 【train】 epoch:2 1574/2980 loss:3.7994
  5498. 2023-03-16 21:39:39,481 - INFO - main.py - train - 68 - 【train】 epoch:2 1575/2980 loss:14.5773
  5499. 2023-03-16 21:39:40,696 - INFO - main.py - train - 68 - 【train】 epoch:2 1576/2980 loss:12.7517
  5500. 2023-03-16 21:39:41,953 - INFO - main.py - train - 68 - 【train】 epoch:2 1577/2980 loss:3.8571
  5501. 2023-03-16 21:39:43,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1578/2980 loss:7.7538
  5502. 2023-03-16 21:39:44,525 - INFO - main.py - train - 68 - 【train】 epoch:2 1579/2980 loss:10.2275
  5503. 2023-03-16 21:39:45,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1580/2980 loss:16.5552
  5504. 2023-03-16 21:39:47,186 - INFO - main.py - train - 68 - 【train】 epoch:2 1581/2980 loss:6.7296
  5505. 2023-03-16 21:39:48,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1582/2980 loss:8.2315
  5506. 2023-03-16 21:39:49,789 - INFO - main.py - train - 68 - 【train】 epoch:2 1583/2980 loss:5.7882
  5507. 2023-03-16 21:39:51,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1584/2980 loss:8.7615
  5508. 2023-03-16 21:39:52,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1585/2980 loss:11.8003
  5509. 2023-03-16 21:39:53,592 - INFO - main.py - train - 68 - 【train】 epoch:2 1586/2980 loss:3.7517
  5510. 2023-03-16 21:39:54,840 - INFO - main.py - train - 68 - 【train】 epoch:2 1587/2980 loss:8.2974
  5511. 2023-03-16 21:39:56,069 - INFO - main.py - train - 68 - 【train】 epoch:2 1588/2980 loss:1.3213
  5512. 2023-03-16 21:39:57,285 - INFO - main.py - train - 68 - 【train】 epoch:2 1589/2980 loss:15.9650
  5513. 2023-03-16 21:39:58,497 - INFO - main.py - train - 68 - 【train】 epoch:2 1590/2980 loss:0.2657
  5514. 2023-03-16 21:39:59,790 - INFO - main.py - train - 68 - 【train】 epoch:2 1591/2980 loss:2.4606
  5515. 2023-03-16 21:40:01,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1592/2980 loss:10.2901
  5516. 2023-03-16 21:40:02,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1593/2980 loss:2.1300
  5517. 2023-03-16 21:40:03,439 - INFO - main.py - train - 68 - 【train】 epoch:2 1594/2980 loss:2.4307
  5518. 2023-03-16 21:40:04,638 - INFO - main.py - train - 68 - 【train】 epoch:2 1595/2980 loss:9.2183
  5519. 2023-03-16 21:40:05,846 - INFO - main.py - train - 68 - 【train】 epoch:2 1596/2980 loss:7.2681
  5520. 2023-03-16 21:40:07,076 - INFO - main.py - train - 68 - 【train】 epoch:2 1597/2980 loss:4.0268
  5521. 2023-03-16 21:40:08,281 - INFO - main.py - train - 68 - 【train】 epoch:2 1598/2980 loss:11.8105
  5522. 2023-03-16 21:40:09,465 - INFO - main.py - train - 68 - 【train】 epoch:2 1599/2980 loss:1.1980
  5523. 2023-03-16 21:40:10,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1600/2980 loss:9.1157
  5524. 2023-03-16 21:40:11,875 - INFO - main.py - train - 68 - 【train】 epoch:2 1601/2980 loss:10.8676
  5525. 2023-03-16 21:40:13,088 - INFO - main.py - train - 68 - 【train】 epoch:2 1602/2980 loss:4.2872
  5526. 2023-03-16 21:40:14,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1603/2980 loss:3.6594
  5527. 2023-03-16 21:40:15,490 - INFO - main.py - train - 68 - 【train】 epoch:2 1604/2980 loss:10.7616
  5528. 2023-03-16 21:40:16,679 - INFO - main.py - train - 68 - 【train】 epoch:2 1605/2980 loss:3.9501
  5529. 2023-03-16 21:40:17,932 - INFO - main.py - train - 68 - 【train】 epoch:2 1606/2980 loss:19.8903
  5530. 2023-03-16 21:40:19,123 - INFO - main.py - train - 68 - 【train】 epoch:2 1607/2980 loss:8.6595
  5531. 2023-03-16 21:40:20,362 - INFO - main.py - train - 68 - 【train】 epoch:2 1608/2980 loss:16.4792
  5532. 2023-03-16 21:40:21,589 - INFO - main.py - train - 68 - 【train】 epoch:2 1609/2980 loss:16.9765
  5533. 2023-03-16 21:40:22,799 - INFO - main.py - train - 68 - 【train】 epoch:2 1610/2980 loss:1.3727
  5534. 2023-03-16 21:40:24,036 - INFO - main.py - train - 68 - 【train】 epoch:2 1611/2980 loss:4.2829
  5535. 2023-03-16 21:40:25,257 - INFO - main.py - train - 68 - 【train】 epoch:2 1612/2980 loss:4.1519
  5536. 2023-03-16 21:40:26,485 - INFO - main.py - train - 68 - 【train】 epoch:2 1613/2980 loss:9.4244
  5537. 2023-03-16 21:40:27,731 - INFO - main.py - train - 68 - 【train】 epoch:2 1614/2980 loss:13.7332
  5538. 2023-03-16 21:40:28,967 - INFO - main.py - train - 68 - 【train】 epoch:2 1615/2980 loss:8.2995
  5539. 2023-03-16 21:40:30,232 - INFO - main.py - train - 68 - 【train】 epoch:2 1616/2980 loss:17.4182
  5540. 2023-03-16 21:40:31,463 - INFO - main.py - train - 68 - 【train】 epoch:2 1617/2980 loss:1.8194
  5541. 2023-03-16 21:40:32,733 - INFO - main.py - train - 68 - 【train】 epoch:2 1618/2980 loss:5.6195
  5542. 2023-03-16 21:40:33,976 - INFO - main.py - train - 68 - 【train】 epoch:2 1619/2980 loss:15.4573
  5543. 2023-03-16 21:40:35,164 - INFO - main.py - train - 68 - 【train】 epoch:2 1620/2980 loss:5.2314
  5544. 2023-03-16 21:40:36,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1621/2980 loss:19.0799
  5545. 2023-03-16 21:40:37,634 - INFO - main.py - train - 68 - 【train】 epoch:2 1622/2980 loss:13.3515
  5546. 2023-03-16 21:40:38,819 - INFO - main.py - train - 68 - 【train】 epoch:2 1623/2980 loss:7.3194
  5547. 2023-03-16 21:40:40,026 - INFO - main.py - train - 68 - 【train】 epoch:2 1624/2980 loss:13.1020
  5548. 2023-03-16 21:40:41,220 - INFO - main.py - train - 68 - 【train】 epoch:2 1625/2980 loss:8.4088
  5549. 2023-03-16 21:40:42,430 - INFO - main.py - train - 68 - 【train】 epoch:2 1626/2980 loss:6.4772
  5550. 2023-03-16 21:40:43,662 - INFO - main.py - train - 68 - 【train】 epoch:2 1627/2980 loss:4.4839
  5551. 2023-03-16 21:40:44,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1628/2980 loss:2.1226
  5552. 2023-03-16 21:40:46,109 - INFO - main.py - train - 68 - 【train】 epoch:2 1629/2980 loss:38.4936
  5553. 2023-03-16 21:40:47,327 - INFO - main.py - train - 68 - 【train】 epoch:2 1630/2980 loss:8.3795
  5554. 2023-03-16 21:40:48,561 - INFO - main.py - train - 68 - 【train】 epoch:2 1631/2980 loss:18.2939
  5555. 2023-03-16 21:40:49,782 - INFO - main.py - train - 68 - 【train】 epoch:2 1632/2980 loss:1.6979
  5556. 2023-03-16 21:40:51,019 - INFO - main.py - train - 68 - 【train】 epoch:2 1633/2980 loss:14.5093
  5557. 2023-03-16 21:40:52,233 - INFO - main.py - train - 68 - 【train】 epoch:2 1634/2980 loss:7.9113
  5558. 2023-03-16 21:40:53,457 - INFO - main.py - train - 68 - 【train】 epoch:2 1635/2980 loss:8.0577
  5559. 2023-03-16 21:40:54,667 - INFO - main.py - train - 68 - 【train】 epoch:2 1636/2980 loss:12.1738
  5560. 2023-03-16 21:40:55,906 - INFO - main.py - train - 68 - 【train】 epoch:2 1637/2980 loss:12.9635
  5561. 2023-03-16 21:40:57,089 - INFO - main.py - train - 68 - 【train】 epoch:2 1638/2980 loss:6.2461
  5562. 2023-03-16 21:40:58,306 - INFO - main.py - train - 68 - 【train】 epoch:2 1639/2980 loss:10.3045
  5563. 2023-03-16 21:40:59,532 - INFO - main.py - train - 68 - 【train】 epoch:2 1640/2980 loss:8.4713
  5564. 2023-03-16 21:41:00,745 - INFO - main.py - train - 68 - 【train】 epoch:2 1641/2980 loss:8.8176
  5565. 2023-03-16 21:41:01,981 - INFO - main.py - train - 68 - 【train】 epoch:2 1642/2980 loss:4.1533
  5566. 2023-03-16 21:41:03,221 - INFO - main.py - train - 68 - 【train】 epoch:2 1643/2980 loss:13.7101
  5567. 2023-03-16 21:41:04,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1644/2980 loss:7.5240
  5568. 2023-03-16 21:41:05,664 - INFO - main.py - train - 68 - 【train】 epoch:2 1645/2980 loss:10.2337
  5569. 2023-03-16 21:41:06,871 - INFO - main.py - train - 68 - 【train】 epoch:2 1646/2980 loss:14.7218
  5570. 2023-03-16 21:41:08,093 - INFO - main.py - train - 68 - 【train】 epoch:2 1647/2980 loss:8.3487
  5571. 2023-03-16 21:41:09,326 - INFO - main.py - train - 68 - 【train】 epoch:2 1648/2980 loss:19.5372
  5572. 2023-03-16 21:41:10,526 - INFO - main.py - train - 68 - 【train】 epoch:2 1649/2980 loss:2.0320
  5573. 2023-03-16 21:41:11,763 - INFO - main.py - train - 68 - 【train】 epoch:2 1650/2980 loss:9.5490
  5574. 2023-03-16 21:41:12,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1651/2980 loss:4.1318
  5575. 2023-03-16 21:41:14,147 - INFO - main.py - train - 68 - 【train】 epoch:2 1652/2980 loss:7.3332
  5576. 2023-03-16 21:41:15,339 - INFO - main.py - train - 68 - 【train】 epoch:2 1653/2980 loss:8.9889
  5577. 2023-03-16 21:41:16,569 - INFO - main.py - train - 68 - 【train】 epoch:2 1654/2980 loss:4.0222
  5578. 2023-03-16 21:41:17,798 - INFO - main.py - train - 68 - 【train】 epoch:2 1655/2980 loss:6.6236
  5579. 2023-03-16 21:41:19,001 - INFO - main.py - train - 68 - 【train】 epoch:2 1656/2980 loss:16.2100
  5580. 2023-03-16 21:41:20,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1657/2980 loss:11.1165
  5581. 2023-03-16 21:41:21,420 - INFO - main.py - train - 68 - 【train】 epoch:2 1658/2980 loss:12.3628
  5582. 2023-03-16 21:41:22,666 - INFO - main.py - train - 68 - 【train】 epoch:2 1659/2980 loss:8.0624
  5583. 2023-03-16 21:41:23,926 - INFO - main.py - train - 68 - 【train】 epoch:2 1660/2980 loss:1.8607
  5584. 2023-03-16 21:41:25,225 - INFO - main.py - train - 68 - 【train】 epoch:2 1661/2980 loss:2.2102
  5585. 2023-03-16 21:41:26,486 - INFO - main.py - train - 68 - 【train】 epoch:2 1662/2980 loss:6.8263
  5586. 2023-03-16 21:41:27,728 - INFO - main.py - train - 68 - 【train】 epoch:2 1663/2980 loss:10.7143
  5587. 2023-03-16 21:41:28,954 - INFO - main.py - train - 68 - 【train】 epoch:2 1664/2980 loss:0.8359
  5588. 2023-03-16 21:41:30,172 - INFO - main.py - train - 68 - 【train】 epoch:2 1665/2980 loss:10.4350
  5589. 2023-03-16 21:41:31,391 - INFO - main.py - train - 68 - 【train】 epoch:2 1666/2980 loss:2.5668
  5590. 2023-03-16 21:41:32,624 - INFO - main.py - train - 68 - 【train】 epoch:2 1667/2980 loss:3.7532
  5591. 2023-03-16 21:41:33,858 - INFO - main.py - train - 68 - 【train】 epoch:2 1668/2980 loss:6.7285
  5592. 2023-03-16 21:41:35,089 - INFO - main.py - train - 68 - 【train】 epoch:2 1669/2980 loss:5.7676
  5593. 2023-03-16 21:41:36,319 - INFO - main.py - train - 68 - 【train】 epoch:2 1670/2980 loss:6.0943
  5594. 2023-03-16 21:41:37,542 - INFO - main.py - train - 68 - 【train】 epoch:2 1671/2980 loss:1.1977
  5595. 2023-03-16 21:41:38,744 - INFO - main.py - train - 68 - 【train】 epoch:2 1672/2980 loss:2.2128
  5596. 2023-03-16 21:41:39,971 - INFO - main.py - train - 68 - 【train】 epoch:2 1673/2980 loss:17.5163
  5597. 2023-03-16 21:41:41,169 - INFO - main.py - train - 68 - 【train】 epoch:2 1674/2980 loss:4.9199
  5598. 2023-03-16 21:41:42,370 - INFO - main.py - train - 68 - 【train】 epoch:2 1675/2980 loss:4.1711
  5599. 2023-03-16 21:41:43,616 - INFO - main.py - train - 68 - 【train】 epoch:2 1676/2980 loss:13.6015
  5600. 2023-03-16 21:41:44,801 - INFO - main.py - train - 68 - 【train】 epoch:2 1677/2980 loss:1.8389
  5601. 2023-03-16 21:41:46,022 - INFO - main.py - train - 68 - 【train】 epoch:2 1678/2980 loss:0.6212
  5602. 2023-03-16 21:41:47,223 - INFO - main.py - train - 68 - 【train】 epoch:2 1679/2980 loss:4.5445
  5603. 2023-03-16 21:41:48,451 - INFO - main.py - train - 68 - 【train】 epoch:2 1680/2980 loss:2.6983
  5604. 2023-03-16 21:41:49,651 - INFO - main.py - train - 68 - 【train】 epoch:2 1681/2980 loss:0.9039
  5605. 2023-03-16 21:41:50,865 - INFO - main.py - train - 68 - 【train】 epoch:2 1682/2980 loss:0.3676
  5606. 2023-03-16 21:41:52,094 - INFO - main.py - train - 68 - 【train】 epoch:2 1683/2980 loss:32.2471
  5607. 2023-03-16 21:41:53,331 - INFO - main.py - train - 68 - 【train】 epoch:2 1684/2980 loss:19.0634
  5608. 2023-03-16 21:41:54,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1685/2980 loss:10.6535
  5609. 2023-03-16 21:41:55,764 - INFO - main.py - train - 68 - 【train】 epoch:2 1686/2980 loss:3.0061
  5610. 2023-03-16 21:41:56,994 - INFO - main.py - train - 68 - 【train】 epoch:2 1687/2980 loss:6.3611
  5611. 2023-03-16 21:41:58,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1688/2980 loss:3.4445
  5612. 2023-03-16 21:41:59,409 - INFO - main.py - train - 68 - 【train】 epoch:2 1689/2980 loss:6.9204
  5613. 2023-03-16 21:42:00,618 - INFO - main.py - train - 68 - 【train】 epoch:2 1690/2980 loss:6.9636
  5614. 2023-03-16 21:42:01,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1691/2980 loss:4.1495
  5615. 2023-03-16 21:42:03,049 - INFO - main.py - train - 68 - 【train】 epoch:2 1692/2980 loss:10.3122
  5616. 2023-03-16 21:42:04,289 - INFO - main.py - train - 68 - 【train】 epoch:2 1693/2980 loss:25.1015
  5617. 2023-03-16 21:42:05,641 - INFO - main.py - train - 68 - 【train】 epoch:2 1694/2980 loss:13.9923
  5618. 2023-03-16 21:42:06,893 - INFO - main.py - train - 68 - 【train】 epoch:2 1695/2980 loss:0.2489
  5619. 2023-03-16 21:42:08,392 - INFO - main.py - train - 68 - 【train】 epoch:2 1696/2980 loss:3.4503
  5620. 2023-03-16 21:42:10,087 - INFO - main.py - train - 68 - 【train】 epoch:2 1697/2980 loss:8.1821
  5621. 2023-03-16 21:42:12,028 - INFO - main.py - train - 68 - 【train】 epoch:2 1698/2980 loss:19.9278
  5622. 2023-03-16 21:42:13,833 - INFO - main.py - train - 68 - 【train】 epoch:2 1699/2980 loss:2.1960
  5623. 2023-03-16 21:42:15,677 - INFO - main.py - train - 68 - 【train】 epoch:2 1700/2980 loss:4.5936
  5624. 2023-03-16 21:42:17,511 - INFO - main.py - train - 68 - 【train】 epoch:2 1701/2980 loss:2.3854
  5625. 2023-03-16 21:42:19,453 - INFO - main.py - train - 68 - 【train】 epoch:2 1702/2980 loss:2.4166
  5626. 2023-03-16 21:42:21,310 - INFO - main.py - train - 68 - 【train】 epoch:2 1703/2980 loss:13.8965
  5627. 2023-03-16 21:42:23,434 - INFO - main.py - train - 68 - 【train】 epoch:2 1704/2980 loss:24.8208
  5628. 2023-03-16 21:42:25,460 - INFO - main.py - train - 68 - 【train】 epoch:2 1705/2980 loss:7.1987
  5629. 2023-03-16 21:42:27,615 - INFO - main.py - train - 68 - 【train】 epoch:2 1706/2980 loss:4.2975
  5630. 2023-03-16 21:42:29,559 - INFO - main.py - train - 68 - 【train】 epoch:2 1707/2980 loss:20.1362
  5631. 2023-03-16 21:42:31,047 - INFO - main.py - train - 68 - 【train】 epoch:2 1708/2980 loss:11.9878
  5632. 2023-03-16 21:42:32,215 - INFO - main.py - train - 68 - 【train】 epoch:2 1709/2980 loss:2.0897
  5633. 2023-03-16 21:42:33,427 - INFO - main.py - train - 68 - 【train】 epoch:2 1710/2980 loss:11.2796
  5634. 2023-03-16 21:42:34,614 - INFO - main.py - train - 68 - 【train】 epoch:2 1711/2980 loss:8.6273
  5635. 2023-03-16 21:42:35,847 - INFO - main.py - train - 68 - 【train】 epoch:2 1712/2980 loss:6.6649
  5636. 2023-03-16 21:42:37,034 - INFO - main.py - train - 68 - 【train】 epoch:2 1713/2980 loss:1.7405
  5637. 2023-03-16 21:42:38,251 - INFO - main.py - train - 68 - 【train】 epoch:2 1714/2980 loss:5.7141
  5638. 2023-03-16 21:42:39,438 - INFO - main.py - train - 68 - 【train】 epoch:2 1715/2980 loss:7.2124
  5639. 2023-03-16 21:42:40,642 - INFO - main.py - train - 68 - 【train】 epoch:2 1716/2980 loss:5.8527
  5640. 2023-03-16 21:42:41,815 - INFO - main.py - train - 68 - 【train】 epoch:2 1717/2980 loss:0.6802
  5641. 2023-03-16 21:42:43,013 - INFO - main.py - train - 68 - 【train】 epoch:2 1718/2980 loss:4.9435
  5642. 2023-03-16 21:42:44,211 - INFO - main.py - train - 68 - 【train】 epoch:2 1719/2980 loss:1.5695
  5643. 2023-03-16 21:42:45,393 - INFO - main.py - train - 68 - 【train】 epoch:2 1720/2980 loss:1.6994
  5644. 2023-03-16 21:42:46,594 - INFO - main.py - train - 68 - 【train】 epoch:2 1721/2980 loss:16.6909
  5645. 2023-03-16 21:42:47,809 - INFO - main.py - train - 68 - 【train】 epoch:2 1722/2980 loss:0.5789
  5646. 2023-03-16 21:42:49,007 - INFO - main.py - train - 68 - 【train】 epoch:2 1723/2980 loss:8.8275
  5647. 2023-03-16 21:42:50,209 - INFO - main.py - train - 68 - 【train】 epoch:2 1724/2980 loss:9.6016
  5648. 2023-03-16 21:42:51,437 - INFO - main.py - train - 68 - 【train】 epoch:2 1725/2980 loss:10.9300
  5649. 2023-03-16 21:42:52,656 - INFO - main.py - train - 68 - 【train】 epoch:2 1726/2980 loss:25.3981
  5650. 2023-03-16 21:42:53,875 - INFO - main.py - train - 68 - 【train】 epoch:2 1727/2980 loss:16.8872
  5651. 2023-03-16 21:42:55,054 - INFO - main.py - train - 68 - 【train】 epoch:2 1728/2980 loss:8.8804
  5652. 2023-03-16 21:42:56,262 - INFO - main.py - train - 68 - 【train】 epoch:2 1729/2980 loss:2.9993
  5653. 2023-03-16 21:42:57,464 - INFO - main.py - train - 68 - 【train】 epoch:2 1730/2980 loss:15.7848
  5654. 2023-03-16 21:42:58,663 - INFO - main.py - train - 68 - 【train】 epoch:2 1731/2980 loss:6.0017
  5655. 2023-03-16 21:42:59,853 - INFO - main.py - train - 68 - 【train】 epoch:2 1732/2980 loss:5.8646
  5656. 2023-03-16 21:43:01,068 - INFO - main.py - train - 68 - 【train】 epoch:2 1733/2980 loss:4.0753
  5657. 2023-03-16 21:43:02,323 - INFO - main.py - train - 68 - 【train】 epoch:2 1734/2980 loss:6.1111
  5658. 2023-03-16 21:43:03,547 - INFO - main.py - train - 68 - 【train】 epoch:2 1735/2980 loss:6.0637
  5659. 2023-03-16 21:43:04,737 - INFO - main.py - train - 68 - 【train】 epoch:2 1736/2980 loss:3.1127
  5660. 2023-03-16 21:43:05,973 - INFO - main.py - train - 68 - 【train】 epoch:2 1737/2980 loss:4.3568
  5661. 2023-03-16 21:43:07,191 - INFO - main.py - train - 68 - 【train】 epoch:2 1738/2980 loss:15.3804
  5662. 2023-03-16 21:43:08,377 - INFO - main.py - train - 68 - 【train】 epoch:2 1739/2980 loss:2.1153
  5663. 2023-03-16 21:43:09,623 - INFO - main.py - train - 68 - 【train】 epoch:2 1740/2980 loss:12.0602
  5664. 2023-03-16 21:43:10,851 - INFO - main.py - train - 68 - 【train】 epoch:2 1741/2980 loss:7.9086
  5665. 2023-03-16 21:43:12,057 - INFO - main.py - train - 68 - 【train】 epoch:2 1742/2980 loss:9.3668
  5666. 2023-03-16 21:43:13,293 - INFO - main.py - train - 68 - 【train】 epoch:2 1743/2980 loss:24.8995
  5667. 2023-03-16 21:43:14,492 - INFO - main.py - train - 68 - 【train】 epoch:2 1744/2980 loss:2.1512
  5668. 2023-03-16 21:43:15,731 - INFO - main.py - train - 68 - 【train】 epoch:2 1745/2980 loss:5.3399
  5669. 2023-03-16 21:43:16,943 - INFO - main.py - train - 68 - 【train】 epoch:2 1746/2980 loss:9.2086
  5670. 2023-03-16 21:43:18,231 - INFO - main.py - train - 68 - 【train】 epoch:2 1747/2980 loss:20.9867
  5671. 2023-03-16 21:43:19,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1748/2980 loss:9.7745
  5672. 2023-03-16 21:43:20,637 - INFO - main.py - train - 68 - 【train】 epoch:2 1749/2980 loss:8.0425
  5673. 2023-03-16 21:43:21,867 - INFO - main.py - train - 68 - 【train】 epoch:2 1750/2980 loss:8.6209
  5674. 2023-03-16 21:43:23,092 - INFO - main.py - train - 68 - 【train】 epoch:2 1751/2980 loss:5.6769
  5675. 2023-03-16 21:43:24,311 - INFO - main.py - train - 68 - 【train】 epoch:2 1752/2980 loss:8.8108
  5676. 2023-03-16 21:43:25,536 - INFO - main.py - train - 68 - 【train】 epoch:2 1753/2980 loss:2.1926
  5677. 2023-03-16 21:43:26,721 - INFO - main.py - train - 68 - 【train】 epoch:2 1754/2980 loss:4.3141
  5678. 2023-03-16 21:43:27,952 - INFO - main.py - train - 68 - 【train】 epoch:2 1755/2980 loss:12.4739
  5679. 2023-03-16 21:43:29,153 - INFO - main.py - train - 68 - 【train】 epoch:2 1756/2980 loss:11.9666
  5680. 2023-03-16 21:43:30,385 - INFO - main.py - train - 68 - 【train】 epoch:2 1757/2980 loss:4.3524
  5681. 2023-03-16 21:43:31,648 - INFO - main.py - train - 68 - 【train】 epoch:2 1758/2980 loss:21.2548
  5682. 2023-03-16 21:43:32,857 - INFO - main.py - train - 68 - 【train】 epoch:2 1759/2980 loss:7.5854
  5683. 2023-03-16 21:43:34,079 - INFO - main.py - train - 68 - 【train】 epoch:2 1760/2980 loss:14.6201
  5684. 2023-03-16 21:43:35,284 - INFO - main.py - train - 68 - 【train】 epoch:2 1761/2980 loss:0.3228
  5685. 2023-03-16 21:43:36,469 - INFO - main.py - train - 68 - 【train】 epoch:2 1762/2980 loss:15.2354
  5686. 2023-03-16 21:43:37,693 - INFO - main.py - train - 68 - 【train】 epoch:2 1763/2980 loss:14.2401
  5687. 2023-03-16 21:43:38,897 - INFO - main.py - train - 68 - 【train】 epoch:2 1764/2980 loss:9.8944
  5688. 2023-03-16 21:43:40,117 - INFO - main.py - train - 68 - 【train】 epoch:2 1765/2980 loss:22.9268
  5689. 2023-03-16 21:43:41,319 - INFO - main.py - train - 68 - 【train】 epoch:2 1766/2980 loss:7.3416
  5690. 2023-03-16 21:43:42,533 - INFO - main.py - train - 68 - 【train】 epoch:2 1767/2980 loss:1.8814
  5691. 2023-03-16 21:43:43,742 - INFO - main.py - train - 68 - 【train】 epoch:2 1768/2980 loss:1.2381
  5692. 2023-03-16 21:43:44,931 - INFO - main.py - train - 68 - 【train】 epoch:2 1769/2980 loss:4.6473
  5693. 2023-03-16 21:43:46,145 - INFO - main.py - train - 68 - 【train】 epoch:2 1770/2980 loss:1.4571
  5694. 2023-03-16 21:43:47,365 - INFO - main.py - train - 68 - 【train】 epoch:2 1771/2980 loss:4.9091
  5695. 2023-03-16 21:43:48,563 - INFO - main.py - train - 68 - 【train】 epoch:2 1772/2980 loss:11.3973
  5696. 2023-03-16 21:43:49,771 - INFO - main.py - train - 68 - 【train】 epoch:2 1773/2980 loss:2.7035
  5697. 2023-03-16 21:43:51,018 - INFO - main.py - train - 68 - 【train】 epoch:2 1774/2980 loss:19.1471
  5698. 2023-03-16 21:43:52,204 - INFO - main.py - train - 68 - 【train】 epoch:2 1775/2980 loss:3.5060
  5699. 2023-03-16 21:43:53,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1776/2980 loss:6.7220
  5700. 2023-03-16 21:43:54,593 - INFO - main.py - train - 68 - 【train】 epoch:2 1777/2980 loss:1.8363
  5701. 2023-03-16 21:43:55,803 - INFO - main.py - train - 68 - 【train】 epoch:2 1778/2980 loss:2.9790
  5702. 2023-03-16 21:43:56,999 - INFO - main.py - train - 68 - 【train】 epoch:2 1779/2980 loss:8.4513
  5703. 2023-03-16 21:43:58,196 - INFO - main.py - train - 68 - 【train】 epoch:2 1780/2980 loss:1.4384
  5704. 2023-03-16 21:43:59,419 - INFO - main.py - train - 68 - 【train】 epoch:2 1781/2980 loss:5.2046
  5705. 2023-03-16 21:44:00,689 - INFO - main.py - train - 68 - 【train】 epoch:2 1782/2980 loss:12.5262
  5706. 2023-03-16 21:44:02,006 - INFO - main.py - train - 68 - 【train】 epoch:2 1783/2980 loss:1.4924
  5707. 2023-03-16 21:44:03,264 - INFO - main.py - train - 68 - 【train】 epoch:2 1784/2980 loss:13.8119
  5708. 2023-03-16 21:44:04,456 - INFO - main.py - train - 68 - 【train】 epoch:2 1785/2980 loss:1.0026
  5709. 2023-03-16 21:44:05,694 - INFO - main.py - train - 68 - 【train】 epoch:2 1786/2980 loss:10.7723
  5710. 2023-03-16 21:44:06,909 - INFO - main.py - train - 68 - 【train】 epoch:2 1787/2980 loss:3.1448
  5711. 2023-03-16 21:44:18,816 - INFO - main.py - train - 68 - 【train】 epoch:3 1788/2980 loss:8.1536
  5712. 2023-03-16 21:44:20,081 - INFO - main.py - train - 68 - 【train】 epoch:3 1789/2980 loss:2.8229
  5713. 2023-03-16 21:44:21,387 - INFO - main.py - train - 68 - 【train】 epoch:3 1790/2980 loss:8.6674
  5714. 2023-03-16 21:44:22,588 - INFO - main.py - train - 68 - 【train】 epoch:3 1791/2980 loss:5.1833
  5715. 2023-03-16 21:44:23,778 - INFO - main.py - train - 68 - 【train】 epoch:3 1792/2980 loss:3.8817
  5716. 2023-03-16 21:44:24,948 - INFO - main.py - train - 68 - 【train】 epoch:3 1793/2980 loss:4.9704
  5717. 2023-03-16 21:44:26,180 - INFO - main.py - train - 68 - 【train】 epoch:3 1794/2980 loss:6.4259
  5718. 2023-03-16 21:44:27,417 - INFO - main.py - train - 68 - 【train】 epoch:3 1795/2980 loss:5.5717
  5719. 2023-03-16 21:44:28,619 - INFO - main.py - train - 68 - 【train】 epoch:3 1796/2980 loss:3.8833
  5720. 2023-03-16 21:44:29,812 - INFO - main.py - train - 68 - 【train】 epoch:3 1797/2980 loss:5.2204
  5721. 2023-03-16 21:44:31,015 - INFO - main.py - train - 68 - 【train】 epoch:3 1798/2980 loss:16.6878
  5722. 2023-03-16 21:44:32,229 - INFO - main.py - train - 68 - 【train】 epoch:3 1799/2980 loss:24.2356
  5723. 2023-03-16 21:44:33,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1800/2980 loss:5.7872
  5724. 2023-03-16 21:44:34,689 - INFO - main.py - train - 68 - 【train】 epoch:3 1801/2980 loss:3.2865
  5725. 2023-03-16 21:44:35,912 - INFO - main.py - train - 68 - 【train】 epoch:3 1802/2980 loss:3.7353
  5726. 2023-03-16 21:44:37,172 - INFO - main.py - train - 68 - 【train】 epoch:3 1803/2980 loss:4.7209
  5727. 2023-03-16 21:44:38,391 - INFO - main.py - train - 68 - 【train】 epoch:3 1804/2980 loss:2.6565
  5728. 2023-03-16 21:44:39,620 - INFO - main.py - train - 68 - 【train】 epoch:3 1805/2980 loss:6.4210
  5729. 2023-03-16 21:44:40,820 - INFO - main.py - train - 68 - 【train】 epoch:3 1806/2980 loss:1.0040
  5730. 2023-03-16 21:44:42,051 - INFO - main.py - train - 68 - 【train】 epoch:3 1807/2980 loss:5.3594
  5731. 2023-03-16 21:44:43,283 - INFO - main.py - train - 68 - 【train】 epoch:3 1808/2980 loss:9.7836
  5732. 2023-03-16 21:44:44,507 - INFO - main.py - train - 68 - 【train】 epoch:3 1809/2980 loss:8.2906
  5733. 2023-03-16 21:44:45,782 - INFO - main.py - train - 68 - 【train】 epoch:3 1810/2980 loss:7.1773
  5734. 2023-03-16 21:44:46,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1811/2980 loss:1.3909
  5735. 2023-03-16 21:44:48,236 - INFO - main.py - train - 68 - 【train】 epoch:3 1812/2980 loss:6.9649
  5736. 2023-03-16 21:44:49,505 - INFO - main.py - train - 68 - 【train】 epoch:3 1813/2980 loss:2.9632
  5737. 2023-03-16 21:44:50,726 - INFO - main.py - train - 68 - 【train】 epoch:3 1814/2980 loss:3.9861
  5738. 2023-03-16 21:44:51,963 - INFO - main.py - train - 68 - 【train】 epoch:3 1815/2980 loss:6.4970
  5739. 2023-03-16 21:44:53,215 - INFO - main.py - train - 68 - 【train】 epoch:3 1816/2980 loss:1.0967
  5740. 2023-03-16 21:44:54,431 - INFO - main.py - train - 68 - 【train】 epoch:3 1817/2980 loss:1.8096
  5741. 2023-03-16 21:44:55,673 - INFO - main.py - train - 68 - 【train】 epoch:3 1818/2980 loss:1.9639
  5742. 2023-03-16 21:44:56,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1819/2980 loss:23.1016
  5743. 2023-03-16 21:44:58,209 - INFO - main.py - train - 68 - 【train】 epoch:3 1820/2980 loss:15.5300
  5744. 2023-03-16 21:44:59,423 - INFO - main.py - train - 68 - 【train】 epoch:3 1821/2980 loss:0.5574
  5745. 2023-03-16 21:45:00,631 - INFO - main.py - train - 68 - 【train】 epoch:3 1822/2980 loss:4.3796
  5746. 2023-03-16 21:45:01,873 - INFO - main.py - train - 68 - 【train】 epoch:3 1823/2980 loss:4.7356
  5747. 2023-03-16 21:45:03,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1824/2980 loss:2.8515
  5748. 2023-03-16 21:45:04,311 - INFO - main.py - train - 68 - 【train】 epoch:3 1825/2980 loss:12.2964
  5749. 2023-03-16 21:45:05,576 - INFO - main.py - train - 68 - 【train】 epoch:3 1826/2980 loss:4.7419
  5750. 2023-03-16 21:45:06,848 - INFO - main.py - train - 68 - 【train】 epoch:3 1827/2980 loss:5.9903
  5751. 2023-03-16 21:45:08,085 - INFO - main.py - train - 68 - 【train】 epoch:3 1828/2980 loss:10.9405
  5752. 2023-03-16 21:45:09,321 - INFO - main.py - train - 68 - 【train】 epoch:3 1829/2980 loss:6.5179
  5753. 2023-03-16 21:45:10,523 - INFO - main.py - train - 68 - 【train】 epoch:3 1830/2980 loss:6.2841
  5754. 2023-03-16 21:45:11,744 - INFO - main.py - train - 68 - 【train】 epoch:3 1831/2980 loss:7.0042
  5755. 2023-03-16 21:45:12,961 - INFO - main.py - train - 68 - 【train】 epoch:3 1832/2980 loss:10.9270
  5756. 2023-03-16 21:45:14,234 - INFO - main.py - train - 68 - 【train】 epoch:3 1833/2980 loss:25.9297
  5757. 2023-03-16 21:45:15,415 - INFO - main.py - train - 68 - 【train】 epoch:3 1834/2980 loss:0.8951
  5758. 2023-03-16 21:45:16,618 - INFO - main.py - train - 68 - 【train】 epoch:3 1835/2980 loss:4.1068
  5759. 2023-03-16 21:45:17,838 - INFO - main.py - train - 68 - 【train】 epoch:3 1836/2980 loss:6.4016
  5760. 2023-03-16 21:45:19,047 - INFO - main.py - train - 68 - 【train】 epoch:3 1837/2980 loss:8.0961
  5761. 2023-03-16 21:45:20,262 - INFO - main.py - train - 68 - 【train】 epoch:3 1838/2980 loss:4.3285
  5762. 2023-03-16 21:45:21,480 - INFO - main.py - train - 68 - 【train】 epoch:3 1839/2980 loss:1.8495
  5763. 2023-03-16 21:45:22,669 - INFO - main.py - train - 68 - 【train】 epoch:3 1840/2980 loss:4.2597
  5764. 2023-03-16 21:45:23,880 - INFO - main.py - train - 68 - 【train】 epoch:3 1841/2980 loss:7.9640
  5765. 2023-03-16 21:45:25,114 - INFO - main.py - train - 68 - 【train】 epoch:3 1842/2980 loss:2.1851
  5766. 2023-03-16 21:45:26,352 - INFO - main.py - train - 68 - 【train】 epoch:3 1843/2980 loss:1.6562
  5767. 2023-03-16 21:45:27,603 - INFO - main.py - train - 68 - 【train】 epoch:3 1844/2980 loss:9.6430
  5768. 2023-03-16 21:45:28,803 - INFO - main.py - train - 68 - 【train】 epoch:3 1845/2980 loss:10.1967
  5769. 2023-03-16 21:45:30,014 - INFO - main.py - train - 68 - 【train】 epoch:3 1846/2980 loss:6.6125
  5770. 2023-03-16 21:45:31,197 - INFO - main.py - train - 68 - 【train】 epoch:3 1847/2980 loss:4.3681
  5771. 2023-03-16 21:45:32,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1848/2980 loss:11.4818
  5772. 2023-03-16 21:45:33,679 - INFO - main.py - train - 68 - 【train】 epoch:3 1849/2980 loss:2.8231
  5773. 2023-03-16 21:45:34,877 - INFO - main.py - train - 68 - 【train】 epoch:3 1850/2980 loss:1.2242
  5774. 2023-03-16 21:45:36,102 - INFO - main.py - train - 68 - 【train】 epoch:3 1851/2980 loss:4.7175
  5775. 2023-03-16 21:45:37,296 - INFO - main.py - train - 68 - 【train】 epoch:3 1852/2980 loss:3.7330
  5776. 2023-03-16 21:45:38,522 - INFO - main.py - train - 68 - 【train】 epoch:3 1853/2980 loss:4.1778
  5777. 2023-03-16 21:45:39,704 - INFO - main.py - train - 68 - 【train】 epoch:3 1854/2980 loss:6.3279
  5778. 2023-03-16 21:45:40,915 - INFO - main.py - train - 68 - 【train】 epoch:3 1855/2980 loss:14.2817
  5779. 2023-03-16 21:45:42,117 - INFO - main.py - train - 68 - 【train】 epoch:3 1856/2980 loss:6.1239
  5780. 2023-03-16 21:45:43,315 - INFO - main.py - train - 68 - 【train】 epoch:3 1857/2980 loss:10.9403
  5781. 2023-03-16 21:45:44,495 - INFO - main.py - train - 68 - 【train】 epoch:3 1858/2980 loss:2.6487
  5782. 2023-03-16 21:45:45,693 - INFO - main.py - train - 68 - 【train】 epoch:3 1859/2980 loss:12.5878
  5783. 2023-03-16 21:45:46,911 - INFO - main.py - train - 68 - 【train】 epoch:3 1860/2980 loss:23.7000
  5784. 2023-03-16 21:45:48,101 - INFO - main.py - train - 68 - 【train】 epoch:3 1861/2980 loss:1.7775
  5785. 2023-03-16 21:45:49,295 - INFO - main.py - train - 68 - 【train】 epoch:3 1862/2980 loss:3.4227
  5786. 2023-03-16 21:45:50,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1863/2980 loss:1.6139
  5787. 2023-03-16 21:45:51,677 - INFO - main.py - train - 68 - 【train】 epoch:3 1864/2980 loss:3.9446
  5788. 2023-03-16 21:45:52,884 - INFO - main.py - train - 68 - 【train】 epoch:3 1865/2980 loss:2.4627
  5789. 2023-03-16 21:45:54,099 - INFO - main.py - train - 68 - 【train】 epoch:3 1866/2980 loss:3.1713
  5790. 2023-03-16 21:45:55,280 - INFO - main.py - train - 68 - 【train】 epoch:3 1867/2980 loss:10.1597
  5791. 2023-03-16 21:45:56,524 - INFO - main.py - train - 68 - 【train】 epoch:3 1868/2980 loss:0.9967
  5792. 2023-03-16 21:45:57,736 - INFO - main.py - train - 68 - 【train】 epoch:3 1869/2980 loss:4.9608
  5793. 2023-03-16 21:45:58,931 - INFO - main.py - train - 68 - 【train】 epoch:3 1870/2980 loss:4.7111
  5794. 2023-03-16 21:46:00,132 - INFO - main.py - train - 68 - 【train】 epoch:3 1871/2980 loss:4.1293
  5795. 2023-03-16 21:46:01,332 - INFO - main.py - train - 68 - 【train】 epoch:3 1872/2980 loss:4.5878
  5796. 2023-03-16 21:46:02,527 - INFO - main.py - train - 68 - 【train】 epoch:3 1873/2980 loss:5.5294
  5797. 2023-03-16 21:46:03,747 - INFO - main.py - train - 68 - 【train】 epoch:3 1874/2980 loss:1.2389
  5798. 2023-03-16 21:46:04,974 - INFO - main.py - train - 68 - 【train】 epoch:3 1875/2980 loss:5.7425
  5799. 2023-03-16 21:46:06,277 - INFO - main.py - train - 68 - 【train】 epoch:3 1876/2980 loss:4.5498
  5800. 2023-03-16 21:46:07,495 - INFO - main.py - train - 68 - 【train】 epoch:3 1877/2980 loss:6.6923
  5801. 2023-03-16 21:46:08,696 - INFO - main.py - train - 68 - 【train】 epoch:3 1878/2980 loss:7.8293
  5802. 2023-03-16 21:46:09,962 - INFO - main.py - train - 68 - 【train】 epoch:3 1879/2980 loss:4.1485
  5803. 2023-03-16 21:46:11,173 - INFO - main.py - train - 68 - 【train】 epoch:3 1880/2980 loss:6.8958
  5804. 2023-03-16 21:46:12,384 - INFO - main.py - train - 68 - 【train】 epoch:3 1881/2980 loss:14.0992
  5805. 2023-03-16 21:46:13,652 - INFO - main.py - train - 68 - 【train】 epoch:3 1882/2980 loss:9.1698
  5806. 2023-03-16 21:46:14,883 - INFO - main.py - train - 68 - 【train】 epoch:3 1883/2980 loss:2.6814
  5807. 2023-03-16 21:46:16,117 - INFO - main.py - train - 68 - 【train】 epoch:3 1884/2980 loss:2.6951
  5808. 2023-03-16 21:46:17,321 - INFO - main.py - train - 68 - 【train】 epoch:3 1885/2980 loss:9.3880
  5809. 2023-03-16 21:46:18,564 - INFO - main.py - train - 68 - 【train】 epoch:3 1886/2980 loss:6.3038
  5810. 2023-03-16 21:46:19,788 - INFO - main.py - train - 68 - 【train】 epoch:3 1887/2980 loss:0.4210
  5811. 2023-03-16 21:46:21,010 - INFO - main.py - train - 68 - 【train】 epoch:3 1888/2980 loss:2.3362
  5812. 2023-03-16 21:46:22,251 - INFO - main.py - train - 68 - 【train】 epoch:3 1889/2980 loss:1.3989
  5813. 2023-03-16 21:46:23,482 - INFO - main.py - train - 68 - 【train】 epoch:3 1890/2980 loss:8.1022
  5814. 2023-03-16 21:46:24,710 - INFO - main.py - train - 68 - 【train】 epoch:3 1891/2980 loss:4.6304
  5815. 2023-03-16 21:46:25,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1892/2980 loss:3.3737
  5816. 2023-03-16 21:46:27,211 - INFO - main.py - train - 68 - 【train】 epoch:3 1893/2980 loss:3.2924
  5817. 2023-03-16 21:46:28,483 - INFO - main.py - train - 68 - 【train】 epoch:3 1894/2980 loss:1.6295
  5818. 2023-03-16 21:46:29,731 - INFO - main.py - train - 68 - 【train】 epoch:3 1895/2980 loss:4.4846
  5819. 2023-03-16 21:46:30,966 - INFO - main.py - train - 68 - 【train】 epoch:3 1896/2980 loss:2.5195
  5820. 2023-03-16 21:46:32,206 - INFO - main.py - train - 68 - 【train】 epoch:3 1897/2980 loss:11.2230
  5821. 2023-03-16 21:46:33,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1898/2980 loss:1.9190
  5822. 2023-03-16 21:46:34,685 - INFO - main.py - train - 68 - 【train】 epoch:3 1899/2980 loss:0.8454
  5823. 2023-03-16 21:46:35,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1900/2980 loss:4.5284
  5824. 2023-03-16 21:46:37,193 - INFO - main.py - train - 68 - 【train】 epoch:3 1901/2980 loss:5.1028
  5825. 2023-03-16 21:46:38,391 - INFO - main.py - train - 68 - 【train】 epoch:3 1902/2980 loss:0.7566
  5826. 2023-03-16 21:46:39,668 - INFO - main.py - train - 68 - 【train】 epoch:3 1903/2980 loss:3.7597
  5827. 2023-03-16 21:46:40,888 - INFO - main.py - train - 68 - 【train】 epoch:3 1904/2980 loss:3.2466
  5828. 2023-03-16 21:46:42,140 - INFO - main.py - train - 68 - 【train】 epoch:3 1905/2980 loss:5.2889
  5829. 2023-03-16 21:46:43,406 - INFO - main.py - train - 68 - 【train】 epoch:3 1906/2980 loss:6.7052
  5830. 2023-03-16 21:46:44,654 - INFO - main.py - train - 68 - 【train】 epoch:3 1907/2980 loss:26.0818
  5831. 2023-03-16 21:46:45,897 - INFO - main.py - train - 68 - 【train】 epoch:3 1908/2980 loss:7.0533
  5832. 2023-03-16 21:46:47,104 - INFO - main.py - train - 68 - 【train】 epoch:3 1909/2980 loss:6.0371
  5833. 2023-03-16 21:46:48,336 - INFO - main.py - train - 68 - 【train】 epoch:3 1910/2980 loss:4.4249
  5834. 2023-03-16 21:46:49,612 - INFO - main.py - train - 68 - 【train】 epoch:3 1911/2980 loss:7.7184
  5835. 2023-03-16 21:46:50,847 - INFO - main.py - train - 68 - 【train】 epoch:3 1912/2980 loss:11.8513
  5836. 2023-03-16 21:46:52,211 - INFO - main.py - train - 68 - 【train】 epoch:3 1913/2980 loss:4.4488
  5837. 2023-03-16 21:46:53,554 - INFO - main.py - train - 68 - 【train】 epoch:3 1914/2980 loss:3.3527
  5838. 2023-03-16 21:46:54,809 - INFO - main.py - train - 68 - 【train】 epoch:3 1915/2980 loss:2.0685
  5839. 2023-03-16 21:46:56,093 - INFO - main.py - train - 68 - 【train】 epoch:3 1916/2980 loss:12.1142
  5840. 2023-03-16 21:46:57,423 - INFO - main.py - train - 68 - 【train】 epoch:3 1917/2980 loss:5.4298
  5841. 2023-03-16 21:46:58,734 - INFO - main.py - train - 68 - 【train】 epoch:3 1918/2980 loss:25.0737
  5842. 2023-03-16 21:47:00,109 - INFO - main.py - train - 68 - 【train】 epoch:3 1919/2980 loss:4.0794
  5843. 2023-03-16 21:47:01,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1920/2980 loss:3.6573
  5844. 2023-03-16 21:47:02,689 - INFO - main.py - train - 68 - 【train】 epoch:3 1921/2980 loss:2.0268
  5845. 2023-03-16 21:47:03,979 - INFO - main.py - train - 68 - 【train】 epoch:3 1922/2980 loss:2.9746
  5846. 2023-03-16 21:47:05,182 - INFO - main.py - train - 68 - 【train】 epoch:3 1923/2980 loss:5.8160
  5847. 2023-03-16 21:47:06,383 - INFO - main.py - train - 68 - 【train】 epoch:3 1924/2980 loss:0.8062
  5848. 2023-03-16 21:47:07,592 - INFO - main.py - train - 68 - 【train】 epoch:3 1925/2980 loss:11.1750
  5849. 2023-03-16 21:47:08,783 - INFO - main.py - train - 68 - 【train】 epoch:3 1926/2980 loss:19.1336
  5850. 2023-03-16 21:47:10,014 - INFO - main.py - train - 68 - 【train】 epoch:3 1927/2980 loss:12.7735
  5851. 2023-03-16 21:47:11,202 - INFO - main.py - train - 68 - 【train】 epoch:3 1928/2980 loss:4.6617
  5852. 2023-03-16 21:47:12,394 - INFO - main.py - train - 68 - 【train】 epoch:3 1929/2980 loss:5.7862
  5853. 2023-03-16 21:47:13,593 - INFO - main.py - train - 68 - 【train】 epoch:3 1930/2980 loss:7.0565
  5854. 2023-03-16 21:47:14,791 - INFO - main.py - train - 68 - 【train】 epoch:3 1931/2980 loss:6.0764
  5855. 2023-03-16 21:47:15,990 - INFO - main.py - train - 68 - 【train】 epoch:3 1932/2980 loss:10.5945
  5856. 2023-03-16 21:47:17,156 - INFO - main.py - train - 68 - 【train】 epoch:3 1933/2980 loss:20.8488
  5857. 2023-03-16 21:47:18,345 - INFO - main.py - train - 68 - 【train】 epoch:3 1934/2980 loss:2.2782
  5858. 2023-03-16 21:47:19,544 - INFO - main.py - train - 68 - 【train】 epoch:3 1935/2980 loss:3.9942
  5859. 2023-03-16 21:47:20,732 - INFO - main.py - train - 68 - 【train】 epoch:3 1936/2980 loss:6.3776
  5860. 2023-03-16 21:47:21,933 - INFO - main.py - train - 68 - 【train】 epoch:3 1937/2980 loss:14.7530
  5861. 2023-03-16 21:47:23,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1938/2980 loss:12.2549
  5862. 2023-03-16 21:47:24,279 - INFO - main.py - train - 68 - 【train】 epoch:3 1939/2980 loss:4.3778
  5863. 2023-03-16 21:47:25,489 - INFO - main.py - train - 68 - 【train】 epoch:3 1940/2980 loss:3.0678
  5864. 2023-03-16 21:47:26,668 - INFO - main.py - train - 68 - 【train】 epoch:3 1941/2980 loss:6.4584
  5865. 2023-03-16 21:47:27,889 - INFO - main.py - train - 68 - 【train】 epoch:3 1942/2980 loss:8.2694
  5866. 2023-03-16 21:47:29,095 - INFO - main.py - train - 68 - 【train】 epoch:3 1943/2980 loss:5.2986
  5867. 2023-03-16 21:47:30,286 - INFO - main.py - train - 68 - 【train】 epoch:3 1944/2980 loss:4.8000
  5868. 2023-03-16 21:47:31,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1945/2980 loss:1.8086
  5869. 2023-03-16 21:47:32,663 - INFO - main.py - train - 68 - 【train】 epoch:3 1946/2980 loss:13.2592
  5870. 2023-03-16 21:47:33,892 - INFO - main.py - train - 68 - 【train】 epoch:3 1947/2980 loss:6.3096
  5871. 2023-03-16 21:47:35,061 - INFO - main.py - train - 68 - 【train】 epoch:3 1948/2980 loss:5.2559
  5872. 2023-03-16 21:47:36,247 - INFO - main.py - train - 68 - 【train】 epoch:3 1949/2980 loss:5.2793
  5873. 2023-03-16 21:47:37,454 - INFO - main.py - train - 68 - 【train】 epoch:3 1950/2980 loss:8.2412
  5874. 2023-03-16 21:47:38,705 - INFO - main.py - train - 68 - 【train】 epoch:3 1951/2980 loss:26.3220
  5875. 2023-03-16 21:47:39,895 - INFO - main.py - train - 68 - 【train】 epoch:3 1952/2980 loss:2.7330
  5876. 2023-03-16 21:47:41,085 - INFO - main.py - train - 68 - 【train】 epoch:3 1953/2980 loss:7.1811
  5877. 2023-03-16 21:47:42,277 - INFO - main.py - train - 68 - 【train】 epoch:3 1954/2980 loss:1.7399
  5878. 2023-03-16 21:47:43,463 - INFO - main.py - train - 68 - 【train】 epoch:3 1955/2980 loss:3.5976
  5879. 2023-03-16 21:47:44,625 - INFO - main.py - train - 68 - 【train】 epoch:3 1956/2980 loss:1.8567
  5880. 2023-03-16 21:47:45,856 - INFO - main.py - train - 68 - 【train】 epoch:3 1957/2980 loss:2.6176
  5881. 2023-03-16 21:47:47,062 - INFO - main.py - train - 68 - 【train】 epoch:3 1958/2980 loss:3.0007
  5882. 2023-03-16 21:47:48,233 - INFO - main.py - train - 68 - 【train】 epoch:3 1959/2980 loss:4.5297
  5883. 2023-03-16 21:47:49,412 - INFO - main.py - train - 68 - 【train】 epoch:3 1960/2980 loss:5.0727
  5884. 2023-03-16 21:47:50,577 - INFO - main.py - train - 68 - 【train】 epoch:3 1961/2980 loss:4.4677
  5885. 2023-03-16 21:47:51,845 - INFO - main.py - train - 68 - 【train】 epoch:3 1962/2980 loss:5.3052
  5886. 2023-03-16 21:47:53,149 - INFO - main.py - train - 68 - 【train】 epoch:3 1963/2980 loss:1.5070
  5887. 2023-03-16 21:47:54,378 - INFO - main.py - train - 68 - 【train】 epoch:3 1964/2980 loss:11.9987
  5888. 2023-03-16 21:47:55,561 - INFO - main.py - train - 68 - 【train】 epoch:3 1965/2980 loss:0.8716
  5889. 2023-03-16 21:47:56,755 - INFO - main.py - train - 68 - 【train】 epoch:3 1966/2980 loss:5.9484
  5890. 2023-03-16 21:47:57,953 - INFO - main.py - train - 68 - 【train】 epoch:3 1967/2980 loss:4.9691
  5891. 2023-03-16 21:47:59,139 - INFO - main.py - train - 68 - 【train】 epoch:3 1968/2980 loss:2.5964
  5892. 2023-03-16 21:48:00,313 - INFO - main.py - train - 68 - 【train】 epoch:3 1969/2980 loss:2.4248
  5893. 2023-03-16 21:48:01,507 - INFO - main.py - train - 68 - 【train】 epoch:3 1970/2980 loss:1.8597
  5894. 2023-03-16 21:48:02,708 - INFO - main.py - train - 68 - 【train】 epoch:3 1971/2980 loss:1.6431
  5895. 2023-03-16 21:48:03,898 - INFO - main.py - train - 68 - 【train】 epoch:3 1972/2980 loss:2.8616
  5896. 2023-03-16 21:48:05,111 - INFO - main.py - train - 68 - 【train】 epoch:3 1973/2980 loss:5.4787
  5897. 2023-03-16 21:48:06,322 - INFO - main.py - train - 68 - 【train】 epoch:3 1974/2980 loss:0.9775
  5898. 2023-03-16 21:48:07,527 - INFO - main.py - train - 68 - 【train】 epoch:3 1975/2980 loss:5.7731
  5899. 2023-03-16 21:48:08,696 - INFO - main.py - train - 68 - 【train】 epoch:3 1976/2980 loss:9.9171
  5900. 2023-03-16 21:48:09,886 - INFO - main.py - train - 68 - 【train】 epoch:3 1977/2980 loss:4.8133
  5901. 2023-03-16 21:48:11,092 - INFO - main.py - train - 68 - 【train】 epoch:3 1978/2980 loss:10.6295
  5902. 2023-03-16 21:48:12,284 - INFO - main.py - train - 68 - 【train】 epoch:3 1979/2980 loss:13.6966
  5903. 2023-03-16 21:48:13,466 - INFO - main.py - train - 68 - 【train】 epoch:3 1980/2980 loss:3.2188
  5904. 2023-03-16 21:48:14,649 - INFO - main.py - train - 68 - 【train】 epoch:3 1981/2980 loss:5.1084
  5905. 2023-03-16 21:48:15,826 - INFO - main.py - train - 68 - 【train】 epoch:3 1982/2980 loss:2.7280
  5906. 2023-03-16 21:48:17,001 - INFO - main.py - train - 68 - 【train】 epoch:3 1983/2980 loss:5.0785
  5907. 2023-03-16 21:48:18,175 - INFO - main.py - train - 68 - 【train】 epoch:3 1984/2980 loss:4.2602
  5908. 2023-03-16 21:48:19,363 - INFO - main.py - train - 68 - 【train】 epoch:3 1985/2980 loss:10.2401
  5909. 2023-03-16 21:48:20,523 - INFO - main.py - train - 68 - 【train】 epoch:3 1986/2980 loss:3.0614
  5910. 2023-03-16 21:48:21,711 - INFO - main.py - train - 68 - 【train】 epoch:3 1987/2980 loss:7.7809
  5911. 2023-03-16 21:48:22,922 - INFO - main.py - train - 68 - 【train】 epoch:3 1988/2980 loss:2.3072
  5912. 2023-03-16 21:48:24,112 - INFO - main.py - train - 68 - 【train】 epoch:3 1989/2980 loss:1.4903
  5913. 2023-03-16 21:48:25,268 - INFO - main.py - train - 68 - 【train】 epoch:3 1990/2980 loss:6.1863
  5914. 2023-03-16 21:48:26,473 - INFO - main.py - train - 68 - 【train】 epoch:3 1991/2980 loss:7.9537
  5915. 2023-03-16 21:48:27,702 - INFO - main.py - train - 68 - 【train】 epoch:3 1992/2980 loss:6.7577
  5916. 2023-03-16 21:48:28,885 - INFO - main.py - train - 68 - 【train】 epoch:3 1993/2980 loss:3.0255
  5917. 2023-03-16 21:48:30,051 - INFO - main.py - train - 68 - 【train】 epoch:3 1994/2980 loss:2.0472
  5918. 2023-03-16 21:48:31,243 - INFO - main.py - train - 68 - 【train】 epoch:3 1995/2980 loss:10.0864
  5919. 2023-03-16 21:48:32,433 - INFO - main.py - train - 68 - 【train】 epoch:3 1996/2980 loss:13.7977
  5920. 2023-03-16 21:48:33,656 - INFO - main.py - train - 68 - 【train】 epoch:3 1997/2980 loss:6.7212
  5921. 2023-03-16 21:48:34,852 - INFO - main.py - train - 68 - 【train】 epoch:3 1998/2980 loss:7.2847
  5922. 2023-03-16 21:48:36,065 - INFO - main.py - train - 68 - 【train】 epoch:3 1999/2980 loss:2.8027
  5923. 2023-03-16 21:48:37,240 - INFO - main.py - train - 68 - 【train】 epoch:3 2000/2980 loss:1.7394
  5924. 2023-03-16 21:48:38,453 - INFO - main.py - train - 68 - 【train】 epoch:3 2001/2980 loss:4.1706
  5925. 2023-03-16 21:48:39,658 - INFO - main.py - train - 68 - 【train】 epoch:3 2002/2980 loss:15.8660
  5926. 2023-03-16 21:48:40,834 - INFO - main.py - train - 68 - 【train】 epoch:3 2003/2980 loss:5.9665
  5927. 2023-03-16 21:48:42,015 - INFO - main.py - train - 68 - 【train】 epoch:3 2004/2980 loss:7.2970
  5928. 2023-03-16 21:48:43,300 - INFO - main.py - train - 68 - 【train】 epoch:3 2005/2980 loss:8.1770
  5929. 2023-03-16 21:48:44,483 - INFO - main.py - train - 68 - 【train】 epoch:3 2006/2980 loss:3.5458
  5930. 2023-03-16 21:48:45,699 - INFO - main.py - train - 68 - 【train】 epoch:3 2007/2980 loss:6.1259
  5931. 2023-03-16 21:48:46,880 - INFO - main.py - train - 68 - 【train】 epoch:3 2008/2980 loss:6.2983
  5932. 2023-03-16 21:48:48,065 - INFO - main.py - train - 68 - 【train】 epoch:3 2009/2980 loss:1.1197
  5933. 2023-03-16 21:48:49,248 - INFO - main.py - train - 68 - 【train】 epoch:3 2010/2980 loss:3.8450
  5934. 2023-03-16 21:48:50,462 - INFO - main.py - train - 68 - 【train】 epoch:3 2011/2980 loss:25.6485
  5935. 2023-03-16 21:48:51,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2012/2980 loss:14.0013
  5936. 2023-03-16 21:48:52,864 - INFO - main.py - train - 68 - 【train】 epoch:3 2013/2980 loss:3.4954
  5937. 2023-03-16 21:48:54,084 - INFO - main.py - train - 68 - 【train】 epoch:3 2014/2980 loss:14.2868
  5938. 2023-03-16 21:48:55,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2015/2980 loss:3.6789
  5939. 2023-03-16 21:48:56,445 - INFO - main.py - train - 68 - 【train】 epoch:3 2016/2980 loss:3.7371
  5940. 2023-03-16 21:48:57,624 - INFO - main.py - train - 68 - 【train】 epoch:3 2017/2980 loss:0.4046
  5941. 2023-03-16 21:48:58,805 - INFO - main.py - train - 68 - 【train】 epoch:3 2018/2980 loss:0.6445
  5942. 2023-03-16 21:48:59,985 - INFO - main.py - train - 68 - 【train】 epoch:3 2019/2980 loss:0.6840
  5943. 2023-03-16 21:49:01,173 - INFO - main.py - train - 68 - 【train】 epoch:3 2020/2980 loss:3.3179
  5944. 2023-03-16 21:49:02,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2021/2980 loss:16.5275
  5945. 2023-03-16 21:49:03,541 - INFO - main.py - train - 68 - 【train】 epoch:3 2022/2980 loss:1.3730
  5946. 2023-03-16 21:49:04,724 - INFO - main.py - train - 68 - 【train】 epoch:3 2023/2980 loss:28.3391
  5947. 2023-03-16 21:49:05,895 - INFO - main.py - train - 68 - 【train】 epoch:3 2024/2980 loss:2.7072
  5948. 2023-03-16 21:49:07,072 - INFO - main.py - train - 68 - 【train】 epoch:3 2025/2980 loss:11.0862
  5949. 2023-03-16 21:49:08,266 - INFO - main.py - train - 68 - 【train】 epoch:3 2026/2980 loss:12.2316
  5950. 2023-03-16 21:49:09,461 - INFO - main.py - train - 68 - 【train】 epoch:3 2027/2980 loss:4.2860
  5951. 2023-03-16 21:49:10,672 - INFO - main.py - train - 68 - 【train】 epoch:3 2028/2980 loss:11.8813
  5952. 2023-03-16 21:49:11,866 - INFO - main.py - train - 68 - 【train】 epoch:3 2029/2980 loss:1.7834
  5953. 2023-03-16 21:49:13,079 - INFO - main.py - train - 68 - 【train】 epoch:3 2030/2980 loss:8.0053
  5954. 2023-03-16 21:49:14,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2031/2980 loss:8.9488
  5955. 2023-03-16 21:49:15,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2032/2980 loss:6.2488
  5956. 2023-03-16 21:49:16,662 - INFO - main.py - train - 68 - 【train】 epoch:3 2033/2980 loss:9.3312
  5957. 2023-03-16 21:49:17,833 - INFO - main.py - train - 68 - 【train】 epoch:3 2034/2980 loss:4.5769
  5958. 2023-03-16 21:49:19,013 - INFO - main.py - train - 68 - 【train】 epoch:3 2035/2980 loss:16.5680
  5959. 2023-03-16 21:49:20,201 - INFO - main.py - train - 68 - 【train】 epoch:3 2036/2980 loss:6.3645
  5960. 2023-03-16 21:49:21,391 - INFO - main.py - train - 68 - 【train】 epoch:3 2037/2980 loss:13.4086
  5961. 2023-03-16 21:49:22,576 - INFO - main.py - train - 68 - 【train】 epoch:3 2038/2980 loss:9.7894
  5962. 2023-03-16 21:49:23,778 - INFO - main.py - train - 68 - 【train】 epoch:3 2039/2980 loss:7.2475
  5963. 2023-03-16 21:49:24,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2040/2980 loss:13.5179
  5964. 2023-03-16 21:49:26,176 - INFO - main.py - train - 68 - 【train】 epoch:3 2041/2980 loss:11.1311
  5965. 2023-03-16 21:49:27,402 - INFO - main.py - train - 68 - 【train】 epoch:3 2042/2980 loss:7.2532
  5966. 2023-03-16 21:49:28,616 - INFO - main.py - train - 68 - 【train】 epoch:3 2043/2980 loss:2.0573
  5967. 2023-03-16 21:49:29,803 - INFO - main.py - train - 68 - 【train】 epoch:3 2044/2980 loss:1.9745
  5968. 2023-03-16 21:49:30,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2045/2980 loss:7.6828
  5969. 2023-03-16 21:49:32,157 - INFO - main.py - train - 68 - 【train】 epoch:3 2046/2980 loss:3.1624
  5970. 2023-03-16 21:49:33,382 - INFO - main.py - train - 68 - 【train】 epoch:3 2047/2980 loss:15.0108
  5971. 2023-03-16 21:49:34,629 - INFO - main.py - train - 68 - 【train】 epoch:3 2048/2980 loss:11.3414
  5972. 2023-03-16 21:49:35,824 - INFO - main.py - train - 68 - 【train】 epoch:3 2049/2980 loss:5.7869
  5973. 2023-03-16 21:49:37,016 - INFO - main.py - train - 68 - 【train】 epoch:3 2050/2980 loss:3.9891
  5974. 2023-03-16 21:49:38,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2051/2980 loss:9.9926
  5975. 2023-03-16 21:49:39,387 - INFO - main.py - train - 68 - 【train】 epoch:3 2052/2980 loss:1.0444
  5976. 2023-03-16 21:49:40,560 - INFO - main.py - train - 68 - 【train】 epoch:3 2053/2980 loss:2.0840
  5977. 2023-03-16 21:49:41,752 - INFO - main.py - train - 68 - 【train】 epoch:3 2054/2980 loss:7.1740
  5978. 2023-03-16 21:49:42,934 - INFO - main.py - train - 68 - 【train】 epoch:3 2055/2980 loss:5.7816
  5979. 2023-03-16 21:49:44,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2056/2980 loss:3.4169
  5980. 2023-03-16 21:49:45,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2057/2980 loss:9.2999
  5981. 2023-03-16 21:49:46,516 - INFO - main.py - train - 68 - 【train】 epoch:3 2058/2980 loss:5.2675
  5982. 2023-03-16 21:49:47,720 - INFO - main.py - train - 68 - 【train】 epoch:3 2059/2980 loss:7.8756
  5983. 2023-03-16 21:49:48,908 - INFO - main.py - train - 68 - 【train】 epoch:3 2060/2980 loss:5.8312
  5984. 2023-03-16 21:49:50,084 - INFO - main.py - train - 68 - 【train】 epoch:3 2061/2980 loss:6.8583
  5985. 2023-03-16 21:49:51,279 - INFO - main.py - train - 68 - 【train】 epoch:3 2062/2980 loss:5.5013
  5986. 2023-03-16 21:49:52,448 - INFO - main.py - train - 68 - 【train】 epoch:3 2063/2980 loss:0.3114
  5987. 2023-03-16 21:49:53,639 - INFO - main.py - train - 68 - 【train】 epoch:3 2064/2980 loss:6.4922
  5988. 2023-03-16 21:49:54,809 - INFO - main.py - train - 68 - 【train】 epoch:3 2065/2980 loss:2.7513
  5989. 2023-03-16 21:49:55,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2066/2980 loss:2.2916
  5990. 2023-03-16 21:49:57,187 - INFO - main.py - train - 68 - 【train】 epoch:3 2067/2980 loss:10.4371
  5991. 2023-03-16 21:49:58,461 - INFO - main.py - train - 68 - 【train】 epoch:3 2068/2980 loss:7.3574
  5992. 2023-03-16 21:49:59,641 - INFO - main.py - train - 68 - 【train】 epoch:3 2069/2980 loss:2.8878
  5993. 2023-03-16 21:50:00,820 - INFO - main.py - train - 68 - 【train】 epoch:3 2070/2980 loss:7.8190
  5994. 2023-03-16 21:50:02,023 - INFO - main.py - train - 68 - 【train】 epoch:3 2071/2980 loss:2.9440
  5995. 2023-03-16 21:50:03,225 - INFO - main.py - train - 68 - 【train】 epoch:3 2072/2980 loss:9.9693
  5996. 2023-03-16 21:50:04,405 - INFO - main.py - train - 68 - 【train】 epoch:3 2073/2980 loss:2.6179
  5997. 2023-03-16 21:50:05,633 - INFO - main.py - train - 68 - 【train】 epoch:3 2074/2980 loss:10.5443
  5998. 2023-03-16 21:50:06,821 - INFO - main.py - train - 68 - 【train】 epoch:3 2075/2980 loss:14.0710
  5999. 2023-03-16 21:50:08,033 - INFO - main.py - train - 68 - 【train】 epoch:3 2076/2980 loss:1.2816
  6000. 2023-03-16 21:50:09,194 - INFO - main.py - train - 68 - 【train】 epoch:3 2077/2980 loss:4.7258
  6001. 2023-03-16 21:50:10,362 - INFO - main.py - train - 68 - 【train】 epoch:3 2078/2980 loss:4.5842
  6002. 2023-03-16 21:50:11,552 - INFO - main.py - train - 68 - 【train】 epoch:3 2079/2980 loss:3.5145
  6003. 2023-03-16 21:50:12,780 - INFO - main.py - train - 68 - 【train】 epoch:3 2080/2980 loss:2.0676
  6004. 2023-03-16 21:50:13,977 - INFO - main.py - train - 68 - 【train】 epoch:3 2081/2980 loss:11.1056
  6005. 2023-03-16 21:50:15,156 - INFO - main.py - train - 68 - 【train】 epoch:3 2082/2980 loss:2.9065
  6006. 2023-03-16 21:50:16,342 - INFO - main.py - train - 68 - 【train】 epoch:3 2083/2980 loss:2.4492
  6007. 2023-03-16 21:50:17,540 - INFO - main.py - train - 68 - 【train】 epoch:3 2084/2980 loss:3.5079
  6008. 2023-03-16 21:50:18,792 - INFO - main.py - train - 68 - 【train】 epoch:3 2085/2980 loss:2.6441
  6009. 2023-03-16 21:50:20,008 - INFO - main.py - train - 68 - 【train】 epoch:3 2086/2980 loss:12.3675
  6010. 2023-03-16 21:50:21,204 - INFO - main.py - train - 68 - 【train】 epoch:3 2087/2980 loss:6.6616
  6011. 2023-03-16 21:50:22,400 - INFO - main.py - train - 68 - 【train】 epoch:3 2088/2980 loss:12.9742
  6012. 2023-03-16 21:50:23,591 - INFO - main.py - train - 68 - 【train】 epoch:3 2089/2980 loss:0.8893
  6013. 2023-03-16 21:50:24,806 - INFO - main.py - train - 68 - 【train】 epoch:3 2090/2980 loss:2.3788
  6014. 2023-03-16 21:50:26,020 - INFO - main.py - train - 68 - 【train】 epoch:3 2091/2980 loss:3.8439
  6015. 2023-03-16 21:50:27,223 - INFO - main.py - train - 68 - 【train】 epoch:3 2092/2980 loss:16.8589
  6016. 2023-03-16 21:50:28,404 - INFO - main.py - train - 68 - 【train】 epoch:3 2093/2980 loss:0.8455
  6017. 2023-03-16 21:50:29,633 - INFO - main.py - train - 68 - 【train】 epoch:3 2094/2980 loss:0.1456
  6018. 2023-03-16 21:50:30,805 - INFO - main.py - train - 68 - 【train】 epoch:3 2095/2980 loss:1.3615
  6019. 2023-03-16 21:50:31,983 - INFO - main.py - train - 68 - 【train】 epoch:3 2096/2980 loss:5.8834
  6020. 2023-03-16 21:50:33,200 - INFO - main.py - train - 68 - 【train】 epoch:3 2097/2980 loss:3.8591
  6021. 2023-03-16 21:50:34,389 - INFO - main.py - train - 68 - 【train】 epoch:3 2098/2980 loss:2.0354
  6022. 2023-03-16 21:50:35,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2099/2980 loss:1.0692
  6023. 2023-03-16 21:50:36,783 - INFO - main.py - train - 68 - 【train】 epoch:3 2100/2980 loss:0.1701
  6024. 2023-03-16 21:50:37,978 - INFO - main.py - train - 68 - 【train】 epoch:3 2101/2980 loss:2.6999
  6025. 2023-03-16 21:50:39,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2102/2980 loss:13.6195
  6026. 2023-03-16 21:50:40,353 - INFO - main.py - train - 68 - 【train】 epoch:3 2103/2980 loss:0.6800
  6027. 2023-03-16 21:50:41,556 - INFO - main.py - train - 68 - 【train】 epoch:3 2104/2980 loss:3.8133
  6028. 2023-03-16 21:50:42,713 - INFO - main.py - train - 68 - 【train】 epoch:3 2105/2980 loss:2.0003
  6029. 2023-03-16 21:50:43,894 - INFO - main.py - train - 68 - 【train】 epoch:3 2106/2980 loss:5.7870
  6030. 2023-03-16 21:50:45,070 - INFO - main.py - train - 68 - 【train】 epoch:3 2107/2980 loss:1.4128
  6031. 2023-03-16 21:50:46,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2108/2980 loss:16.1444
  6032. 2023-03-16 21:50:47,503 - INFO - main.py - train - 68 - 【train】 epoch:3 2109/2980 loss:9.5541
  6033. 2023-03-16 21:50:48,711 - INFO - main.py - train - 68 - 【train】 epoch:3 2110/2980 loss:36.5972
  6034. 2023-03-16 21:50:49,895 - INFO - main.py - train - 68 - 【train】 epoch:3 2111/2980 loss:4.3186
  6035. 2023-03-16 21:50:51,049 - INFO - main.py - train - 68 - 【train】 epoch:3 2112/2980 loss:6.2456
  6036. 2023-03-16 21:50:52,276 - INFO - main.py - train - 68 - 【train】 epoch:3 2113/2980 loss:9.8562
  6037. 2023-03-16 21:50:53,479 - INFO - main.py - train - 68 - 【train】 epoch:3 2114/2980 loss:2.1005
  6038. 2023-03-16 21:50:54,702 - INFO - main.py - train - 68 - 【train】 epoch:3 2115/2980 loss:8.4324
  6039. 2023-03-16 21:50:55,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2116/2980 loss:11.3589
  6040. 2023-03-16 21:50:57,258 - INFO - main.py - train - 68 - 【train】 epoch:3 2117/2980 loss:4.2646
  6041. 2023-03-16 21:50:58,492 - INFO - main.py - train - 68 - 【train】 epoch:3 2118/2980 loss:1.8728
  6042. 2023-03-16 21:50:59,789 - INFO - main.py - train - 68 - 【train】 epoch:3 2119/2980 loss:13.3818
  6043. 2023-03-16 21:51:01,068 - INFO - main.py - train - 68 - 【train】 epoch:3 2120/2980 loss:2.6659
  6044. 2023-03-16 21:51:02,372 - INFO - main.py - train - 68 - 【train】 epoch:3 2121/2980 loss:3.4946
  6045. 2023-03-16 21:51:03,620 - INFO - main.py - train - 68 - 【train】 epoch:3 2122/2980 loss:4.8212
  6046. 2023-03-16 21:51:04,832 - INFO - main.py - train - 68 - 【train】 epoch:3 2123/2980 loss:29.4707
  6047. 2023-03-16 21:51:06,087 - INFO - main.py - train - 68 - 【train】 epoch:3 2124/2980 loss:6.8228
  6048. 2023-03-16 21:51:07,287 - INFO - main.py - train - 68 - 【train】 epoch:3 2125/2980 loss:8.3880
  6049. 2023-03-16 21:51:08,502 - INFO - main.py - train - 68 - 【train】 epoch:3 2126/2980 loss:8.2404
  6050. 2023-03-16 21:51:09,817 - INFO - main.py - train - 68 - 【train】 epoch:3 2127/2980 loss:3.8647
  6051. 2023-03-16 21:51:10,991 - INFO - main.py - train - 68 - 【train】 epoch:3 2128/2980 loss:1.1929
  6052. 2023-03-16 21:51:12,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2129/2980 loss:5.9385
  6053. 2023-03-16 21:51:13,402 - INFO - main.py - train - 68 - 【train】 epoch:3 2130/2980 loss:11.7735
  6054. 2023-03-16 21:51:14,635 - INFO - main.py - train - 68 - 【train】 epoch:3 2131/2980 loss:6.0813
  6055. 2023-03-16 21:51:15,855 - INFO - main.py - train - 68 - 【train】 epoch:3 2132/2980 loss:2.4726
  6056. 2023-03-16 21:51:17,046 - INFO - main.py - train - 68 - 【train】 epoch:3 2133/2980 loss:6.6907
  6057. 2023-03-16 21:51:18,237 - INFO - main.py - train - 68 - 【train】 epoch:3 2134/2980 loss:1.1295
  6058. 2023-03-16 21:51:19,434 - INFO - main.py - train - 68 - 【train】 epoch:3 2135/2980 loss:7.9660
  6059. 2023-03-16 21:51:20,652 - INFO - main.py - train - 68 - 【train】 epoch:3 2136/2980 loss:11.1743
  6060. 2023-03-16 21:51:21,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2137/2980 loss:5.0415
  6061. 2023-03-16 21:51:22,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2138/2980 loss:3.6940
  6062. 2023-03-16 21:51:24,154 - INFO - main.py - train - 68 - 【train】 epoch:3 2139/2980 loss:9.5146
  6063. 2023-03-16 21:51:25,334 - INFO - main.py - train - 68 - 【train】 epoch:3 2140/2980 loss:9.5970
  6064. 2023-03-16 21:51:26,506 - INFO - main.py - train - 68 - 【train】 epoch:3 2141/2980 loss:1.7588
  6065. 2023-03-16 21:51:27,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2142/2980 loss:4.5438
  6066. 2023-03-16 21:51:29,031 - INFO - main.py - train - 68 - 【train】 epoch:3 2143/2980 loss:8.7289
  6067. 2023-03-16 21:51:30,370 - INFO - main.py - train - 68 - 【train】 epoch:3 2144/2980 loss:3.5977
  6068. 2023-03-16 21:51:31,709 - INFO - main.py - train - 68 - 【train】 epoch:3 2145/2980 loss:1.7582
  6069. 2023-03-16 21:51:32,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2146/2980 loss:2.2397
  6070. 2023-03-16 21:51:34,150 - INFO - main.py - train - 68 - 【train】 epoch:3 2147/2980 loss:2.3633
  6071. 2023-03-16 21:51:35,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2148/2980 loss:4.4119
  6072. 2023-03-16 21:51:36,710 - INFO - main.py - train - 68 - 【train】 epoch:3 2149/2980 loss:0.5440
  6073. 2023-03-16 21:51:37,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2150/2980 loss:20.7553
  6074. 2023-03-16 21:51:39,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2151/2980 loss:1.4396
  6075. 2023-03-16 21:51:40,684 - INFO - main.py - train - 68 - 【train】 epoch:3 2152/2980 loss:3.4464
  6076. 2023-03-16 21:51:41,973 - INFO - main.py - train - 68 - 【train】 epoch:3 2153/2980 loss:5.1387
  6077. 2023-03-16 21:51:43,276 - INFO - main.py - train - 68 - 【train】 epoch:3 2154/2980 loss:4.9648
  6078. 2023-03-16 21:51:44,509 - INFO - main.py - train - 68 - 【train】 epoch:3 2155/2980 loss:4.2822
  6079. 2023-03-16 21:51:45,768 - INFO - main.py - train - 68 - 【train】 epoch:3 2156/2980 loss:5.3986
  6080. 2023-03-16 21:51:47,046 - INFO - main.py - train - 68 - 【train】 epoch:3 2157/2980 loss:6.1873
  6081. 2023-03-16 21:51:48,319 - INFO - main.py - train - 68 - 【train】 epoch:3 2158/2980 loss:2.9139
  6082. 2023-03-16 21:51:49,537 - INFO - main.py - train - 68 - 【train】 epoch:3 2159/2980 loss:7.9043
  6083. 2023-03-16 21:51:50,863 - INFO - main.py - train - 68 - 【train】 epoch:3 2160/2980 loss:15.5170
  6084. 2023-03-16 21:51:52,213 - INFO - main.py - train - 68 - 【train】 epoch:3 2161/2980 loss:2.5180
  6085. 2023-03-16 21:51:53,503 - INFO - main.py - train - 68 - 【train】 epoch:3 2162/2980 loss:10.1525
  6086. 2023-03-16 21:51:54,858 - INFO - main.py - train - 68 - 【train】 epoch:3 2163/2980 loss:16.4058
  6087. 2023-03-16 21:51:56,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2164/2980 loss:5.8514
  6088. 2023-03-16 21:51:57,436 - INFO - main.py - train - 68 - 【train】 epoch:3 2165/2980 loss:13.7234
  6089. 2023-03-16 21:51:58,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2166/2980 loss:2.8471
  6090. 2023-03-16 21:51:59,909 - INFO - main.py - train - 68 - 【train】 epoch:3 2167/2980 loss:18.4343
  6091. 2023-03-16 21:52:01,116 - INFO - main.py - train - 68 - 【train】 epoch:3 2168/2980 loss:7.6211
  6092. 2023-03-16 21:52:02,292 - INFO - main.py - train - 68 - 【train】 epoch:3 2169/2980 loss:3.7518
  6093. 2023-03-16 21:52:03,504 - INFO - main.py - train - 68 - 【train】 epoch:3 2170/2980 loss:6.4694
  6094. 2023-03-16 21:52:04,687 - INFO - main.py - train - 68 - 【train】 epoch:3 2171/2980 loss:3.6774
  6095. 2023-03-16 21:52:05,909 - INFO - main.py - train - 68 - 【train】 epoch:3 2172/2980 loss:11.4759
  6096. 2023-03-16 21:52:07,106 - INFO - main.py - train - 68 - 【train】 epoch:3 2173/2980 loss:3.3530
  6097. 2023-03-16 21:52:08,323 - INFO - main.py - train - 68 - 【train】 epoch:3 2174/2980 loss:21.0988
  6098. 2023-03-16 21:52:09,522 - INFO - main.py - train - 68 - 【train】 epoch:3 2175/2980 loss:4.6028
  6099. 2023-03-16 21:52:10,690 - INFO - main.py - train - 68 - 【train】 epoch:3 2176/2980 loss:6.7922
  6100. 2023-03-16 21:52:11,897 - INFO - main.py - train - 68 - 【train】 epoch:3 2177/2980 loss:10.2150
  6101. 2023-03-16 21:52:13,116 - INFO - main.py - train - 68 - 【train】 epoch:3 2178/2980 loss:7.3861
  6102. 2023-03-16 21:52:14,330 - INFO - main.py - train - 68 - 【train】 epoch:3 2179/2980 loss:20.2877
  6103. 2023-03-16 21:52:15,547 - INFO - main.py - train - 68 - 【train】 epoch:3 2180/2980 loss:3.5164
  6104. 2023-03-16 21:52:16,708 - INFO - main.py - train - 68 - 【train】 epoch:3 2181/2980 loss:1.2821
  6105. 2023-03-16 21:52:17,888 - INFO - main.py - train - 68 - 【train】 epoch:3 2182/2980 loss:3.3131
  6106. 2023-03-16 21:52:19,142 - INFO - main.py - train - 68 - 【train】 epoch:3 2183/2980 loss:6.6287
  6107. 2023-03-16 21:52:20,335 - INFO - main.py - train - 68 - 【train】 epoch:3 2184/2980 loss:5.5074
  6108. 2023-03-16 21:52:21,605 - INFO - main.py - train - 68 - 【train】 epoch:3 2185/2980 loss:3.8432
  6109. 2023-03-16 21:52:22,787 - INFO - main.py - train - 68 - 【train】 epoch:3 2186/2980 loss:1.7499
  6110. 2023-03-16 21:52:24,014 - INFO - main.py - train - 68 - 【train】 epoch:3 2187/2980 loss:1.5232
  6111. 2023-03-16 21:52:25,239 - INFO - main.py - train - 68 - 【train】 epoch:3 2188/2980 loss:5.5210
  6112. 2023-03-16 21:52:26,679 - INFO - main.py - train - 68 - 【train】 epoch:3 2189/2980 loss:10.9946
  6113. 2023-03-16 21:52:28,002 - INFO - main.py - train - 68 - 【train】 epoch:3 2190/2980 loss:7.9933
  6114. 2023-03-16 21:52:29,305 - INFO - main.py - train - 68 - 【train】 epoch:3 2191/2980 loss:0.9898
  6115. 2023-03-16 21:52:30,631 - INFO - main.py - train - 68 - 【train】 epoch:3 2192/2980 loss:13.7858
  6116. 2023-03-16 21:52:31,876 - INFO - main.py - train - 68 - 【train】 epoch:3 2193/2980 loss:10.6360
  6117. 2023-03-16 21:52:33,056 - INFO - main.py - train - 68 - 【train】 epoch:3 2194/2980 loss:1.2563
  6118. 2023-03-16 21:52:34,317 - INFO - main.py - train - 68 - 【train】 epoch:3 2195/2980 loss:7.5086
  6119. 2023-03-16 21:52:35,534 - INFO - main.py - train - 68 - 【train】 epoch:3 2196/2980 loss:3.9295
  6120. 2023-03-16 21:52:36,731 - INFO - main.py - train - 68 - 【train】 epoch:3 2197/2980 loss:3.1365
  6121. 2023-03-16 21:52:38,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2198/2980 loss:1.7349
  6122. 2023-03-16 21:52:39,249 - INFO - main.py - train - 68 - 【train】 epoch:3 2199/2980 loss:0.8717
  6123. 2023-03-16 21:52:40,582 - INFO - main.py - train - 68 - 【train】 epoch:3 2200/2980 loss:1.9891
  6124. 2023-03-16 21:52:41,927 - INFO - main.py - train - 68 - 【train】 epoch:3 2201/2980 loss:4.6183
  6125. 2023-03-16 21:52:43,193 - INFO - main.py - train - 68 - 【train】 epoch:3 2202/2980 loss:5.6639
  6126. 2023-03-16 21:52:44,394 - INFO - main.py - train - 68 - 【train】 epoch:3 2203/2980 loss:4.0051
  6127. 2023-03-16 21:52:45,563 - INFO - main.py - train - 68 - 【train】 epoch:3 2204/2980 loss:0.7376
  6128. 2023-03-16 21:52:46,756 - INFO - main.py - train - 68 - 【train】 epoch:3 2205/2980 loss:14.1290
  6129. 2023-03-16 21:52:47,957 - INFO - main.py - train - 68 - 【train】 epoch:3 2206/2980 loss:10.5585
  6130. 2023-03-16 21:52:49,264 - INFO - main.py - train - 68 - 【train】 epoch:3 2207/2980 loss:2.9450
  6131. 2023-03-16 21:52:50,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2208/2980 loss:9.3734
  6132. 2023-03-16 21:52:51,757 - INFO - main.py - train - 68 - 【train】 epoch:3 2209/2980 loss:17.4044
  6133. 2023-03-16 21:52:53,043 - INFO - main.py - train - 68 - 【train】 epoch:3 2210/2980 loss:7.5302
  6134. 2023-03-16 21:52:54,268 - INFO - main.py - train - 68 - 【train】 epoch:3 2211/2980 loss:12.4467
  6135. 2023-03-16 21:52:55,513 - INFO - main.py - train - 68 - 【train】 epoch:3 2212/2980 loss:7.7644
  6136. 2023-03-16 21:52:56,750 - INFO - main.py - train - 68 - 【train】 epoch:3 2213/2980 loss:6.1428
  6137. 2023-03-16 21:52:57,981 - INFO - main.py - train - 68 - 【train】 epoch:3 2214/2980 loss:13.4583
  6138. 2023-03-16 21:52:59,227 - INFO - main.py - train - 68 - 【train】 epoch:3 2215/2980 loss:3.8095
  6139. 2023-03-16 21:53:00,425 - INFO - main.py - train - 68 - 【train】 epoch:3 2216/2980 loss:6.2623
  6140. 2023-03-16 21:53:01,634 - INFO - main.py - train - 68 - 【train】 epoch:3 2217/2980 loss:11.2581
  6141. 2023-03-16 21:53:02,885 - INFO - main.py - train - 68 - 【train】 epoch:3 2218/2980 loss:1.8454
  6142. 2023-03-16 21:53:04,147 - INFO - main.py - train - 68 - 【train】 epoch:3 2219/2980 loss:3.6118
  6143. 2023-03-16 21:53:05,414 - INFO - main.py - train - 68 - 【train】 epoch:3 2220/2980 loss:3.0730
  6144. 2023-03-16 21:53:06,610 - INFO - main.py - train - 68 - 【train】 epoch:3 2221/2980 loss:5.0238
  6145. 2023-03-16 21:53:07,839 - INFO - main.py - train - 68 - 【train】 epoch:3 2222/2980 loss:4.9123
  6146. 2023-03-16 21:53:09,053 - INFO - main.py - train - 68 - 【train】 epoch:3 2223/2980 loss:3.6700
  6147. 2023-03-16 21:53:10,282 - INFO - main.py - train - 68 - 【train】 epoch:3 2224/2980 loss:7.2711
  6148. 2023-03-16 21:53:11,480 - INFO - main.py - train - 68 - 【train】 epoch:3 2225/2980 loss:9.7746
  6149. 2023-03-16 21:53:12,688 - INFO - main.py - train - 68 - 【train】 epoch:3 2226/2980 loss:3.8983
  6150. 2023-03-16 21:53:13,923 - INFO - main.py - train - 68 - 【train】 epoch:3 2227/2980 loss:15.1771
  6151. 2023-03-16 21:53:15,092 - INFO - main.py - train - 68 - 【train】 epoch:3 2228/2980 loss:5.0354
  6152. 2023-03-16 21:53:16,341 - INFO - main.py - train - 68 - 【train】 epoch:3 2229/2980 loss:14.7056
  6153. 2023-03-16 21:53:17,513 - INFO - main.py - train - 68 - 【train】 epoch:3 2230/2980 loss:9.2855
  6154. 2023-03-16 21:53:18,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2231/2980 loss:4.2774
  6155. 2023-03-16 21:53:19,886 - INFO - main.py - train - 68 - 【train】 epoch:3 2232/2980 loss:4.4036
  6156. 2023-03-16 21:53:21,062 - INFO - main.py - train - 68 - 【train】 epoch:3 2233/2980 loss:5.9547
  6157. 2023-03-16 21:53:22,248 - INFO - main.py - train - 68 - 【train】 epoch:3 2234/2980 loss:7.5780
  6158. 2023-03-16 21:53:23,412 - INFO - main.py - train - 68 - 【train】 epoch:3 2235/2980 loss:4.4642
  6159. 2023-03-16 21:53:24,571 - INFO - main.py - train - 68 - 【train】 epoch:3 2236/2980 loss:0.7790
  6160. 2023-03-16 21:53:25,766 - INFO - main.py - train - 68 - 【train】 epoch:3 2237/2980 loss:3.6047
  6161. 2023-03-16 21:53:26,931 - INFO - main.py - train - 68 - 【train】 epoch:3 2238/2980 loss:7.4725
  6162. 2023-03-16 21:53:28,113 - INFO - main.py - train - 68 - 【train】 epoch:3 2239/2980 loss:6.0835
  6163. 2023-03-16 21:53:29,273 - INFO - main.py - train - 68 - 【train】 epoch:3 2240/2980 loss:2.8024
  6164. 2023-03-16 21:53:30,478 - INFO - main.py - train - 68 - 【train】 epoch:3 2241/2980 loss:20.6905
  6165. 2023-03-16 21:53:31,686 - INFO - main.py - train - 68 - 【train】 epoch:3 2242/2980 loss:5.9360
  6166. 2023-03-16 21:53:32,851 - INFO - main.py - train - 68 - 【train】 epoch:3 2243/2980 loss:6.8396
  6167. 2023-03-16 21:53:34,036 - INFO - main.py - train - 68 - 【train】 epoch:3 2244/2980 loss:0.4811
  6168. 2023-03-16 21:53:35,231 - INFO - main.py - train - 68 - 【train】 epoch:3 2245/2980 loss:11.4253
  6169. 2023-03-16 21:53:36,585 - INFO - main.py - train - 68 - 【train】 epoch:3 2246/2980 loss:12.4943
  6170. 2023-03-16 21:53:37,847 - INFO - main.py - train - 68 - 【train】 epoch:3 2247/2980 loss:6.1755
  6171. 2023-03-16 21:53:39,028 - INFO - main.py - train - 68 - 【train】 epoch:3 2248/2980 loss:8.8965
  6172. 2023-03-16 21:53:40,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2249/2980 loss:0.1058
  6173. 2023-03-16 21:53:41,410 - INFO - main.py - train - 68 - 【train】 epoch:3 2250/2980 loss:5.5820
  6174. 2023-03-16 21:53:42,592 - INFO - main.py - train - 68 - 【train】 epoch:3 2251/2980 loss:10.7905
  6175. 2023-03-16 21:53:43,782 - INFO - main.py - train - 68 - 【train】 epoch:3 2252/2980 loss:7.7844
  6176. 2023-03-16 21:53:45,312 - INFO - main.py - train - 68 - 【train】 epoch:3 2253/2980 loss:7.7521
  6177. 2023-03-16 21:53:47,090 - INFO - main.py - train - 68 - 【train】 epoch:3 2254/2980 loss:2.6329
  6178. 2023-03-16 21:53:48,417 - INFO - main.py - train - 68 - 【train】 epoch:3 2255/2980 loss:12.3929
  6179. 2023-03-16 21:53:49,645 - INFO - main.py - train - 68 - 【train】 epoch:3 2256/2980 loss:1.2169
  6180. 2023-03-16 21:53:51,037 - INFO - main.py - train - 68 - 【train】 epoch:3 2257/2980 loss:10.0666
  6181. 2023-03-16 21:53:52,250 - INFO - main.py - train - 68 - 【train】 epoch:3 2258/2980 loss:14.4938
  6182. 2023-03-16 21:53:53,423 - INFO - main.py - train - 68 - 【train】 epoch:3 2259/2980 loss:4.0052
  6183. 2023-03-16 21:53:54,607 - INFO - main.py - train - 68 - 【train】 epoch:3 2260/2980 loss:1.5378
  6184. 2023-03-16 21:53:55,832 - INFO - main.py - train - 68 - 【train】 epoch:3 2261/2980 loss:9.2951
  6185. 2023-03-16 21:53:57,017 - INFO - main.py - train - 68 - 【train】 epoch:3 2262/2980 loss:3.7695
  6186. 2023-03-16 21:53:58,232 - INFO - main.py - train - 68 - 【train】 epoch:3 2263/2980 loss:7.9646
  6187. 2023-03-16 21:53:59,444 - INFO - main.py - train - 68 - 【train】 epoch:3 2264/2980 loss:0.8043
  6188. 2023-03-16 21:54:00,678 - INFO - main.py - train - 68 - 【train】 epoch:3 2265/2980 loss:7.1309
  6189. 2023-03-16 21:54:01,979 - INFO - main.py - train - 68 - 【train】 epoch:3 2266/2980 loss:20.3866
  6190. 2023-03-16 21:54:03,214 - INFO - main.py - train - 68 - 【train】 epoch:3 2267/2980 loss:14.0381
  6191. 2023-03-16 21:54:04,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2268/2980 loss:4.9230
  6192. 2023-03-16 21:54:05,653 - INFO - main.py - train - 68 - 【train】 epoch:3 2269/2980 loss:3.8512
  6193. 2023-03-16 21:54:06,848 - INFO - main.py - train - 68 - 【train】 epoch:3 2270/2980 loss:12.4315
  6194. 2023-03-16 21:54:08,174 - INFO - main.py - train - 68 - 【train】 epoch:3 2271/2980 loss:21.5428
  6195. 2023-03-16 21:54:09,404 - INFO - main.py - train - 68 - 【train】 epoch:3 2272/2980 loss:13.8162
  6196. 2023-03-16 21:54:10,587 - INFO - main.py - train - 68 - 【train】 epoch:3 2273/2980 loss:4.7848
  6197. 2023-03-16 21:54:11,767 - INFO - main.py - train - 68 - 【train】 epoch:3 2274/2980 loss:3.6486
  6198. 2023-03-16 21:54:12,962 - INFO - main.py - train - 68 - 【train】 epoch:3 2275/2980 loss:2.8970
  6199. 2023-03-16 21:54:14,162 - INFO - main.py - train - 68 - 【train】 epoch:3 2276/2980 loss:6.6760
  6200. 2023-03-16 21:54:15,364 - INFO - main.py - train - 68 - 【train】 epoch:3 2277/2980 loss:11.0469
  6201. 2023-03-16 21:54:16,573 - INFO - main.py - train - 68 - 【train】 epoch:3 2278/2980 loss:14.2970
  6202. 2023-03-16 21:54:17,813 - INFO - main.py - train - 68 - 【train】 epoch:3 2279/2980 loss:11.5812
  6203. 2023-03-16 21:54:36,082 - INFO - main.py - train - 68 - 【train】 epoch:3 2280/2980 loss:8.7079
  6204. 2023-03-16 21:54:37,271 - INFO - main.py - train - 68 - 【train】 epoch:3 2281/2980 loss:3.2765
  6205. 2023-03-16 21:54:38,439 - INFO - main.py - train - 68 - 【train】 epoch:3 2282/2980 loss:14.3670
  6206. 2023-03-16 21:54:39,625 - INFO - main.py - train - 68 - 【train】 epoch:3 2283/2980 loss:15.0068
  6207. 2023-03-16 21:54:40,807 - INFO - main.py - train - 68 - 【train】 epoch:3 2284/2980 loss:15.5822
  6208. 2023-03-16 21:54:42,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2285/2980 loss:21.5708
  6209. 2023-03-16 21:54:43,183 - INFO - main.py - train - 68 - 【train】 epoch:3 2286/2980 loss:4.1654
  6210. 2023-03-16 21:54:44,374 - INFO - main.py - train - 68 - 【train】 epoch:3 2287/2980 loss:5.0691
  6211. 2023-03-16 21:54:45,575 - INFO - main.py - train - 68 - 【train】 epoch:3 2288/2980 loss:10.4108
  6212. 2023-03-16 21:54:46,738 - INFO - main.py - train - 68 - 【train】 epoch:3 2289/2980 loss:2.2723
  6213. 2023-03-16 21:54:47,943 - INFO - main.py - train - 68 - 【train】 epoch:3 2290/2980 loss:15.5380
  6214. 2023-03-16 21:54:49,107 - INFO - main.py - train - 68 - 【train】 epoch:3 2291/2980 loss:1.1231
  6215. 2023-03-16 21:54:50,271 - INFO - main.py - train - 68 - 【train】 epoch:3 2292/2980 loss:6.5693
  6216. 2023-03-16 21:54:51,482 - INFO - main.py - train - 68 - 【train】 epoch:3 2293/2980 loss:2.5788
  6217. 2023-03-16 21:54:52,666 - INFO - main.py - train - 68 - 【train】 epoch:3 2294/2980 loss:5.9412
  6218. 2023-03-16 21:54:53,823 - INFO - main.py - train - 68 - 【train】 epoch:3 2295/2980 loss:6.1054
  6219. 2023-03-16 21:54:54,967 - INFO - main.py - train - 68 - 【train】 epoch:3 2296/2980 loss:4.2172
  6220. 2023-03-16 21:54:56,182 - INFO - main.py - train - 68 - 【train】 epoch:3 2297/2980 loss:9.5686
  6221. 2023-03-16 21:54:57,347 - INFO - main.py - train - 68 - 【train】 epoch:3 2298/2980 loss:5.7407
  6222. 2023-03-16 21:54:58,495 - INFO - main.py - train - 68 - 【train】 epoch:3 2299/2980 loss:2.5736
  6223. 2023-03-16 21:54:59,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2300/2980 loss:6.9873
  6224. 2023-03-16 21:55:00,842 - INFO - main.py - train - 68 - 【train】 epoch:3 2301/2980 loss:2.5624
  6225. 2023-03-16 21:55:02,038 - INFO - main.py - train - 68 - 【train】 epoch:3 2302/2980 loss:8.4458
  6226. 2023-03-16 21:55:03,199 - INFO - main.py - train - 68 - 【train】 epoch:3 2303/2980 loss:7.7494
  6227. 2023-03-16 21:55:04,386 - INFO - main.py - train - 68 - 【train】 epoch:3 2304/2980 loss:5.0353
  6228. 2023-03-16 21:55:05,539 - INFO - main.py - train - 68 - 【train】 epoch:3 2305/2980 loss:0.9487
  6229. 2023-03-16 21:55:06,731 - INFO - main.py - train - 68 - 【train】 epoch:3 2306/2980 loss:5.6448
  6230. 2023-03-16 21:55:07,946 - INFO - main.py - train - 68 - 【train】 epoch:3 2307/2980 loss:1.4849
  6231. 2023-03-16 21:55:09,138 - INFO - main.py - train - 68 - 【train】 epoch:3 2308/2980 loss:8.5021
  6232. 2023-03-16 21:55:10,302 - INFO - main.py - train - 68 - 【train】 epoch:3 2309/2980 loss:4.3726
  6233. 2023-03-16 21:55:11,486 - INFO - main.py - train - 68 - 【train】 epoch:3 2310/2980 loss:8.2763
  6234. 2023-03-16 21:55:12,657 - INFO - main.py - train - 68 - 【train】 epoch:3 2311/2980 loss:9.1586
  6235. 2023-03-16 21:55:13,897 - INFO - main.py - train - 68 - 【train】 epoch:3 2312/2980 loss:7.2343
  6236. 2023-03-16 21:55:15,416 - INFO - main.py - train - 68 - 【train】 epoch:3 2313/2980 loss:15.3636
  6237. 2023-03-16 21:55:16,913 - INFO - main.py - train - 68 - 【train】 epoch:3 2314/2980 loss:20.9170
  6238. 2023-03-16 21:55:18,561 - INFO - main.py - train - 68 - 【train】 epoch:3 2315/2980 loss:7.5117
  6239. 2023-03-16 21:55:20,419 - INFO - main.py - train - 68 - 【train】 epoch:3 2316/2980 loss:7.6623
  6240. 2023-03-16 21:55:22,530 - INFO - main.py - train - 68 - 【train】 epoch:3 2317/2980 loss:17.8658
  6241. 2023-03-16 21:55:24,206 - INFO - main.py - train - 68 - 【train】 epoch:3 2318/2980 loss:8.9532
  6242. 2023-03-16 21:55:26,336 - INFO - main.py - train - 68 - 【train】 epoch:3 2319/2980 loss:0.9621
  6243. 2023-03-16 21:55:28,009 - INFO - main.py - train - 68 - 【train】 epoch:3 2320/2980 loss:10.8712
  6244. 2023-03-16 21:55:29,851 - INFO - main.py - train - 68 - 【train】 epoch:3 2321/2980 loss:2.5052
  6245. 2023-03-16 21:55:31,782 - INFO - main.py - train - 68 - 【train】 epoch:3 2322/2980 loss:0.9874
  6246. 2023-03-16 21:55:33,554 - INFO - main.py - train - 68 - 【train】 epoch:3 2323/2980 loss:2.6620
  6247. 2023-03-16 21:55:35,573 - INFO - main.py - train - 68 - 【train】 epoch:3 2324/2980 loss:7.4999
  6248. 2023-03-16 21:55:37,662 - INFO - main.py - train - 68 - 【train】 epoch:3 2325/2980 loss:28.8482
  6249. 2023-03-16 21:55:40,048 - INFO - main.py - train - 68 - 【train】 epoch:3 2326/2980 loss:6.0940
  6250. 2023-03-16 21:55:43,191 - INFO - main.py - train - 68 - 【train】 epoch:3 2327/2980 loss:4.1943
  6251. 2023-03-16 21:55:46,280 - INFO - main.py - train - 68 - 【train】 epoch:3 2328/2980 loss:3.9247
  6252. 2023-03-16 21:55:49,514 - INFO - main.py - train - 68 - 【train】 epoch:3 2329/2980 loss:5.5150
  6253. 2023-03-16 21:55:52,120 - INFO - main.py - train - 68 - 【train】 epoch:3 2330/2980 loss:15.5492
  6254. 2023-03-16 21:55:54,097 - INFO - main.py - train - 68 - 【train】 epoch:3 2331/2980 loss:3.0328
  6255. 2023-03-16 21:55:57,137 - INFO - main.py - train - 68 - 【train】 epoch:3 2332/2980 loss:1.9298
  6256. 2023-03-16 21:55:58,697 - INFO - main.py - train - 68 - 【train】 epoch:3 2333/2980 loss:5.6623
  6257. 2023-03-16 21:55:59,862 - INFO - main.py - train - 68 - 【train】 epoch:3 2334/2980 loss:4.8131
  6258. 2023-03-16 21:56:01,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2335/2980 loss:4.3706
  6259. 2023-03-16 21:56:02,450 - INFO - main.py - train - 68 - 【train】 epoch:3 2336/2980 loss:12.2720
  6260. 2023-03-16 21:56:03,684 - INFO - main.py - train - 68 - 【train】 epoch:3 2337/2980 loss:3.2036
  6261. 2023-03-16 21:56:04,998 - INFO - main.py - train - 68 - 【train】 epoch:3 2338/2980 loss:19.9513
  6262. 2023-03-16 21:56:06,328 - INFO - main.py - train - 68 - 【train】 epoch:3 2339/2980 loss:7.1602
  6263. 2023-03-16 21:56:07,611 - INFO - main.py - train - 68 - 【train】 epoch:3 2340/2980 loss:1.5387
  6264. 2023-03-16 21:56:09,016 - INFO - main.py - train - 68 - 【train】 epoch:3 2341/2980 loss:15.0990
  6265. 2023-03-16 21:56:10,459 - INFO - main.py - train - 68 - 【train】 epoch:3 2342/2980 loss:18.9554
  6266. 2023-03-16 21:56:11,864 - INFO - main.py - train - 68 - 【train】 epoch:3 2343/2980 loss:10.2717
  6267. 2023-03-16 21:56:13,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2344/2980 loss:3.1550
  6268. 2023-03-16 21:56:14,579 - INFO - main.py - train - 68 - 【train】 epoch:3 2345/2980 loss:9.9683
  6269. 2023-03-16 21:56:15,949 - INFO - main.py - train - 68 - 【train】 epoch:3 2346/2980 loss:4.2858
  6270. 2023-03-16 21:56:17,225 - INFO - main.py - train - 68 - 【train】 epoch:3 2347/2980 loss:5.5258
  6271. 2023-03-16 21:56:18,463 - INFO - main.py - train - 68 - 【train】 epoch:3 2348/2980 loss:16.5648
  6272. 2023-03-16 21:56:19,757 - INFO - main.py - train - 68 - 【train】 epoch:3 2349/2980 loss:7.6458
  6273. 2023-03-16 21:56:21,064 - INFO - main.py - train - 68 - 【train】 epoch:3 2350/2980 loss:14.7271
  6274. 2023-03-16 21:56:22,409 - INFO - main.py - train - 68 - 【train】 epoch:3 2351/2980 loss:4.2147
  6275. 2023-03-16 21:56:23,664 - INFO - main.py - train - 68 - 【train】 epoch:3 2352/2980 loss:1.1228
  6276. 2023-03-16 21:56:24,901 - INFO - main.py - train - 68 - 【train】 epoch:3 2353/2980 loss:1.7866
  6277. 2023-03-16 21:56:26,166 - INFO - main.py - train - 68 - 【train】 epoch:3 2354/2980 loss:0.7530
  6278. 2023-03-16 21:56:27,564 - INFO - main.py - train - 68 - 【train】 epoch:3 2355/2980 loss:7.0727
  6279. 2023-03-16 21:56:28,885 - INFO - main.py - train - 68 - 【train】 epoch:3 2356/2980 loss:1.4040
  6280. 2023-03-16 21:56:30,254 - INFO - main.py - train - 68 - 【train】 epoch:3 2357/2980 loss:8.6743
  6281. 2023-03-16 21:56:31,497 - INFO - main.py - train - 68 - 【train】 epoch:3 2358/2980 loss:5.4928
  6282. 2023-03-16 21:56:32,643 - INFO - main.py - train - 68 - 【train】 epoch:3 2359/2980 loss:0.4605
  6283. 2023-03-16 21:56:33,848 - INFO - main.py - train - 68 - 【train】 epoch:3 2360/2980 loss:8.2881
  6284. 2023-03-16 21:56:35,024 - INFO - main.py - train - 68 - 【train】 epoch:3 2361/2980 loss:12.0286
  6285. 2023-03-16 21:56:36,348 - INFO - main.py - train - 68 - 【train】 epoch:3 2362/2980 loss:1.0911
  6286. 2023-03-16 21:56:37,533 - INFO - main.py - train - 68 - 【train】 epoch:3 2363/2980 loss:28.4987
  6287. 2023-03-16 21:56:38,737 - INFO - main.py - train - 68 - 【train】 epoch:3 2364/2980 loss:35.3996
  6288. 2023-03-16 21:56:39,932 - INFO - main.py - train - 68 - 【train】 epoch:3 2365/2980 loss:1.7410
  6289. 2023-03-16 21:56:41,133 - INFO - main.py - train - 68 - 【train】 epoch:3 2366/2980 loss:12.5596
  6290. 2023-03-16 21:56:42,358 - INFO - main.py - train - 68 - 【train】 epoch:3 2367/2980 loss:18.8136
  6291. 2023-03-16 21:56:43,559 - INFO - main.py - train - 68 - 【train】 epoch:3 2368/2980 loss:11.9679
  6292. 2023-03-16 21:56:44,759 - INFO - main.py - train - 68 - 【train】 epoch:3 2369/2980 loss:10.3065
  6293. 2023-03-16 21:56:46,011 - INFO - main.py - train - 68 - 【train】 epoch:3 2370/2980 loss:5.4566
  6294. 2023-03-16 21:56:47,211 - INFO - main.py - train - 68 - 【train】 epoch:3 2371/2980 loss:4.6214
  6295. 2023-03-16 21:56:48,425 - INFO - main.py - train - 68 - 【train】 epoch:3 2372/2980 loss:2.5438
  6296. 2023-03-16 21:56:49,724 - INFO - main.py - train - 68 - 【train】 epoch:3 2373/2980 loss:3.1037
  6297. 2023-03-16 21:56:50,992 - INFO - main.py - train - 68 - 【train】 epoch:3 2374/2980 loss:5.1085
  6298. 2023-03-16 21:56:52,224 - INFO - main.py - train - 68 - 【train】 epoch:3 2375/2980 loss:13.1856
  6299. 2023-03-16 21:56:53,434 - INFO - main.py - train - 68 - 【train】 epoch:3 2376/2980 loss:3.2422
  6300. 2023-03-16 21:56:54,640 - INFO - main.py - train - 68 - 【train】 epoch:3 2377/2980 loss:5.0503
  6301. 2023-03-16 21:56:55,816 - INFO - main.py - train - 68 - 【train】 epoch:3 2378/2980 loss:0.7988
  6302. 2023-03-16 21:56:57,060 - INFO - main.py - train - 68 - 【train】 epoch:3 2379/2980 loss:1.3597
  6303. 2023-03-16 21:56:58,262 - INFO - main.py - train - 68 - 【train】 epoch:3 2380/2980 loss:17.3126
  6304. 2023-03-16 21:56:59,475 - INFO - main.py - train - 68 - 【train】 epoch:3 2381/2980 loss:6.7341
  6305. 2023-03-16 21:57:00,669 - INFO - main.py - train - 68 - 【train】 epoch:3 2382/2980 loss:4.4857
  6306. 2023-03-16 21:57:01,873 - INFO - main.py - train - 68 - 【train】 epoch:3 2383/2980 loss:10.4063
  6307. 2023-03-16 21:57:19,518 - INFO - main.py - train - 68 - 【train】 epoch:4 2384/2980 loss:3.7946
  6308. 2023-03-16 21:57:24,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2385/2980 loss:4.5877
  6309. 2023-03-16 21:57:26,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2386/2980 loss:4.1698
  6310. 2023-03-16 21:57:28,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2387/2980 loss:19.0448
  6311. 2023-03-16 21:57:30,136 - INFO - main.py - train - 68 - 【train】 epoch:4 2388/2980 loss:0.5276
  6312. 2023-03-16 21:57:31,356 - INFO - main.py - train - 68 - 【train】 epoch:4 2389/2980 loss:11.2641
  6313. 2023-03-16 21:57:32,669 - INFO - main.py - train - 68 - 【train】 epoch:4 2390/2980 loss:4.3349
  6314. 2023-03-16 21:57:33,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2391/2980 loss:6.8896
  6315. 2023-03-16 21:57:35,246 - INFO - main.py - train - 68 - 【train】 epoch:4 2392/2980 loss:9.2762
  6316. 2023-03-16 21:57:36,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2393/2980 loss:5.4217
  6317. 2023-03-16 21:57:37,640 - INFO - main.py - train - 68 - 【train】 epoch:4 2394/2980 loss:0.5178
  6318. 2023-03-16 21:57:38,838 - INFO - main.py - train - 68 - 【train】 epoch:4 2395/2980 loss:7.9527
  6319. 2023-03-16 21:57:40,067 - INFO - main.py - train - 68 - 【train】 epoch:4 2396/2980 loss:14.7309
  6320. 2023-03-16 21:57:41,262 - INFO - main.py - train - 68 - 【train】 epoch:4 2397/2980 loss:2.9995
  6321. 2023-03-16 21:57:42,433 - INFO - main.py - train - 68 - 【train】 epoch:4 2398/2980 loss:1.5846
  6322. 2023-03-16 21:57:43,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2399/2980 loss:21.1471
  6323. 2023-03-16 21:57:44,780 - INFO - main.py - train - 68 - 【train】 epoch:4 2400/2980 loss:3.4910
  6324. 2023-03-16 21:57:45,963 - INFO - main.py - train - 68 - 【train】 epoch:4 2401/2980 loss:5.7843
  6325. 2023-03-16 21:57:47,127 - INFO - main.py - train - 68 - 【train】 epoch:4 2402/2980 loss:1.0174
  6326. 2023-03-16 21:57:48,281 - INFO - main.py - train - 68 - 【train】 epoch:4 2403/2980 loss:10.7826
  6327. 2023-03-16 21:57:49,475 - INFO - main.py - train - 68 - 【train】 epoch:4 2404/2980 loss:23.0015
  6328. 2023-03-16 21:57:50,626 - INFO - main.py - train - 68 - 【train】 epoch:4 2405/2980 loss:4.1696
  6329. 2023-03-16 21:57:51,822 - INFO - main.py - train - 68 - 【train】 epoch:4 2406/2980 loss:5.2696
  6330. 2023-03-16 21:57:53,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2407/2980 loss:8.4828
  6331. 2023-03-16 21:57:54,202 - INFO - main.py - train - 68 - 【train】 epoch:4 2408/2980 loss:14.7562
  6332. 2023-03-16 21:57:55,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2409/2980 loss:18.6397
  6333. 2023-03-16 21:57:56,554 - INFO - main.py - train - 68 - 【train】 epoch:4 2410/2980 loss:3.4422
  6334. 2023-03-16 21:57:57,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2411/2980 loss:5.1592
  6335. 2023-03-16 21:57:58,964 - INFO - main.py - train - 68 - 【train】 epoch:4 2412/2980 loss:6.9006
  6336. 2023-03-16 21:58:00,227 - INFO - main.py - train - 68 - 【train】 epoch:4 2413/2980 loss:0.2353
  6337. 2023-03-16 21:58:01,419 - INFO - main.py - train - 68 - 【train】 epoch:4 2414/2980 loss:6.7004
  6338. 2023-03-16 21:58:02,882 - INFO - main.py - train - 68 - 【train】 epoch:4 2415/2980 loss:2.1496
  6339. 2023-03-16 21:58:04,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2416/2980 loss:6.2101
  6340. 2023-03-16 21:58:05,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2417/2980 loss:5.3059
  6341. 2023-03-16 21:58:06,550 - INFO - main.py - train - 68 - 【train】 epoch:4 2418/2980 loss:6.7722
  6342. 2023-03-16 21:58:07,713 - INFO - main.py - train - 68 - 【train】 epoch:4 2419/2980 loss:4.8422
  6343. 2023-03-16 21:58:08,882 - INFO - main.py - train - 68 - 【train】 epoch:4 2420/2980 loss:3.3344
  6344. 2023-03-16 21:58:10,072 - INFO - main.py - train - 68 - 【train】 epoch:4 2421/2980 loss:9.1411
  6345. 2023-03-16 21:58:11,243 - INFO - main.py - train - 68 - 【train】 epoch:4 2422/2980 loss:1.9151
  6346. 2023-03-16 21:58:12,433 - INFO - main.py - train - 68 - 【train】 epoch:4 2423/2980 loss:8.7279
  6347. 2023-03-16 21:58:13,646 - INFO - main.py - train - 68 - 【train】 epoch:4 2424/2980 loss:1.7422
  6348. 2023-03-16 21:58:14,858 - INFO - main.py - train - 68 - 【train】 epoch:4 2425/2980 loss:21.0368
  6349. 2023-03-16 21:58:16,097 - INFO - main.py - train - 68 - 【train】 epoch:4 2426/2980 loss:8.1207
  6350. 2023-03-16 21:58:17,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2427/2980 loss:0.6170
  6351. 2023-03-16 21:58:18,514 - INFO - main.py - train - 68 - 【train】 epoch:4 2428/2980 loss:1.3440
  6352. 2023-03-16 21:58:19,743 - INFO - main.py - train - 68 - 【train】 epoch:4 2429/2980 loss:5.3277
  6353. 2023-03-16 21:58:20,948 - INFO - main.py - train - 68 - 【train】 epoch:4 2430/2980 loss:5.1631
  6354. 2023-03-16 21:58:22,223 - INFO - main.py - train - 68 - 【train】 epoch:4 2431/2980 loss:1.8176
  6355. 2023-03-16 21:58:23,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2432/2980 loss:0.1838
  6356. 2023-03-16 21:58:24,755 - INFO - main.py - train - 68 - 【train】 epoch:4 2433/2980 loss:4.9519
  6357. 2023-03-16 21:58:26,092 - INFO - main.py - train - 68 - 【train】 epoch:4 2434/2980 loss:4.3717
  6358. 2023-03-16 21:58:27,373 - INFO - main.py - train - 68 - 【train】 epoch:4 2435/2980 loss:6.1326
  6359. 2023-03-16 21:58:28,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2436/2980 loss:7.6501
  6360. 2023-03-16 21:58:30,052 - INFO - main.py - train - 68 - 【train】 epoch:4 2437/2980 loss:12.1069
  6361. 2023-03-16 21:58:31,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2438/2980 loss:1.5005
  6362. 2023-03-16 21:58:32,763 - INFO - main.py - train - 68 - 【train】 epoch:4 2439/2980 loss:15.0573
  6363. 2023-03-16 21:58:34,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2440/2980 loss:3.3348
  6364. 2023-03-16 21:58:35,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2441/2980 loss:0.1319
  6365. 2023-03-16 21:58:36,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2442/2980 loss:3.7132
  6366. 2023-03-16 21:58:38,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2443/2980 loss:2.4886
  6367. 2023-03-16 21:58:39,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2444/2980 loss:6.3386
  6368. 2023-03-16 21:58:40,847 - INFO - main.py - train - 68 - 【train】 epoch:4 2445/2980 loss:3.5605
  6369. 2023-03-16 21:58:42,153 - INFO - main.py - train - 68 - 【train】 epoch:4 2446/2980 loss:2.6368
  6370. 2023-03-16 21:58:43,503 - INFO - main.py - train - 68 - 【train】 epoch:4 2447/2980 loss:3.9954
  6371. 2023-03-16 21:58:44,824 - INFO - main.py - train - 68 - 【train】 epoch:4 2448/2980 loss:1.9797
  6372. 2023-03-16 21:58:46,173 - INFO - main.py - train - 68 - 【train】 epoch:4 2449/2980 loss:1.7647
  6373. 2023-03-16 21:58:47,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2450/2980 loss:22.4783
  6374. 2023-03-16 21:58:48,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2451/2980 loss:1.5074
  6375. 2023-03-16 21:58:50,254 - INFO - main.py - train - 68 - 【train】 epoch:4 2452/2980 loss:6.0678
  6376. 2023-03-16 21:58:51,596 - INFO - main.py - train - 68 - 【train】 epoch:4 2453/2980 loss:20.1436
  6377. 2023-03-16 21:58:52,917 - INFO - main.py - train - 68 - 【train】 epoch:4 2454/2980 loss:0.7919
  6378. 2023-03-16 21:58:54,333 - INFO - main.py - train - 68 - 【train】 epoch:4 2455/2980 loss:5.9681
  6379. 2023-03-16 21:58:55,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2456/2980 loss:4.8772
  6380. 2023-03-16 21:58:56,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2457/2980 loss:8.3555
  6381. 2023-03-16 21:58:58,350 - INFO - main.py - train - 68 - 【train】 epoch:4 2458/2980 loss:5.5362
  6382. 2023-03-16 21:58:59,676 - INFO - main.py - train - 68 - 【train】 epoch:4 2459/2980 loss:6.2789
  6383. 2023-03-16 21:59:01,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2460/2980 loss:12.7889
  6384. 2023-03-16 21:59:02,379 - INFO - main.py - train - 68 - 【train】 epoch:4 2461/2980 loss:3.5441
  6385. 2023-03-16 21:59:03,718 - INFO - main.py - train - 68 - 【train】 epoch:4 2462/2980 loss:5.3305
  6386. 2023-03-16 21:59:05,065 - INFO - main.py - train - 68 - 【train】 epoch:4 2463/2980 loss:8.4334
  6387. 2023-03-16 21:59:06,426 - INFO - main.py - train - 68 - 【train】 epoch:4 2464/2980 loss:3.1346
  6388. 2023-03-16 21:59:07,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2465/2980 loss:3.6263
  6389. 2023-03-16 21:59:09,073 - INFO - main.py - train - 68 - 【train】 epoch:4 2466/2980 loss:10.9372
  6390. 2023-03-16 21:59:10,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2467/2980 loss:7.3587
  6391. 2023-03-16 21:59:11,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2468/2980 loss:7.4816
  6392. 2023-03-16 21:59:13,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2469/2980 loss:0.6992
  6393. 2023-03-16 21:59:14,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2470/2980 loss:5.9881
  6394. 2023-03-16 21:59:15,768 - INFO - main.py - train - 68 - 【train】 epoch:4 2471/2980 loss:1.2503
  6395. 2023-03-16 21:59:17,080 - INFO - main.py - train - 68 - 【train】 epoch:4 2472/2980 loss:1.5556
  6396. 2023-03-16 21:59:18,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2473/2980 loss:6.1608
  6397. 2023-03-16 21:59:19,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2474/2980 loss:7.5341
  6398. 2023-03-16 21:59:21,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2475/2980 loss:9.1824
  6399. 2023-03-16 21:59:22,622 - INFO - main.py - train - 68 - 【train】 epoch:4 2476/2980 loss:18.8884
  6400. 2023-03-16 21:59:23,964 - INFO - main.py - train - 68 - 【train】 epoch:4 2477/2980 loss:7.1497
  6401. 2023-03-16 21:59:25,270 - INFO - main.py - train - 68 - 【train】 epoch:4 2478/2980 loss:6.0367
  6402. 2023-03-16 21:59:26,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2479/2980 loss:2.8185
  6403. 2023-03-16 21:59:27,952 - INFO - main.py - train - 68 - 【train】 epoch:4 2480/2980 loss:9.4971
  6404. 2023-03-16 21:59:29,295 - INFO - main.py - train - 68 - 【train】 epoch:4 2481/2980 loss:5.3712
  6405. 2023-03-16 21:59:30,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2482/2980 loss:5.8705
  6406. 2023-03-16 21:59:31,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2483/2980 loss:7.6073
  6407. 2023-03-16 21:59:33,312 - INFO - main.py - train - 68 - 【train】 epoch:4 2484/2980 loss:1.7253
  6408. 2023-03-16 21:59:34,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2485/2980 loss:5.0420
  6409. 2023-03-16 21:59:36,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2486/2980 loss:4.4145
  6410. 2023-03-16 21:59:37,313 - INFO - main.py - train - 68 - 【train】 epoch:4 2487/2980 loss:0.4729
  6411. 2023-03-16 21:59:38,664 - INFO - main.py - train - 68 - 【train】 epoch:4 2488/2980 loss:7.7479
  6412. 2023-03-16 21:59:39,981 - INFO - main.py - train - 68 - 【train】 epoch:4 2489/2980 loss:3.5576
  6413. 2023-03-16 21:59:41,287 - INFO - main.py - train - 68 - 【train】 epoch:4 2490/2980 loss:4.0934
  6414. 2023-03-16 21:59:42,592 - INFO - main.py - train - 68 - 【train】 epoch:4 2491/2980 loss:2.8595
  6415. 2023-03-16 21:59:43,926 - INFO - main.py - train - 68 - 【train】 epoch:4 2492/2980 loss:3.8099
  6416. 2023-03-16 21:59:45,263 - INFO - main.py - train - 68 - 【train】 epoch:4 2493/2980 loss:6.5485
  6417. 2023-03-16 21:59:46,734 - INFO - main.py - train - 68 - 【train】 epoch:4 2494/2980 loss:8.2138
  6418. 2023-03-16 21:59:48,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2495/2980 loss:3.9292
  6419. 2023-03-16 21:59:49,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2496/2980 loss:5.9166
  6420. 2023-03-16 21:59:50,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2497/2980 loss:2.2163
  6421. 2023-03-16 21:59:52,021 - INFO - main.py - train - 68 - 【train】 epoch:4 2498/2980 loss:3.1621
  6422. 2023-03-16 21:59:53,393 - INFO - main.py - train - 68 - 【train】 epoch:4 2499/2980 loss:3.1668
  6423. 2023-03-16 21:59:54,741 - INFO - main.py - train - 68 - 【train】 epoch:4 2500/2980 loss:17.0260
  6424. 2023-03-16 21:59:56,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2501/2980 loss:5.9708
  6425. 2023-03-16 21:59:57,484 - INFO - main.py - train - 68 - 【train】 epoch:4 2502/2980 loss:5.2233
  6426. 2023-03-16 21:59:58,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2503/2980 loss:7.0187
  6427. 2023-03-16 22:00:00,192 - INFO - main.py - train - 68 - 【train】 epoch:4 2504/2980 loss:5.8157
  6428. 2023-03-16 22:00:01,581 - INFO - main.py - train - 68 - 【train】 epoch:4 2505/2980 loss:1.8179
  6429. 2023-03-16 22:00:02,936 - INFO - main.py - train - 68 - 【train】 epoch:4 2506/2980 loss:6.4124
  6430. 2023-03-16 22:00:04,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2507/2980 loss:3.5283
  6431. 2023-03-16 22:00:05,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2508/2980 loss:5.7976
  6432. 2023-03-16 22:00:06,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2509/2980 loss:1.3277
  6433. 2023-03-16 22:00:08,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2510/2980 loss:11.4117
  6434. 2023-03-16 22:00:09,655 - INFO - main.py - train - 68 - 【train】 epoch:4 2511/2980 loss:2.7727
  6435. 2023-03-16 22:00:10,955 - INFO - main.py - train - 68 - 【train】 epoch:4 2512/2980 loss:2.8278
  6436. 2023-03-16 22:00:12,373 - INFO - main.py - train - 68 - 【train】 epoch:4 2513/2980 loss:9.7751
  6437. 2023-03-16 22:00:13,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2514/2980 loss:1.6276
  6438. 2023-03-16 22:00:15,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2515/2980 loss:4.4977
  6439. 2023-03-16 22:00:16,513 - INFO - main.py - train - 68 - 【train】 epoch:4 2516/2980 loss:1.8309
  6440. 2023-03-16 22:00:17,873 - INFO - main.py - train - 68 - 【train】 epoch:4 2517/2980 loss:2.9919
  6441. 2023-03-16 22:00:19,189 - INFO - main.py - train - 68 - 【train】 epoch:4 2518/2980 loss:2.4449
  6442. 2023-03-16 22:00:20,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2519/2980 loss:2.6952
  6443. 2023-03-16 22:00:21,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2520/2980 loss:13.6826
  6444. 2023-03-16 22:00:23,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2521/2980 loss:8.7818
  6445. 2023-03-16 22:00:24,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2522/2980 loss:16.6870
  6446. 2023-03-16 22:00:25,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2523/2980 loss:2.1380
  6447. 2023-03-16 22:00:27,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2524/2980 loss:5.1917
  6448. 2023-03-16 22:00:28,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2525/2980 loss:3.1188
  6449. 2023-03-16 22:00:30,035 - INFO - main.py - train - 68 - 【train】 epoch:4 2526/2980 loss:1.2992
  6450. 2023-03-16 22:00:31,485 - INFO - main.py - train - 68 - 【train】 epoch:4 2527/2980 loss:6.2837
  6451. 2023-03-16 22:00:32,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2528/2980 loss:5.0028
  6452. 2023-03-16 22:00:34,172 - INFO - main.py - train - 68 - 【train】 epoch:4 2529/2980 loss:1.8169
  6453. 2023-03-16 22:00:35,512 - INFO - main.py - train - 68 - 【train】 epoch:4 2530/2980 loss:2.1829
  6454. 2023-03-16 22:00:36,841 - INFO - main.py - train - 68 - 【train】 epoch:4 2531/2980 loss:6.5795
  6455. 2023-03-16 22:00:38,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2532/2980 loss:2.0736
  6456. 2023-03-16 22:00:39,756 - INFO - main.py - train - 68 - 【train】 epoch:4 2533/2980 loss:2.2470
  6457. 2023-03-16 22:00:41,072 - INFO - main.py - train - 68 - 【train】 epoch:4 2534/2980 loss:6.7636
  6458. 2023-03-16 22:00:42,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2535/2980 loss:5.1861
  6459. 2023-03-16 22:00:43,783 - INFO - main.py - train - 68 - 【train】 epoch:4 2536/2980 loss:4.3440
  6460. 2023-03-16 22:00:45,266 - INFO - main.py - train - 68 - 【train】 epoch:4 2537/2980 loss:11.5551
  6461. 2023-03-16 22:00:46,616 - INFO - main.py - train - 68 - 【train】 epoch:4 2538/2980 loss:7.0666
  6462. 2023-03-16 22:00:47,933 - INFO - main.py - train - 68 - 【train】 epoch:4 2539/2980 loss:17.8271
  6463. 2023-03-16 22:00:49,315 - INFO - main.py - train - 68 - 【train】 epoch:4 2540/2980 loss:9.8008
  6464. 2023-03-16 22:00:50,689 - INFO - main.py - train - 68 - 【train】 epoch:4 2541/2980 loss:1.2220
  6465. 2023-03-16 22:00:52,034 - INFO - main.py - train - 68 - 【train】 epoch:4 2542/2980 loss:2.3628
  6466. 2023-03-16 22:00:53,383 - INFO - main.py - train - 68 - 【train】 epoch:4 2543/2980 loss:2.0108
  6467. 2023-03-16 22:00:54,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2544/2980 loss:4.6852
  6468. 2023-03-16 22:00:56,091 - INFO - main.py - train - 68 - 【train】 epoch:4 2545/2980 loss:2.1421
  6469. 2023-03-16 22:00:57,408 - INFO - main.py - train - 68 - 【train】 epoch:4 2546/2980 loss:2.6386
  6470. 2023-03-16 22:00:58,774 - INFO - main.py - train - 68 - 【train】 epoch:4 2547/2980 loss:1.9725
  6471. 2023-03-16 22:01:00,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2548/2980 loss:4.9826
  6472. 2023-03-16 22:01:01,492 - INFO - main.py - train - 68 - 【train】 epoch:4 2549/2980 loss:6.5082
  6473. 2023-03-16 22:01:02,821 - INFO - main.py - train - 68 - 【train】 epoch:4 2550/2980 loss:0.8829
  6474. 2023-03-16 22:01:04,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2551/2980 loss:25.6938
  6475. 2023-03-16 22:01:05,496 - INFO - main.py - train - 68 - 【train】 epoch:4 2552/2980 loss:5.4228
  6476. 2023-03-16 22:01:06,846 - INFO - main.py - train - 68 - 【train】 epoch:4 2553/2980 loss:3.1235
  6477. 2023-03-16 22:01:08,145 - INFO - main.py - train - 68 - 【train】 epoch:4 2554/2980 loss:7.1514
  6478. 2023-03-16 22:01:09,477 - INFO - main.py - train - 68 - 【train】 epoch:4 2555/2980 loss:3.1330
  6479. 2023-03-16 22:01:10,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2556/2980 loss:2.1899
  6480. 2023-03-16 22:01:12,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2557/2980 loss:1.3086
  6481. 2023-03-16 22:01:13,578 - INFO - main.py - train - 68 - 【train】 epoch:4 2558/2980 loss:19.6806
  6482. 2023-03-16 22:01:14,895 - INFO - main.py - train - 68 - 【train】 epoch:4 2559/2980 loss:8.3599
  6483. 2023-03-16 22:01:16,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2560/2980 loss:3.0890
  6484. 2023-03-16 22:01:17,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2561/2980 loss:12.3642
  6485. 2023-03-16 22:01:18,977 - INFO - main.py - train - 68 - 【train】 epoch:4 2562/2980 loss:1.4335
  6486. 2023-03-16 22:01:20,316 - INFO - main.py - train - 68 - 【train】 epoch:4 2563/2980 loss:5.0586
  6487. 2023-03-16 22:01:21,642 - INFO - main.py - train - 68 - 【train】 epoch:4 2564/2980 loss:10.4054
  6488. 2023-03-16 22:01:22,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2565/2980 loss:7.9751
  6489. 2023-03-16 22:01:24,319 - INFO - main.py - train - 68 - 【train】 epoch:4 2566/2980 loss:3.1642
  6490. 2023-03-16 22:01:25,717 - INFO - main.py - train - 68 - 【train】 epoch:4 2567/2980 loss:8.5780
  6491. 2023-03-16 22:01:27,044 - INFO - main.py - train - 68 - 【train】 epoch:4 2568/2980 loss:2.8848
  6492. 2023-03-16 22:01:28,412 - INFO - main.py - train - 68 - 【train】 epoch:4 2569/2980 loss:6.3015
  6493. 2023-03-16 22:01:29,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2570/2980 loss:5.7827
  6494. 2023-03-16 22:01:31,126 - INFO - main.py - train - 68 - 【train】 epoch:4 2571/2980 loss:0.2926
  6495. 2023-03-16 22:01:32,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2572/2980 loss:18.1046
  6496. 2023-03-16 22:01:34,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2573/2980 loss:3.8160
  6497. 2023-03-16 22:01:35,468 - INFO - main.py - train - 68 - 【train】 epoch:4 2574/2980 loss:1.7307
  6498. 2023-03-16 22:01:36,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2575/2980 loss:1.0704
  6499. 2023-03-16 22:01:38,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2576/2980 loss:7.8658
  6500. 2023-03-16 22:01:39,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2577/2980 loss:0.3563
  6501. 2023-03-16 22:01:40,807 - INFO - main.py - train - 68 - 【train】 epoch:4 2578/2980 loss:5.7507
  6502. 2023-03-16 22:01:42,121 - INFO - main.py - train - 68 - 【train】 epoch:4 2579/2980 loss:15.5920
  6503. 2023-03-16 22:01:43,574 - INFO - main.py - train - 68 - 【train】 epoch:4 2580/2980 loss:4.4022
  6504. 2023-03-16 22:01:44,963 - INFO - main.py - train - 68 - 【train】 epoch:4 2581/2980 loss:7.0256
  6505. 2023-03-16 22:01:46,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2582/2980 loss:0.2320
  6506. 2023-03-16 22:01:47,593 - INFO - main.py - train - 68 - 【train】 epoch:4 2583/2980 loss:3.4633
  6507. 2023-03-16 22:01:48,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2584/2980 loss:8.3688
  6508. 2023-03-16 22:01:50,328 - INFO - main.py - train - 68 - 【train】 epoch:4 2585/2980 loss:7.5657
  6509. 2023-03-16 22:01:51,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2586/2980 loss:9.2768
  6510. 2023-03-16 22:01:53,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2587/2980 loss:16.1619
  6511. 2023-03-16 22:01:54,618 - INFO - main.py - train - 68 - 【train】 epoch:4 2588/2980 loss:10.9150
  6512. 2023-03-16 22:01:55,984 - INFO - main.py - train - 68 - 【train】 epoch:4 2589/2980 loss:1.8598
  6513. 2023-03-16 22:01:57,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2590/2980 loss:4.5791
  6514. 2023-03-16 22:01:58,680 - INFO - main.py - train - 68 - 【train】 epoch:4 2591/2980 loss:12.4836
  6515. 2023-03-16 22:02:00,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2592/2980 loss:3.3983
  6516. 2023-03-16 22:02:01,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2593/2980 loss:0.6834
  6517. 2023-03-16 22:02:02,750 - INFO - main.py - train - 68 - 【train】 epoch:4 2594/2980 loss:3.7768
  6518. 2023-03-16 22:02:05,225 - INFO - main.py - train - 68 - 【train】 epoch:4 2595/2980 loss:1.5124
  6519. 2023-03-16 22:02:06,903 - INFO - main.py - train - 68 - 【train】 epoch:4 2596/2980 loss:1.4360
  6520. 2023-03-16 22:02:08,436 - INFO - main.py - train - 68 - 【train】 epoch:4 2597/2980 loss:10.6461
  6521. 2023-03-16 22:02:09,936 - INFO - main.py - train - 68 - 【train】 epoch:4 2598/2980 loss:3.3354
  6522. 2023-03-16 22:02:11,354 - INFO - main.py - train - 68 - 【train】 epoch:4 2599/2980 loss:9.6566
  6523. 2023-03-16 22:02:12,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2600/2980 loss:0.5074
  6524. 2023-03-16 22:02:14,277 - INFO - main.py - train - 68 - 【train】 epoch:4 2601/2980 loss:3.4758
  6525. 2023-03-16 22:02:15,687 - INFO - main.py - train - 68 - 【train】 epoch:4 2602/2980 loss:3.1350
  6526. 2023-03-16 22:02:17,001 - INFO - main.py - train - 68 - 【train】 epoch:4 2603/2980 loss:7.4697
  6527. 2023-03-16 22:02:18,322 - INFO - main.py - train - 68 - 【train】 epoch:4 2604/2980 loss:16.1983
  6528. 2023-03-16 22:02:19,663 - INFO - main.py - train - 68 - 【train】 epoch:4 2605/2980 loss:4.8063
  6529. 2023-03-16 22:02:20,953 - INFO - main.py - train - 68 - 【train】 epoch:4 2606/2980 loss:13.2014
  6530. 2023-03-16 22:02:22,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2607/2980 loss:1.6186
  6531. 2023-03-16 22:02:23,692 - INFO - main.py - train - 68 - 【train】 epoch:4 2608/2980 loss:5.6922
  6532. 2023-03-16 22:02:25,050 - INFO - main.py - train - 68 - 【train】 epoch:4 2609/2980 loss:5.3022
  6533. 2023-03-16 22:02:26,366 - INFO - main.py - train - 68 - 【train】 epoch:4 2610/2980 loss:0.3413
  6534. 2023-03-16 22:02:27,750 - INFO - main.py - train - 68 - 【train】 epoch:4 2611/2980 loss:11.4277
  6535. 2023-03-16 22:02:29,095 - INFO - main.py - train - 68 - 【train】 epoch:4 2612/2980 loss:4.4715
  6536. 2023-03-16 22:02:30,409 - INFO - main.py - train - 68 - 【train】 epoch:4 2613/2980 loss:9.4477
  6537. 2023-03-16 22:02:31,732 - INFO - main.py - train - 68 - 【train】 epoch:4 2614/2980 loss:2.7446
  6538. 2023-03-16 22:02:33,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2615/2980 loss:21.7171
  6539. 2023-03-16 22:02:34,401 - INFO - main.py - train - 68 - 【train】 epoch:4 2616/2980 loss:12.1264
  6540. 2023-03-16 22:02:35,715 - INFO - main.py - train - 68 - 【train】 epoch:4 2617/2980 loss:5.2280
  6541. 2023-03-16 22:02:37,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2618/2980 loss:11.2195
  6542. 2023-03-16 22:02:38,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2619/2980 loss:8.0938
  6543. 2023-03-16 22:02:39,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2620/2980 loss:5.3236
  6544. 2023-03-16 22:02:41,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2621/2980 loss:5.1661
  6545. 2023-03-16 22:02:42,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2622/2980 loss:5.2158
  6546. 2023-03-16 22:02:43,752 - INFO - main.py - train - 68 - 【train】 epoch:4 2623/2980 loss:2.0287
  6547. 2023-03-16 22:02:45,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2624/2980 loss:2.7471
  6548. 2023-03-16 22:02:46,502 - INFO - main.py - train - 68 - 【train】 epoch:4 2625/2980 loss:5.0058
  6549. 2023-03-16 22:02:47,913 - INFO - main.py - train - 68 - 【train】 epoch:4 2626/2980 loss:2.5692
  6550. 2023-03-16 22:02:49,283 - INFO - main.py - train - 68 - 【train】 epoch:4 2627/2980 loss:3.9007
  6551. 2023-03-16 22:02:50,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2628/2980 loss:6.1161
  6552. 2023-03-16 22:02:51,983 - INFO - main.py - train - 68 - 【train】 epoch:4 2629/2980 loss:1.6782
  6553. 2023-03-16 22:02:53,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2630/2980 loss:6.2489
  6554. 2023-03-16 22:02:54,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2631/2980 loss:7.0523
  6555. 2023-03-16 22:02:56,078 - INFO - main.py - train - 68 - 【train】 epoch:4 2632/2980 loss:7.2436
  6556. 2023-03-16 22:02:57,497 - INFO - main.py - train - 68 - 【train】 epoch:4 2633/2980 loss:4.7325
  6557. 2023-03-16 22:02:58,895 - INFO - main.py - train - 68 - 【train】 epoch:4 2634/2980 loss:4.7745
  6558. 2023-03-16 22:03:00,191 - INFO - main.py - train - 68 - 【train】 epoch:4 2635/2980 loss:10.8326
  6559. 2023-03-16 22:03:01,734 - INFO - main.py - train - 68 - 【train】 epoch:4 2636/2980 loss:2.6162
  6560. 2023-03-16 22:03:03,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2637/2980 loss:7.3859
  6561. 2023-03-16 22:03:04,572 - INFO - main.py - train - 68 - 【train】 epoch:4 2638/2980 loss:5.4971
  6562. 2023-03-16 22:03:06,112 - INFO - main.py - train - 68 - 【train】 epoch:4 2639/2980 loss:2.7488
  6563. 2023-03-16 22:03:07,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2640/2980 loss:8.1105
  6564. 2023-03-16 22:03:08,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2641/2980 loss:7.5060
  6565. 2023-03-16 22:03:10,164 - INFO - main.py - train - 68 - 【train】 epoch:4 2642/2980 loss:3.1931
  6566. 2023-03-16 22:03:11,601 - INFO - main.py - train - 68 - 【train】 epoch:4 2643/2980 loss:6.6602
  6567. 2023-03-16 22:03:13,026 - INFO - main.py - train - 68 - 【train】 epoch:4 2644/2980 loss:0.9565
  6568. 2023-03-16 22:03:14,542 - INFO - main.py - train - 68 - 【train】 epoch:4 2645/2980 loss:7.4525
  6569. 2023-03-16 22:03:16,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2646/2980 loss:13.3735
  6570. 2023-03-16 22:03:17,891 - INFO - main.py - train - 68 - 【train】 epoch:4 2647/2980 loss:0.9547
  6571. 2023-03-16 22:03:19,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2648/2980 loss:3.7598
  6572. 2023-03-16 22:03:21,042 - INFO - main.py - train - 68 - 【train】 epoch:4 2649/2980 loss:8.1331
  6573. 2023-03-16 22:03:22,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2650/2980 loss:1.0198
  6574. 2023-03-16 22:03:23,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2651/2980 loss:2.0245
  6575. 2023-03-16 22:03:25,589 - INFO - main.py - train - 68 - 【train】 epoch:4 2652/2980 loss:5.1077
  6576. 2023-03-16 22:03:27,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2653/2980 loss:1.8874
  6577. 2023-03-16 22:03:29,236 - INFO - main.py - train - 68 - 【train】 epoch:4 2654/2980 loss:0.5508
  6578. 2023-03-16 22:03:30,733 - INFO - main.py - train - 68 - 【train】 epoch:4 2655/2980 loss:3.5434
  6579. 2023-03-16 22:03:32,280 - INFO - main.py - train - 68 - 【train】 epoch:4 2656/2980 loss:1.8675
  6580. 2023-03-16 22:03:34,251 - INFO - main.py - train - 68 - 【train】 epoch:4 2657/2980 loss:2.9789
  6581. 2023-03-16 22:03:35,705 - INFO - main.py - train - 68 - 【train】 epoch:4 2658/2980 loss:4.4997
  6582. 2023-03-16 22:03:37,113 - INFO - main.py - train - 68 - 【train】 epoch:4 2659/2980 loss:10.1894
  6583. 2023-03-16 22:03:38,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2660/2980 loss:2.0839
  6584. 2023-03-16 22:03:39,947 - INFO - main.py - train - 68 - 【train】 epoch:4 2661/2980 loss:0.4686
  6585. 2023-03-16 22:03:41,794 - INFO - main.py - train - 68 - 【train】 epoch:4 2662/2980 loss:4.4151
  6586. 2023-03-16 22:03:43,325 - INFO - main.py - train - 68 - 【train】 epoch:4 2663/2980 loss:1.8590
  6587. 2023-03-16 22:03:44,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2664/2980 loss:19.0094
  6588. 2023-03-16 22:03:46,262 - INFO - main.py - train - 68 - 【train】 epoch:4 2665/2980 loss:0.5665
  6589. 2023-03-16 22:03:47,801 - INFO - main.py - train - 68 - 【train】 epoch:4 2666/2980 loss:8.5424
  6590. 2023-03-16 22:03:49,270 - INFO - main.py - train - 68 - 【train】 epoch:4 2667/2980 loss:4.4304
  6591. 2023-03-16 22:03:50,712 - INFO - main.py - train - 68 - 【train】 epoch:4 2668/2980 loss:13.4677
  6592. 2023-03-16 22:03:52,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2669/2980 loss:1.1442
  6593. 2023-03-16 22:03:53,581 - INFO - main.py - train - 68 - 【train】 epoch:4 2670/2980 loss:0.2586
  6594. 2023-03-16 22:03:54,944 - INFO - main.py - train - 68 - 【train】 epoch:4 2671/2980 loss:4.5369
  6595. 2023-03-16 22:03:56,372 - INFO - main.py - train - 68 - 【train】 epoch:4 2672/2980 loss:6.4084
  6596. 2023-03-16 22:03:57,819 - INFO - main.py - train - 68 - 【train】 epoch:4 2673/2980 loss:6.3183
  6597. 2023-03-16 22:03:59,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2674/2980 loss:3.1258
  6598. 2023-03-16 22:04:00,674 - INFO - main.py - train - 68 - 【train】 epoch:4 2675/2980 loss:9.3154
  6599. 2023-03-16 22:04:02,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2676/2980 loss:1.1887
  6600. 2023-03-16 22:04:03,507 - INFO - main.py - train - 68 - 【train】 epoch:4 2677/2980 loss:2.6487
  6601. 2023-03-16 22:04:04,941 - INFO - main.py - train - 68 - 【train】 epoch:4 2678/2980 loss:0.6690
  6602. 2023-03-16 22:04:06,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2679/2980 loss:6.2189
  6603. 2023-03-16 22:04:07,818 - INFO - main.py - train - 68 - 【train】 epoch:4 2680/2980 loss:0.5304
  6604. 2023-03-16 22:04:09,212 - INFO - main.py - train - 68 - 【train】 epoch:4 2681/2980 loss:8.1694
  6605. 2023-03-16 22:04:10,567 - INFO - main.py - train - 68 - 【train】 epoch:4 2682/2980 loss:3.3835
  6606. 2023-03-16 22:04:11,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2683/2980 loss:0.8431
  6607. 2023-03-16 22:04:13,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2684/2980 loss:9.3016
  6608. 2023-03-16 22:04:14,975 - INFO - main.py - train - 68 - 【train】 epoch:4 2685/2980 loss:2.4750
  6609. 2023-03-16 22:04:16,472 - INFO - main.py - train - 68 - 【train】 epoch:4 2686/2980 loss:1.7056
  6610. 2023-03-16 22:04:17,922 - INFO - main.py - train - 68 - 【train】 epoch:4 2687/2980 loss:1.1060
  6611. 2023-03-16 22:04:19,442 - INFO - main.py - train - 68 - 【train】 epoch:4 2688/2980 loss:1.9796
  6612. 2023-03-16 22:04:21,043 - INFO - main.py - train - 68 - 【train】 epoch:4 2689/2980 loss:11.5197
  6613. 2023-03-16 22:04:22,506 - INFO - main.py - train - 68 - 【train】 epoch:4 2690/2980 loss:2.1586
  6614. 2023-03-16 22:04:24,002 - INFO - main.py - train - 68 - 【train】 epoch:4 2691/2980 loss:8.1705
  6615. 2023-03-16 22:04:26,704 - INFO - main.py - train - 68 - 【train】 epoch:4 2692/2980 loss:7.2955
  6616. 2023-03-16 22:04:30,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2693/2980 loss:8.4395
  6617. 2023-03-16 22:04:34,151 - INFO - main.py - train - 68 - 【train】 epoch:4 2694/2980 loss:1.4027
  6618. 2023-03-16 22:04:35,706 - INFO - main.py - train - 68 - 【train】 epoch:4 2695/2980 loss:0.6353
  6619. 2023-03-16 22:04:37,296 - INFO - main.py - train - 68 - 【train】 epoch:4 2696/2980 loss:4.4564
  6620. 2023-03-16 22:04:38,911 - INFO - main.py - train - 68 - 【train】 epoch:4 2697/2980 loss:3.9230
  6621. 2023-03-16 22:04:40,423 - INFO - main.py - train - 68 - 【train】 epoch:4 2698/2980 loss:0.6689
  6622. 2023-03-16 22:04:41,821 - INFO - main.py - train - 68 - 【train】 epoch:4 2699/2980 loss:5.1920
  6623. 2023-03-16 22:04:43,212 - INFO - main.py - train - 68 - 【train】 epoch:4 2700/2980 loss:0.5245
  6624. 2023-03-16 22:04:44,634 - INFO - main.py - train - 68 - 【train】 epoch:4 2701/2980 loss:16.1771
  6625. 2023-03-16 22:04:46,173 - INFO - main.py - train - 68 - 【train】 epoch:4 2702/2980 loss:10.6314
  6626. 2023-03-16 22:04:47,533 - INFO - main.py - train - 68 - 【train】 epoch:4 2703/2980 loss:1.7618
  6627. 2023-03-16 22:04:48,872 - INFO - main.py - train - 68 - 【train】 epoch:4 2704/2980 loss:2.1718
  6628. 2023-03-16 22:04:50,204 - INFO - main.py - train - 68 - 【train】 epoch:4 2705/2980 loss:1.7592
  6629. 2023-03-16 22:04:51,551 - INFO - main.py - train - 68 - 【train】 epoch:4 2706/2980 loss:2.0182
  6630. 2023-03-16 22:04:52,898 - INFO - main.py - train - 68 - 【train】 epoch:4 2707/2980 loss:29.0686
  6631. 2023-03-16 22:04:54,276 - INFO - main.py - train - 68 - 【train】 epoch:4 2708/2980 loss:6.2019
  6632. 2023-03-16 22:04:55,722 - INFO - main.py - train - 68 - 【train】 epoch:4 2709/2980 loss:6.4201
  6633. 2023-03-16 22:04:57,274 - INFO - main.py - train - 68 - 【train】 epoch:4 2710/2980 loss:10.5805
  6634. 2023-03-16 22:04:58,991 - INFO - main.py - train - 68 - 【train】 epoch:4 2711/2980 loss:0.7352
  6635. 2023-03-16 22:05:00,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2712/2980 loss:10.4639
  6636. 2023-03-16 22:05:01,815 - INFO - main.py - train - 68 - 【train】 epoch:4 2713/2980 loss:12.6382
  6637. 2023-03-16 22:05:03,233 - INFO - main.py - train - 68 - 【train】 epoch:4 2714/2980 loss:14.9689
  6638. 2023-03-16 22:05:04,526 - INFO - main.py - train - 68 - 【train】 epoch:4 2715/2980 loss:0.8075
  6639. 2023-03-16 22:05:06,003 - INFO - main.py - train - 68 - 【train】 epoch:4 2716/2980 loss:0.1720
  6640. 2023-03-16 22:05:07,413 - INFO - main.py - train - 68 - 【train】 epoch:4 2717/2980 loss:2.0297
  6641. 2023-03-16 22:05:09,197 - INFO - main.py - train - 68 - 【train】 epoch:4 2718/2980 loss:5.4806
  6642. 2023-03-16 22:05:10,962 - INFO - main.py - train - 68 - 【train】 epoch:4 2719/2980 loss:1.0854
  6643. 2023-03-16 22:05:12,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2720/2980 loss:6.9931
  6644. 2023-03-16 22:05:13,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2721/2980 loss:0.3075
  6645. 2023-03-16 22:05:14,943 - INFO - main.py - train - 68 - 【train】 epoch:4 2722/2980 loss:3.0513
  6646. 2023-03-16 22:05:16,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2723/2980 loss:2.6967
  6647. 2023-03-16 22:05:17,613 - INFO - main.py - train - 68 - 【train】 epoch:4 2724/2980 loss:10.6345
  6648. 2023-03-16 22:05:18,972 - INFO - main.py - train - 68 - 【train】 epoch:4 2725/2980 loss:3.2434
  6649. 2023-03-16 22:05:20,805 - INFO - main.py - train - 68 - 【train】 epoch:4 2726/2980 loss:6.9089
  6650. 2023-03-16 22:05:22,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2727/2980 loss:2.0277
  6651. 2023-03-16 22:05:24,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2728/2980 loss:8.2260
  6652. 2023-03-16 22:05:26,346 - INFO - main.py - train - 68 - 【train】 epoch:4 2729/2980 loss:2.1401
  6653. 2023-03-16 22:05:27,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2730/2980 loss:7.7906
  6654. 2023-03-16 22:05:29,396 - INFO - main.py - train - 68 - 【train】 epoch:4 2731/2980 loss:9.1630
  6655. 2023-03-16 22:05:30,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2732/2980 loss:7.7080
  6656. 2023-03-16 22:05:32,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2733/2980 loss:11.8390
  6657. 2023-03-16 22:05:33,654 - INFO - main.py - train - 68 - 【train】 epoch:4 2734/2980 loss:1.0527
  6658. 2023-03-16 22:05:35,285 - INFO - main.py - train - 68 - 【train】 epoch:4 2735/2980 loss:2.4244
  6659. 2023-03-16 22:05:36,602 - INFO - main.py - train - 68 - 【train】 epoch:4 2736/2980 loss:6.4746
  6660. 2023-03-16 22:05:37,864 - INFO - main.py - train - 68 - 【train】 epoch:4 2737/2980 loss:1.7848
  6661. 2023-03-16 22:05:39,194 - INFO - main.py - train - 68 - 【train】 epoch:4 2738/2980 loss:3.5043
  6662. 2023-03-16 22:05:40,694 - INFO - main.py - train - 68 - 【train】 epoch:4 2739/2980 loss:8.9345
  6663. 2023-03-16 22:05:42,674 - INFO - main.py - train - 68 - 【train】 epoch:4 2740/2980 loss:10.4074
  6664. 2023-03-16 22:05:44,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2741/2980 loss:4.2774
  6665. 2023-03-16 22:05:46,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2742/2980 loss:1.3251
  6666. 2023-03-16 22:05:47,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2743/2980 loss:4.1335
  6667. 2023-03-16 22:05:49,154 - INFO - main.py - train - 68 - 【train】 epoch:4 2744/2980 loss:3.4042
  6668. 2023-03-16 22:05:50,536 - INFO - main.py - train - 68 - 【train】 epoch:4 2745/2980 loss:4.5000
  6669. 2023-03-16 22:05:51,908 - INFO - main.py - train - 68 - 【train】 epoch:4 2746/2980 loss:3.3460
  6670. 2023-03-16 22:05:53,222 - INFO - main.py - train - 68 - 【train】 epoch:4 2747/2980 loss:2.0070
  6671. 2023-03-16 22:05:54,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2748/2980 loss:6.5261
  6672. 2023-03-16 22:05:56,094 - INFO - main.py - train - 68 - 【train】 epoch:4 2749/2980 loss:4.6338
  6673. 2023-03-16 22:05:57,735 - INFO - main.py - train - 68 - 【train】 epoch:4 2750/2980 loss:9.8199
  6674. 2023-03-16 22:05:59,524 - INFO - main.py - train - 68 - 【train】 epoch:4 2751/2980 loss:3.9373
  6675. 2023-03-16 22:06:01,132 - INFO - main.py - train - 68 - 【train】 epoch:4 2752/2980 loss:3.8811
  6676. 2023-03-16 22:06:03,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2753/2980 loss:1.6435
  6677. 2023-03-16 22:06:04,811 - INFO - main.py - train - 68 - 【train】 epoch:4 2754/2980 loss:5.7557
  6678. 2023-03-16 22:06:06,303 - INFO - main.py - train - 68 - 【train】 epoch:4 2755/2980 loss:11.4461
  6679. 2023-03-16 22:06:07,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2756/2980 loss:5.1771
  6680. 2023-03-16 22:06:09,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2757/2980 loss:4.0166
  6681. 2023-03-16 22:06:10,432 - INFO - main.py - train - 68 - 【train】 epoch:4 2758/2980 loss:4.5960
  6682. 2023-03-16 22:06:11,816 - INFO - main.py - train - 68 - 【train】 epoch:4 2759/2980 loss:0.4077
  6683. 2023-03-16 22:06:13,264 - INFO - main.py - train - 68 - 【train】 epoch:4 2760/2980 loss:8.2217
  6684. 2023-03-16 22:06:14,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2761/2980 loss:2.1248
  6685. 2023-03-16 22:06:16,525 - INFO - main.py - train - 68 - 【train】 epoch:4 2762/2980 loss:1.0562
  6686. 2023-03-16 22:06:18,462 - INFO - main.py - train - 68 - 【train】 epoch:4 2763/2980 loss:0.9764
  6687. 2023-03-16 22:06:19,996 - INFO - main.py - train - 68 - 【train】 epoch:4 2764/2980 loss:6.1612
  6688. 2023-03-16 22:06:21,471 - INFO - main.py - train - 68 - 【train】 epoch:4 2765/2980 loss:7.5995
  6689. 2023-03-16 22:06:23,143 - INFO - main.py - train - 68 - 【train】 epoch:4 2766/2980 loss:6.7399
  6690. 2023-03-16 22:06:24,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2767/2980 loss:5.2913
  6691. 2023-03-16 22:06:26,301 - INFO - main.py - train - 68 - 【train】 epoch:4 2768/2980 loss:4.3289
  6692. 2023-03-16 22:06:27,714 - INFO - main.py - train - 68 - 【train】 epoch:4 2769/2980 loss:0.8323
  6693. 2023-03-16 22:06:29,120 - INFO - main.py - train - 68 - 【train】 epoch:4 2770/2980 loss:3.1176
  6694. 2023-03-16 22:06:30,521 - INFO - main.py - train - 68 - 【train】 epoch:4 2771/2980 loss:4.5713
  6695. 2023-03-16 22:06:31,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2772/2980 loss:9.3115
  6696. 2023-03-16 22:06:33,377 - INFO - main.py - train - 68 - 【train】 epoch:4 2773/2980 loss:8.9372
  6697. 2023-03-16 22:06:34,761 - INFO - main.py - train - 68 - 【train】 epoch:4 2774/2980 loss:10.4007
  6698. 2023-03-16 22:06:36,682 - INFO - main.py - train - 68 - 【train】 epoch:4 2775/2980 loss:6.2212
  6699. 2023-03-16 22:06:38,653 - INFO - main.py - train - 68 - 【train】 epoch:4 2776/2980 loss:7.6596
  6700. 2023-03-16 22:06:40,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2777/2980 loss:6.5774
  6701. 2023-03-16 22:06:42,109 - INFO - main.py - train - 68 - 【train】 epoch:4 2778/2980 loss:1.5573
  6702. 2023-03-16 22:06:43,451 - INFO - main.py - train - 68 - 【train】 epoch:4 2779/2980 loss:0.5546
  6703. 2023-03-16 22:06:44,826 - INFO - main.py - train - 68 - 【train】 epoch:4 2780/2980 loss:8.0860
  6704. 2023-03-16 22:06:46,292 - INFO - main.py - train - 68 - 【train】 epoch:4 2781/2980 loss:3.6173
  6705. 2023-03-16 22:06:47,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2782/2980 loss:1.8433
  6706. 2023-03-16 22:06:49,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2783/2980 loss:9.7665
  6707. 2023-03-16 22:06:50,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2784/2980 loss:2.7034
  6708. 2023-03-16 22:06:52,141 - INFO - main.py - train - 68 - 【train】 epoch:4 2785/2980 loss:3.6086
  6709. 2023-03-16 22:06:53,534 - INFO - main.py - train - 68 - 【train】 epoch:4 2786/2980 loss:12.1684
  6710. 2023-03-16 22:06:54,961 - INFO - main.py - train - 68 - 【train】 epoch:4 2787/2980 loss:2.6155
  6711. 2023-03-16 22:06:56,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2788/2980 loss:0.6360
  6712. 2023-03-16 22:06:57,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2789/2980 loss:9.7793
  6713. 2023-03-16 22:06:59,217 - INFO - main.py - train - 68 - 【train】 epoch:4 2790/2980 loss:5.9196
  6714. 2023-03-16 22:07:00,731 - INFO - main.py - train - 68 - 【train】 epoch:4 2791/2980 loss:1.8292
  6715. 2023-03-16 22:07:02,147 - INFO - main.py - train - 68 - 【train】 epoch:4 2792/2980 loss:9.6889
  6716. 2023-03-16 22:07:03,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2793/2980 loss:3.8421
  6717. 2023-03-16 22:07:04,942 - INFO - main.py - train - 68 - 【train】 epoch:4 2794/2980 loss:1.7841
  6718. 2023-03-16 22:07:06,362 - INFO - main.py - train - 68 - 【train】 epoch:4 2795/2980 loss:12.4949
  6719. 2023-03-16 22:07:07,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2796/2980 loss:14.5487
  6720. 2023-03-16 22:07:09,305 - INFO - main.py - train - 68 - 【train】 epoch:4 2797/2980 loss:5.7399
  6721. 2023-03-16 22:07:10,772 - INFO - main.py - train - 68 - 【train】 epoch:4 2798/2980 loss:8.7142
  6722. 2023-03-16 22:07:12,271 - INFO - main.py - train - 68 - 【train】 epoch:4 2799/2980 loss:4.2286
  6723. 2023-03-16 22:07:13,764 - INFO - main.py - train - 68 - 【train】 epoch:4 2800/2980 loss:3.6253
  6724. 2023-03-16 22:07:15,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2801/2980 loss:1.9074
  6725. 2023-03-16 22:07:16,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2802/2980 loss:8.9720
  6726. 2023-03-16 22:07:18,057 - INFO - main.py - train - 68 - 【train】 epoch:4 2803/2980 loss:4.5500
  6727. 2023-03-16 22:07:19,454 - INFO - main.py - train - 68 - 【train】 epoch:4 2804/2980 loss:10.7935
  6728. 2023-03-16 22:07:20,844 - INFO - main.py - train - 68 - 【train】 epoch:4 2805/2980 loss:6.5613
  6729. 2023-03-16 22:07:22,247 - INFO - main.py - train - 68 - 【train】 epoch:4 2806/2980 loss:2.7623
  6730. 2023-03-16 22:07:23,683 - INFO - main.py - train - 68 - 【train】 epoch:4 2807/2980 loss:3.0624
  6731. 2023-03-16 22:07:25,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2808/2980 loss:12.0483
  6732. 2023-03-16 22:07:26,492 - INFO - main.py - train - 68 - 【train】 epoch:4 2809/2980 loss:5.2565
  6733. 2023-03-16 22:07:27,976 - INFO - main.py - train - 68 - 【train】 epoch:4 2810/2980 loss:3.6978
  6734. 2023-03-16 22:07:29,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2811/2980 loss:3.2770
  6735. 2023-03-16 22:07:30,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2812/2980 loss:1.3322
  6736. 2023-03-16 22:07:32,486 - INFO - main.py - train - 68 - 【train】 epoch:4 2813/2980 loss:8.6387
  6737. 2023-03-16 22:07:34,146 - INFO - main.py - train - 68 - 【train】 epoch:4 2814/2980 loss:3.4760
  6738. 2023-03-16 22:07:35,911 - INFO - main.py - train - 68 - 【train】 epoch:4 2815/2980 loss:18.2148
  6739. 2023-03-16 22:07:38,561 - INFO - main.py - train - 68 - 【train】 epoch:4 2816/2980 loss:4.7989
  6740. 2023-03-16 22:07:40,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2817/2980 loss:3.0940
  6741. 2023-03-16 22:07:42,394 - INFO - main.py - train - 68 - 【train】 epoch:4 2818/2980 loss:21.9132
  6742. 2023-03-16 22:07:43,994 - INFO - main.py - train - 68 - 【train】 epoch:4 2819/2980 loss:0.2040
  6743. 2023-03-16 22:07:45,272 - INFO - main.py - train - 68 - 【train】 epoch:4 2820/2980 loss:2.6069
  6744. 2023-03-16 22:07:46,641 - INFO - main.py - train - 68 - 【train】 epoch:4 2821/2980 loss:15.6512
  6745. 2023-03-16 22:07:48,456 - INFO - main.py - train - 68 - 【train】 epoch:4 2822/2980 loss:0.1579
  6746. 2023-03-16 22:07:50,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2823/2980 loss:1.8877
  6747. 2023-03-16 22:07:52,265 - INFO - main.py - train - 68 - 【train】 epoch:4 2824/2980 loss:19.3984
  6748. 2023-03-16 22:07:53,665 - INFO - main.py - train - 68 - 【train】 epoch:4 2825/2980 loss:4.5348
  6749. 2023-03-16 22:07:55,023 - INFO - main.py - train - 68 - 【train】 epoch:4 2826/2980 loss:3.7760
  6750. 2023-03-16 22:07:56,444 - INFO - main.py - train - 68 - 【train】 epoch:4 2827/2980 loss:1.9100
  6751. 2023-03-16 22:07:57,894 - INFO - main.py - train - 68 - 【train】 epoch:4 2828/2980 loss:5.6391
  6752. 2023-03-16 22:07:59,374 - INFO - main.py - train - 68 - 【train】 epoch:4 2829/2980 loss:3.4590
  6753. 2023-03-16 22:08:00,762 - INFO - main.py - train - 68 - 【train】 epoch:4 2830/2980 loss:0.9683
  6754. 2023-03-16 22:08:02,096 - INFO - main.py - train - 68 - 【train】 epoch:4 2831/2980 loss:3.4440
  6755. 2023-03-16 22:08:03,491 - INFO - main.py - train - 68 - 【train】 epoch:4 2832/2980 loss:2.7993
  6756. 2023-03-16 22:08:04,813 - INFO - main.py - train - 68 - 【train】 epoch:4 2833/2980 loss:8.7506
  6757. 2023-03-16 22:08:06,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2834/2980 loss:0.5705
  6758. 2023-03-16 22:08:07,887 - INFO - main.py - train - 68 - 【train】 epoch:4 2835/2980 loss:12.2698
  6759. 2023-03-16 22:08:09,353 - INFO - main.py - train - 68 - 【train】 epoch:4 2836/2980 loss:3.9613
  6760. 2023-03-16 22:08:10,687 - INFO - main.py - train - 68 - 【train】 epoch:4 2837/2980 loss:11.4046
  6761. 2023-03-16 22:08:12,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2838/2980 loss:11.1815
  6762. 2023-03-16 22:08:13,403 - INFO - main.py - train - 68 - 【train】 epoch:4 2839/2980 loss:2.8160
  6763. 2023-03-16 22:08:14,813 - INFO - main.py - train - 68 - 【train】 epoch:4 2840/2980 loss:5.4375
  6764. 2023-03-16 22:08:16,182 - INFO - main.py - train - 68 - 【train】 epoch:4 2841/2980 loss:6.3839
  6765. 2023-03-16 22:08:17,544 - INFO - main.py - train - 68 - 【train】 epoch:4 2842/2980 loss:17.3599
  6766. 2023-03-16 22:08:18,881 - INFO - main.py - train - 68 - 【train】 epoch:4 2843/2980 loss:12.0927
  6767. 2023-03-16 22:08:20,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2844/2980 loss:4.5371
  6768. 2023-03-16 22:08:21,493 - INFO - main.py - train - 68 - 【train】 epoch:4 2845/2980 loss:2.3761
  6769. 2023-03-16 22:08:22,793 - INFO - main.py - train - 68 - 【train】 epoch:4 2846/2980 loss:0.1607
  6770. 2023-03-16 22:08:24,093 - INFO - main.py - train - 68 - 【train】 epoch:4 2847/2980 loss:4.5901
  6771. 2023-03-16 22:08:25,426 - INFO - main.py - train - 68 - 【train】 epoch:4 2848/2980 loss:10.8950
  6772. 2023-03-16 22:08:26,732 - INFO - main.py - train - 68 - 【train】 epoch:4 2849/2980 loss:11.2784
  6773. 2023-03-16 22:08:28,111 - INFO - main.py - train - 68 - 【train】 epoch:4 2850/2980 loss:4.7578
  6774. 2023-03-16 22:08:29,526 - INFO - main.py - train - 68 - 【train】 epoch:4 2851/2980 loss:0.6832
  6775. 2023-03-16 22:08:31,064 - INFO - main.py - train - 68 - 【train】 epoch:4 2852/2980 loss:2.2143
  6776. 2023-03-16 22:08:33,183 - INFO - main.py - train - 68 - 【train】 epoch:4 2853/2980 loss:3.3659
  6777. 2023-03-16 22:08:34,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2854/2980 loss:7.1293
  6778. 2023-03-16 22:08:36,342 - INFO - main.py - train - 68 - 【train】 epoch:4 2855/2980 loss:7.9174
  6779. 2023-03-16 22:08:38,221 - INFO - main.py - train - 68 - 【train】 epoch:4 2856/2980 loss:1.2209
  6780. 2023-03-16 22:08:40,371 - INFO - main.py - train - 68 - 【train】 epoch:4 2857/2980 loss:5.3497
  6781. 2023-03-16 22:08:41,842 - INFO - main.py - train - 68 - 【train】 epoch:4 2858/2980 loss:3.1747
  6782. 2023-03-16 22:08:43,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2859/2980 loss:7.3216
  6783. 2023-03-16 22:08:44,632 - INFO - main.py - train - 68 - 【train】 epoch:4 2860/2980 loss:5.4642
  6784. 2023-03-16 22:08:45,967 - INFO - main.py - train - 68 - 【train】 epoch:4 2861/2980 loss:11.4454
  6785. 2023-03-16 22:08:47,306 - INFO - main.py - train - 68 - 【train】 epoch:4 2862/2980 loss:7.9655
  6786. 2023-03-16 22:08:48,894 - INFO - main.py - train - 68 - 【train】 epoch:4 2863/2980 loss:15.9956
  6787. 2023-03-16 22:08:50,631 - INFO - main.py - train - 68 - 【train】 epoch:4 2864/2980 loss:3.4997
  6788. 2023-03-16 22:08:52,421 - INFO - main.py - train - 68 - 【train】 epoch:4 2865/2980 loss:1.5096
  6789. 2023-03-16 22:08:55,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2866/2980 loss:3.8271
  6790. 2023-03-16 22:08:57,490 - INFO - main.py - train - 68 - 【train】 epoch:4 2867/2980 loss:8.0308
  6791. 2023-03-16 22:08:59,090 - INFO - main.py - train - 68 - 【train】 epoch:4 2868/2980 loss:2.6316
  6792. 2023-03-16 22:09:00,672 - INFO - main.py - train - 68 - 【train】 epoch:4 2869/2980 loss:13.8008
  6793. 2023-03-16 22:09:02,103 - INFO - main.py - train - 68 - 【train】 epoch:4 2870/2980 loss:8.8684
  6794. 2023-03-16 22:09:03,454 - INFO - main.py - train - 68 - 【train】 epoch:4 2871/2980 loss:0.7504
  6795. 2023-03-16 22:09:04,823 - INFO - main.py - train - 68 - 【train】 epoch:4 2872/2980 loss:6.2065
  6796. 2023-03-16 22:09:06,155 - INFO - main.py - train - 68 - 【train】 epoch:4 2873/2980 loss:4.6603
  6797. 2023-03-16 22:09:07,482 - INFO - main.py - train - 68 - 【train】 epoch:4 2874/2980 loss:2.0924
  6798. 2023-03-16 22:09:08,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2875/2980 loss:1.7930
  6799. 2023-03-16 22:09:10,163 - INFO - main.py - train - 68 - 【train】 epoch:4 2876/2980 loss:3.7255
  6800. 2023-03-16 22:09:11,523 - INFO - main.py - train - 68 - 【train】 epoch:4 2877/2980 loss:4.8038
  6801. 2023-03-16 22:09:12,819 - INFO - main.py - train - 68 - 【train】 epoch:4 2878/2980 loss:5.3835
  6802. 2023-03-16 22:09:14,573 - INFO - main.py - train - 68 - 【train】 epoch:4 2879/2980 loss:7.9449
  6803. 2023-03-16 22:09:16,702 - INFO - main.py - train - 68 - 【train】 epoch:4 2880/2980 loss:7.3636
  6804. 2023-03-16 22:09:18,812 - INFO - main.py - train - 68 - 【train】 epoch:4 2881/2980 loss:7.0770
  6805. 2023-03-16 22:09:20,402 - INFO - main.py - train - 68 - 【train】 epoch:4 2882/2980 loss:2.4567
  6806. 2023-03-16 22:09:21,781 - INFO - main.py - train - 68 - 【train】 epoch:4 2883/2980 loss:2.1717
  6807. 2023-03-16 22:09:23,191 - INFO - main.py - train - 68 - 【train】 epoch:4 2884/2980 loss:3.9595
  6808. 2023-03-16 22:09:24,582 - INFO - main.py - train - 68 - 【train】 epoch:4 2885/2980 loss:3.2127
  6809. 2023-03-16 22:09:25,982 - INFO - main.py - train - 68 - 【train】 epoch:4 2886/2980 loss:1.5962
  6810. 2023-03-16 22:09:27,441 - INFO - main.py - train - 68 - 【train】 epoch:4 2887/2980 loss:15.2141
  6811. 2023-03-16 22:09:28,972 - INFO - main.py - train - 68 - 【train】 epoch:4 2888/2980 loss:2.6800
  6812. 2023-03-16 22:09:30,677 - INFO - main.py - train - 68 - 【train】 epoch:4 2889/2980 loss:4.5157
  6813. 2023-03-16 22:09:32,904 - INFO - main.py - train - 68 - 【train】 epoch:4 2890/2980 loss:1.3016
  6814. 2023-03-16 22:09:34,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2891/2980 loss:10.7477
  6815. 2023-03-16 22:09:36,132 - INFO - main.py - train - 68 - 【train】 epoch:4 2892/2980 loss:6.9673
  6816. 2023-03-16 22:09:37,604 - INFO - main.py - train - 68 - 【train】 epoch:4 2893/2980 loss:18.6512
  6817. 2023-03-16 22:09:39,117 - INFO - main.py - train - 68 - 【train】 epoch:4 2894/2980 loss:6.1360
  6818. 2023-03-16 22:09:40,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2895/2980 loss:5.7908
  6819. 2023-03-16 22:09:41,883 - INFO - main.py - train - 68 - 【train】 epoch:4 2896/2980 loss:4.5274
  6820. 2023-03-16 22:09:43,336 - INFO - main.py - train - 68 - 【train】 epoch:4 2897/2980 loss:2.4148
  6821. 2023-03-16 22:09:44,954 - INFO - main.py - train - 68 - 【train】 epoch:4 2898/2980 loss:15.0270
  6822. 2023-03-16 22:09:46,559 - INFO - main.py - train - 68 - 【train】 epoch:4 2899/2980 loss:3.8321
  6823. 2023-03-16 22:09:48,134 - INFO - main.py - train - 68 - 【train】 epoch:4 2900/2980 loss:6.3051
  6824. 2023-03-16 22:09:50,129 - INFO - main.py - train - 68 - 【train】 epoch:4 2901/2980 loss:7.4528
  6825. 2023-03-16 22:09:51,623 - INFO - main.py - train - 68 - 【train】 epoch:4 2902/2980 loss:1.6196
  6826. 2023-03-16 22:09:52,995 - INFO - main.py - train - 68 - 【train】 epoch:4 2903/2980 loss:3.3933
  6827. 2023-03-16 22:09:54,914 - INFO - main.py - train - 68 - 【train】 epoch:4 2904/2980 loss:8.2114
  6828. 2023-03-16 22:09:56,603 - INFO - main.py - train - 68 - 【train】 epoch:4 2905/2980 loss:18.8241
  6829. 2023-03-16 22:09:58,032 - INFO - main.py - train - 68 - 【train】 epoch:4 2906/2980 loss:22.7733
  6830. 2023-03-16 22:09:59,352 - INFO - main.py - train - 68 - 【train】 epoch:4 2907/2980 loss:2.6160
  6831. 2023-03-16 22:10:01,406 - INFO - main.py - train - 68 - 【train】 epoch:4 2908/2980 loss:0.3031
  6832. 2023-03-16 22:10:03,284 - INFO - main.py - train - 68 - 【train】 epoch:4 2909/2980 loss:7.9827
  6833. 2023-03-16 22:10:04,693 - INFO - main.py - train - 68 - 【train】 epoch:4 2910/2980 loss:7.7344
  6834. 2023-03-16 22:10:06,046 - INFO - main.py - train - 68 - 【train】 epoch:4 2911/2980 loss:10.4228
  6835. 2023-03-16 22:10:07,483 - INFO - main.py - train - 68 - 【train】 epoch:4 2912/2980 loss:1.0181
  6836. 2023-03-16 22:10:08,863 - INFO - main.py - train - 68 - 【train】 epoch:4 2913/2980 loss:3.1959
  6837. 2023-03-16 22:10:10,282 - INFO - main.py - train - 68 - 【train】 epoch:4 2914/2980 loss:2.5265
  6838. 2023-03-16 22:10:11,633 - INFO - main.py - train - 68 - 【train】 epoch:4 2915/2980 loss:3.8920
  6839. 2023-03-16 22:10:13,012 - INFO - main.py - train - 68 - 【train】 epoch:4 2916/2980 loss:3.8597
  6840. 2023-03-16 22:10:14,363 - INFO - main.py - train - 68 - 【train】 epoch:4 2917/2980 loss:0.7523
  6841. 2023-03-16 22:10:15,758 - INFO - main.py - train - 68 - 【train】 epoch:4 2918/2980 loss:2.6271
  6842. 2023-03-16 22:10:17,153 - INFO - main.py - train - 68 - 【train】 epoch:4 2919/2980 loss:13.0068
  6843. 2023-03-16 22:10:18,533 - INFO - main.py - train - 68 - 【train】 epoch:4 2920/2980 loss:7.8462
  6844. 2023-03-16 22:10:19,953 - INFO - main.py - train - 68 - 【train】 epoch:4 2921/2980 loss:5.1801
  6845. 2023-03-16 22:10:21,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2922/2980 loss:3.6318
  6846. 2023-03-16 22:10:22,804 - INFO - main.py - train - 68 - 【train】 epoch:4 2923/2980 loss:1.2670
  6847. 2023-03-16 22:10:24,232 - INFO - main.py - train - 68 - 【train】 epoch:4 2924/2980 loss:0.1985
  6848. 2023-03-16 22:10:25,667 - INFO - main.py - train - 68 - 【train】 epoch:4 2925/2980 loss:11.6757
  6849. 2023-03-16 22:10:27,193 - INFO - main.py - train - 68 - 【train】 epoch:4 2926/2980 loss:6.8140
  6850. 2023-03-16 22:10:28,643 - INFO - main.py - train - 68 - 【train】 epoch:4 2927/2980 loss:3.0782
  6851. 2023-03-16 22:10:30,053 - INFO - main.py - train - 68 - 【train】 epoch:4 2928/2980 loss:3.5758
  6852. 2023-03-16 22:10:31,601 - INFO - main.py - train - 68 - 【train】 epoch:4 2929/2980 loss:1.8125
  6853. 2023-03-16 22:10:33,083 - INFO - main.py - train - 68 - 【train】 epoch:4 2930/2980 loss:8.6923
  6854. 2023-03-16 22:10:34,539 - INFO - main.py - train - 68 - 【train】 epoch:4 2931/2980 loss:3.2195
  6855. 2023-03-16 22:10:36,005 - INFO - main.py - train - 68 - 【train】 epoch:4 2932/2980 loss:1.5252
  6856. 2023-03-16 22:10:37,474 - INFO - main.py - train - 68 - 【train】 epoch:4 2933/2980 loss:2.6835
  6857. 2023-03-16 22:10:39,362 - INFO - main.py - train - 68 - 【train】 epoch:4 2934/2980 loss:3.3306
  6858. 2023-03-16 22:10:41,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2935/2980 loss:4.1506
  6859. 2023-03-16 22:10:42,993 - INFO - main.py - train - 68 - 【train】 epoch:4 2936/2980 loss:2.7947
  6860. 2023-03-16 22:10:44,721 - INFO - main.py - train - 68 - 【train】 epoch:4 2937/2980 loss:9.4070
  6861. 2023-03-16 22:10:46,293 - INFO - main.py - train - 68 - 【train】 epoch:4 2938/2980 loss:1.2938
  6862. 2023-03-16 22:10:47,661 - INFO - main.py - train - 68 - 【train】 epoch:4 2939/2980 loss:11.1266
  6863. 2023-03-16 22:10:48,931 - INFO - main.py - train - 68 - 【train】 epoch:4 2940/2980 loss:0.3608
  6864. 2023-03-16 22:10:50,273 - INFO - main.py - train - 68 - 【train】 epoch:4 2941/2980 loss:0.5928
  6865. 2023-03-16 22:10:51,624 - INFO - main.py - train - 68 - 【train】 epoch:4 2942/2980 loss:6.7715
  6866. 2023-03-16 22:10:52,973 - INFO - main.py - train - 68 - 【train】 epoch:4 2943/2980 loss:4.1982
  6867. 2023-03-16 22:10:54,324 - INFO - main.py - train - 68 - 【train】 epoch:4 2944/2980 loss:1.3180
  6868. 2023-03-16 22:10:55,685 - INFO - main.py - train - 68 - 【train】 epoch:4 2945/2980 loss:12.8915
  6869. 2023-03-16 22:10:57,035 - INFO - main.py - train - 68 - 【train】 epoch:4 2946/2980 loss:2.4639
  6870. 2023-03-16 22:10:58,418 - INFO - main.py - train - 68 - 【train】 epoch:4 2947/2980 loss:1.6632
  6871. 2023-03-16 22:10:59,803 - INFO - main.py - train - 68 - 【train】 epoch:4 2948/2980 loss:2.0900
  6872. 2023-03-16 22:11:01,231 - INFO - main.py - train - 68 - 【train】 epoch:4 2949/2980 loss:2.3983
  6873. 2023-03-16 22:11:02,754 - INFO - main.py - train - 68 - 【train】 epoch:4 2950/2980 loss:1.9277
  6874. 2023-03-16 22:11:04,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2951/2980 loss:0.9764
  6875. 2023-03-16 22:11:05,595 - INFO - main.py - train - 68 - 【train】 epoch:4 2952/2980 loss:4.2392
  6876. 2023-03-16 22:11:07,124 - INFO - main.py - train - 68 - 【train】 epoch:4 2953/2980 loss:11.9157
  6877. 2023-03-16 22:11:08,522 - INFO - main.py - train - 68 - 【train】 epoch:4 2954/2980 loss:1.1436
  6878. 2023-03-16 22:11:10,033 - INFO - main.py - train - 68 - 【train】 epoch:4 2955/2980 loss:9.6282
  6879. 2023-03-16 22:11:11,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2956/2980 loss:6.5213
  6880. 2023-03-16 22:11:12,855 - INFO - main.py - train - 68 - 【train】 epoch:4 2957/2980 loss:8.8274
  6881. 2023-03-16 22:11:14,343 - INFO - main.py - train - 68 - 【train】 epoch:4 2958/2980 loss:1.7905
  6882. 2023-03-16 22:11:15,723 - INFO - main.py - train - 68 - 【train】 epoch:4 2959/2980 loss:7.0458
  6883. 2023-03-16 22:11:17,082 - INFO - main.py - train - 68 - 【train】 epoch:4 2960/2980 loss:6.3148
  6884. 2023-03-16 22:11:18,473 - INFO - main.py - train - 68 - 【train】 epoch:4 2961/2980 loss:11.4154
  6885. 2023-03-16 22:11:19,833 - INFO - main.py - train - 68 - 【train】 epoch:4 2962/2980 loss:3.9497
  6886. 2023-03-16 22:11:21,123 - INFO - main.py - train - 68 - 【train】 epoch:4 2963/2980 loss:2.8411
  6887. 2023-03-16 22:11:22,443 - INFO - main.py - train - 68 - 【train】 epoch:4 2964/2980 loss:5.5801
  6888. 2023-03-16 22:11:23,798 - INFO - main.py - train - 68 - 【train】 epoch:4 2965/2980 loss:2.1789
  6889. 2023-03-16 22:11:25,234 - INFO - main.py - train - 68 - 【train】 epoch:4 2966/2980 loss:8.7305
  6890. 2023-03-16 22:11:26,692 - INFO - main.py - train - 68 - 【train】 epoch:4 2967/2980 loss:5.9604
  6891. 2023-03-16 22:11:28,116 - INFO - main.py - train - 68 - 【train】 epoch:4 2968/2980 loss:2.6953
  6892. 2023-03-16 22:11:29,463 - INFO - main.py - train - 68 - 【train】 epoch:4 2969/2980 loss:6.9024
  6893. 2023-03-16 22:11:30,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2970/2980 loss:2.8682
  6894. 2023-03-16 22:11:32,161 - INFO - main.py - train - 68 - 【train】 epoch:4 2971/2980 loss:8.3969
  6895. 2023-03-16 22:11:33,663 - INFO - main.py - train - 68 - 【train】 epoch:4 2972/2980 loss:2.9724
  6896. 2023-03-16 22:11:35,197 - INFO - main.py - train - 68 - 【train】 epoch:4 2973/2980 loss:1.8177
  6897. 2023-03-16 22:11:36,614 - INFO - main.py - train - 68 - 【train】 epoch:4 2974/2980 loss:0.1093
  6898. 2023-03-16 22:11:38,142 - INFO - main.py - train - 68 - 【train】 epoch:4 2975/2980 loss:2.7382
  6899. 2023-03-16 22:11:39,792 - INFO - main.py - train - 68 - 【train】 epoch:4 2976/2980 loss:7.7669
  6900. 2023-03-16 22:11:41,261 - INFO - main.py - train - 68 - 【train】 epoch:4 2977/2980 loss:13.7039
  6901. 2023-03-16 22:11:42,652 - INFO - main.py - train - 68 - 【train】 epoch:4 2978/2980 loss:1.7054
  6902. 2023-03-16 22:11:44,128 - INFO - main.py - train - 68 - 【train】 epoch:4 2979/2980 loss:2.8405
  6903. 2023-03-16 22:11:44,754 - INFO - trainUtils.py - save_model - 70 - Saving model checkpoint to ./checkpoints/bert_crf
  6904. 2023-03-16 22:11:47,770 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  6905. 2023-03-16 22:11:48,424 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  6906. 2023-03-16 22:13:44,163 - INFO - main.py - <module> - 302 - 211号汽车故障报告综合情况:故障现象:开暖风鼓风机运转时有异常响声。故障原因简要分析:该故障是鼓风机运转时有异响由此可以判断可能原因:1鼓风机故障 2鼓风机内有杂物
  6907. 2023-03-16 22:13:45,606 - INFO - trainUtils.py - load_model_and_parallel - 96 - Load ckpt from ./checkpoints/bert_crf/model.pt
  6908. 2023-03-16 22:13:46,203 - INFO - trainUtils.py - load_model_and_parallel - 106 - Use single gpu in: ['0']
  6909. 2023-03-16 22:13:46,593 - INFO - main.py - predict - 198 - [('鼓风机', 23, 'subject'), ('有异常响声', 29, 'object'), ('鼓风机', 48, 'subject'), ('异响', 55, 'object'), ('鼓风机', 69, 'subject'), ('故障', 72, 'object'), ('鼓风机', 76, 'subject'), ('有杂物', 80, 'object')]